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ABSTRACT: We define a molecular caging complex as a pair of
molecules in which one molecule (the “host” or “cage”) possesses a
cavity that can encapsulate the other molecule (the “guest”) and
prevent it from escaping. Molecular caging complexes can be useful
in applications such as molecular shape sorting, drug delivery, and
molecular immobilization in materials science, to name just a few.
However, the design and computational discovery of new caging
complexes is a challenging task, as it is hard to predict whether one
molecule can encapsulate another because their shapes can be
quite complex. In this paper, we propose a computational
screening method that predicts whether a given pair of molecules
form a caging complex. Our method is based on a caging verification algorithm that was designed by our group for applications in
robotic manipulation. We tested our algorithm on three pairs of molecules that were previously described in a pioneering work on
molecular caging complexes and found that our results are fully consistent with the previously reported ones. Furthermore, we
performed a screening experiment on a data set consisting of 46 hosts and four guests and used our algorithm to predict which pairs
are likely to form caging complexes. Our method is computationally efficient and can be integrated into a screening pipeline to
complement experimental techniques.

1. INTRODUCTION

Recent advances in synthetic chemistry have led to the
discovery of many classes of chemical compounds possessing
interesting geometric and topological features: linking
(catenanes, molecular Borromean rings),1 caging (molecular
cages),2 cavities (cavitands),3 etc. From both chemical and
topological perspectives, molecular cages have an important
featurean internal cavity. Like other types of molecules
possessing cavities, such as certain enzymes or cavitands,
molecular cages can be involved in supramolecular inter-
actions, in particular of the host−guest type. In this case, a
hollow space inside the host can serve both as a binding site for
the guest and as a nanoreactor environment.4

A host (or cage) is a molecule or a macromolecular complex
that possesses an internal cavity. A guest is a small molecule
that can potentially fit within the cavity of the host. Here we
define a caging complex as a host−guest pair in which the
mobility of the guest is restricted and the guest cannot escape
arbitrarily far. Given that caging is a property describing a pair
of molecules, we say that the host cages the guest and that the
guest is caged by the host (see Figure 1).
Hosts are typically constructed with dynamic covalent

bonds, meaning that their formation and decomposition are
achieved through simple chemical reactions that proceed with
high efficiency.5 This feature offers the possibility to assemble a

host around a guest molecule and disassemble it under some
external stimulus (light, temperature, chemical stimulus, pH,
etc.).6−8 A caging complex therefore represents a nanoscale
carrier−cargo pair that can be securely stored and transported
without any leakage of cargo and discharged when needed.
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Figure 1. Depending on the relative sizes and shapes of a guest (red)
and a host (blue), the guest mobility can be constrained. If the guest
both can be placed inside the host cavity and cannot escape, it is
caged (b); otherwise it is not caged (a, c). More precisely, (a) the
guest might be too small and enter/exit the cavity through the host
windows; (b) the guest might match the size/shape of the host cavity
and be “caged”; or (c) the guest might be too big to fit within the
cavity. In this example, we do not discuss how these pairs are formed.

Articlepubs.acs.org/jcim

© 2020 American Chemical Society
1302

https://dx.doi.org/10.1021/acs.jcim.9b00945
J. Chem. Inf. Model. 2020, 60, 1302−1316

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oleksandr+Kravchenko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anastasiia+Varava"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Florian+T.+Pokorny"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Didier+Devaurs"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lydia+E.+Kavraki"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Danica+Kragic"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Danica+Kragic"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.9b00945&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00945?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00945?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00945?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00945?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00945?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00945?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00945?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00945?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00945?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.9b00945?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


These properties meet the demands of many fields of life
science: drug delivery, medical imaging, sensing, etc.9,10

Therefore, the discovery of new caging complexes along with
modern methods of controlled cage self-assembly constitutes a
powerful tool for biomedical applications.11

Depending on the area of application, the development of
new caging complexes can employ different strategies. For
example, if a newly developed host is considered as a potential
selective gas filter, the screening of various gaseous guests is
required to understand which molecules can pass the filter and
which cannot penetrate the host shell. In contrast, if a real
technological problem relates to the separation of two
particular compounds, the screening of various hosts is
necessary to find a host that possesses different permeation
behaviors for two guests.12,13 In drug delivery, a similar
screening of hosts would be necessary if a particular drug
molecule needs to be caged and subsequently carried by a host.
After more than 30 years since the first high-yielding

synthesis of a host molecule with a well-defined structure, the
targeted synthesis of shape-persistent cages with big cavities
remains a challenge.14 Since the formation of a caging complex
includes preparing a host, the experimental discovery of new
complexes is hampered by the time-consuming15 or
expensive16 procedures of host synthesis. Therefore, most
caging complexes discovered to date simply represent crystals
of shape-persistent cages with solvent molecules entrapped
inside the cavity.12

Significant experimental challenges make a high-throughput
synthetic approach to a caging complex discovery very
resource-demanding, thus highlighting the need for theoretical
approaches. Being able to predict caging complexes theoret-
ically, one would narrow the scope of host and guest
candidates subjected to experimental screening. Then the
process of discovery of new caging complexes would reduce to

the following: (i) select caging complex candidates (host−
guest pairs); (ii) represent hosts and guests in a form suitable
for in silico analysis; and (iii) for each pair, determine whether
it is likely to form a caging complex. Recent progress in the
computational prediction of host structure allows the efficient
generation of molecular geometries of shape-persistent cages
without synthesizing them.16,17 With molecular structures in
hand, the only missing component of the theoretical caging
prediction is an algorithm that takes two geometries as input
and evaluates whether two molecules form a caging complex.
The goal of the present work is to develop a computational

method to identify pairs of molecules that are likely to form a
caging complex. Our approach is based on our previous
work,18,19 where we presented an algorithm that determines
whether a three-dimensional geometric body can cage another
one. In the general case, both geometric bodies can have
arbitrary shapes and are represented as unions of balls of
arbitrary radii. This algorithm was originally designed for
applications in robotic manipulation and path planning, where
the notion of caging has been independently studied for several
decades.20

In this paper, we propose a computational screening method
that predicts whether a pair of molecules form a caging
complex. Given two fixed conformations of a host and a guest,
we evaluate whether they form a caging complex, and if they
do, how robust the obtained cage is with regard to fluctuations
in the input geometries. As the potential application of this
framework lies in the field of drug development and screening,
we wish to remain on the side of caution. In other words, if the
algorithm cannot provide theoretical guarantees of the existence
of a caging complex, we do not consider a given host−guest
pair to be a caging complex. When our algorithm reports that a
pair of molecules do form a caging complex, this can be proven
mathematically.

Figure 2.Movement of an object in an urban environment (top) can be formulated in the same geometric terms as the movement of a molecule in
a nanoscale environment (bottom).
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It should be noted that our method involves the use of static
molecular geometries, i.e., the so-called “solid sphere model”.
More precisely, each molecule is represented by a union of
balls with fixed radii. To enhance this representation and assess
the robustness of the results produced by our method, we
consider uncertainties in the definition of these molecular
geometries. We also show how molecular flexibility can be
taken into account implicitly by considering several con-
formations of a given host. However, a full treatment of
molecular flexibility goes beyond the scope of this article and is
only discussed as future work.
The rest of the paper is organized as follows: in section 2, we

discuss existing approaches to the computational prediction of
caging complexes. In section 3, we discuss the notion of caging
in robotics. In section 4, we present a theoretical formulation
of the problem. Later, in section 5, we describe our caging
prediction algorithm. Section 6 reports our experimental
results. Section 7 provides a discussion of our work, and
section 8 concludes the paper.

2. COMPUTATIONAL PREDICTION OF CAGING
COMPLEXES

While the motion of particles in fluids generally has a random
nature, many chemical and biological processes rely on specific
movements of molecules such as migration of a molecule from
one environment to another, avoiding some obstacles. These
include but are not limited to diffusion through a cell wall,
approaching and binding an enzyme active site, and
permeation through a solid membrane. The latter process is
related to a common task existing in the macroscopic world:
f inding a path between two points in space (see Figure 2). In
other words, given the starting and final positions of an object,
one needs to find a continuous set of positions of the moving
object avoiding collisions with the environment. Unlike
macroscopic objects, individual molecules are not easy to
manipulate. Instead, the statistical nature of their motion
allows them to find such paths without direct manipulation.

A dual problem to path findingproving path nonexistence
naturally occurs in the case of porous solids in gas separation
processes.21 In general, analyzing the shapes of gas molecules
and material pores allows the prediction of how fast the
molecule will permeate through the material. However, the
porous structure of most solids, including crystals, is not
entirely determined by their molecular structure and can
depend on experimental conditions, thus rendering its
computational prediction very challenging.22

Path-finding problems can be tackled using classical motion
planning techniques. Sampling-based path-planning algo-
rithms, originally designed for robotics applications, have
gained a lot of attention in the context of modeling molecular
motion (see a recent survey23 for an overview of the state of
the art). Robotics-inspired methods that were developed to
determine ligand unbinding pathways, such as MoMa LigPath,
can also be used for the caging prediction.24 Indeed, if an
unbinding pathway is found, one can conclude that the ligand
cannot be caged by the tested host. Unfortunately, no
conclusion can be reached if no unbinding pathway is found
because such methods cannot prove path nonexistence.
Another drawback of these methods is that they are not
computationally efficient. On the other hand, an advantage of
these methods is their ability to explicitly consider molecular
flexibility.
While the modeling of molecular motions as paths in the

molecule’s configuration space is not novel per se, in this
paper, we address a problem that is dual to that of path
planning: we want to identify situations where there is no path.
The key difference between sampling-based path-planning
algorithms and our approach is that the former are not able to
identify situations where there is no path and are only
“probabilistically complete”: they are guaranteed to find a valid
path, if one exists, as the number of samples goes to infinity. In
situations where there is no path, they need to rely on
heuristics to stop the search and thus are not able to provide
any guarantee that one molecule restricts the mobility of the

Figure 3. (a) Schematic representation of solids containing molecules without and with internal cavities. (b, c) Illustrations of the largest cavity
diameter (LCD) and pore-limiting diameter (PLD) applied to (b) porous materials and (c) molecular cages.
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other. In this paper, we establish a connection between another
problem from the field of robotics and molecular applications:
the caging problem.
Unlike intermolecular channels in inorganic porous materials

that result from the complex interaction of dozens of
molecules, the so-called permanent porosity in organic cages
is determined and maintained by a single molecule possessing
an internal cavity25 (see Figure 3a). This unique property of
organic cages allows for the targeted development of materials
and molecules containing well-defined pores, in particular
those that can cage other molecules. Such development can be
realized via the computational prediction of both the host
structure and its properties, such as the ability to cage certain
guest molecules.
2.1. Overview of Existing Approaches. Many hosts with

cavities are constructed of wire-shaped building blocks and
have large windows connecting the internal cavity with the
environment.16,26,27 On the one hand, these features allow for a
straightforward synthesis via the self-assembly of simple
starting materials; on the other hand, they lead to the
formation of a large void space inside the molecule along with
big openings in the “shell” surrounding the cavity. Thus, the
problem of rational design of a caging complex (finding a guest
that is caged by a given host, or finding a host that cages a
given guest) usually includes addressing two main questions:

• Can the guest fit the inner cavity of the host?

• Can the guest escape through the openings (windows)
in the host shell?

Several methods based on a computational geometry
framework and targeting various modifications of this problem
have been developed in recent years. Most of them were
designed for the analysis of porous materials and their
adsorption of simple guests: monatomic or diatomic gases
(or, less often, organic vapors). Since these molecules can be
represented geometrically as one or two balls, respectively, the
following two geometric parameters, which are the most widely
used, evolved: (1) the largest inclusion sphere (or largest cavity
diameter, LCD), and (2) the largest free sphere (or pore-
limiting diameter, PLD)28,29 (see Figure 3b). Intuitively, the
LCD is mostly related to the aforementioned problem of fitting
the guest into the cavity and the PLD to the problem of guest
escape from the cavity.
In general, these two parameters are sufficient to estimate

adsorption selectivities among several gases. For example,
Sikora et al.30 performed an extensive computational screening
of 137 000 theoretical metal−organic frameworks to test the
selectivity of Xe/Kr adsorption. The analysis of screening
results revealed that materials with pores that can tightly fit a
single Xe atom (LCD ≈ Xe atom diameter > Kr atom
diameter) and have PLDs small enough to hamper Xe diffusion
but big enough to allow for fast Kr penetration are capable of
efficient separation of Xe and Kr.
The majority of computational methods used for such

analysis involve Voronoi decomposition or Delaunay tessela-
tion of the void space.21,31 Both techniques allow the
determination of the LCD and PLD within a reasonable
computation time.30,32 However, these methods approximate
the shape of the guest as a single sphere, which limits their
application to rarely used monatomic gases.
Unlike porous materials, molecular hosts contain cavities (or

pores) inside a single molecule. Nevertheless, the LCD and
PLD can still be defined for them (see Figure 3c), and the

same computational methods can be applied. The recently
developed pyWINDOW package addresses the problem of
determining the host cavity size (LCD) and host windows
diameters (PLD) by using a sampling-based algorithm.33 This
approach benefits from the well-defined structure of hosts but
is still limited to monatomic guests.
Apart from the aforementioned geometric methods, there

exist many simulation methods that can be used to study
molecular transport in material cavities.34 Molecular dynamics
(MD) remains the ultimate method that allows one to both
include chemical interactions and adjust environment param-
eters. However, MD methods are time-consuming and hence
not applicable to screening tasks. They also require the setup
of a starting configuration for the host and guest. If the host
cavity is tight, finding a noncolliding initial configuration of the
guest inside the cavity is not trivial and is related to the
problem of fitting the guest molecule inside the host cavity.
Therefore, many studies separate dynamic simulations from
geometric analysis of static structures.27,33,35

2.2. Open Problems. The definitions of the LCD and
PLD (including their analogues in molecular cages) are rather
intuitive and are thus commonly used to define the adsorption
selectivity of porous materials.29,31,36 From a geometric point
of view, these parameters describe only two spheres and thus
provide little knowledge about the internal structure of the
cavity. Using balls as probes traversing through the porous
material is extremely useful for the description of monatomic
gas adsorption, since a single atom possesses spherical
symmetry and can be modeled as a rigid ball in simulations.
However, this approximation becomes less realistic in
predictions of diatomic gas adsorption. Eventually, the more
complex the shape of the gas molecule becomes, the more
knowledge about cavity shapes is required in order to evaluate
the material penetration dynamics or the possibility of escaping
the host cavity. Therefore, the methods developed to date are
limited to spherical guests and cannot be directly applied to
arbitrary guest molecules.
To find caging complexes, we utilize the concept of the

conf iguration space of a molecule (or probe). In the case of a
spherical probe, the configuration space has only three degrees
of freedom, and its dimensionality is thus 3. This space can be
explicitly constructed and analyzed using standard computa-
tional geometry methods such as those mentioned above.
However, a molecule generally has at least six degrees of
freedom: three translational, three rotational, and various
internal degrees of freedom. Therefore, its configuration space
is at least six-dimensional, which makes its direct reconstruc-
tion a computationally infeasible problem.20 It should be noted
that it is possible to take a holistic approach toward the analysis
of porosity and use latent space embedding techniques in order
to classify pore sizes and shapes.37 However, these methods do
not consider guest molecules and are therefore less precise
than those analyzing the configuration space of molecules
explicitly. Although many studies that address the prediction of
trapping of molecules inside cavities focus on simple shapes
such as mono- or diatomic molecules, the caging of organic
molecules, both for separation and drug delivery applications,
becomes more attractive as more materials exhibiting
selectivity are being developed.12,38 To the best of our
knowledge, there is currently no general framework that
would allow a chemist to determine whether a guest molecule
of arbitrary shape can be caged by a host molecule of arbitrary
shape.
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3. CAGING IN ROBOTICS
Our approach to determine whether two given molecules form
a caging complex is inspired by the notion of caging from
robotic manipulation.39 The problem of caging a rigid object
has been studied in robotics for several decades. There the goal
is to create algorithms that would enable robots to grasp
objects reliably and prevent them from escaping from a robotic
manipulator (e.g., by falling on the floor). By definition, an
object is caged by a robot if it cannot escape arbitrarily far from
its initial position (see Figure 4). This is achieved by restricting

the object’s mobility by means of robotic manipulators and
external obstacles (e.g., walls, table surfaces, etc.). The problem
of verifying whether an object is caged is challenging from the
geometric point of view.
3.1. Applications of Robotic Caging. In robotics, caging

plays an important role in two different applications: robotic
grasping and multiagent manipulation. The problem of grasp
synthesis consists of finding a grasp configuration that satisfies a
set of criteria relevant for the grasping task. The caging
problem has been considered either as an alternative or as a
preliminary step to forming a grasp.20 For instance, certain
tasks, such as carrying objects or opening doors, do not require
complete immobilization of an object. Instead, caging can be a
more reasonable alternative, as it can be more robust toward
uncertainties in an object’s shape and position. Moreover,
caging can be used to temporarily restrict the object’s mobility
while attempting to grasp it.39

Another important application of caging in robotics lies in
the field of multiagent manipulation. Here, a team of mobile
robots encloses an object and moves without allowing it to
escape at any moment in time.40,41 In this process, the team
needs to avoid obstacles, which implies changing the shape of

the formation. Caging can be beneficial in this scenario, as it
provides theoretical guarantees of object immobilization and
does not require explicit force control. In this context, mobile
robots are typically represented as points and objects as
polygons. Motions are usually performed in a two-dimensional
environment.

3.2. Formalization of Robotic Caging. Representing
positions of rigid objects requires specifying all of their degrees
of freedom, both translations and rotations. Modeling begins
with the notion of conf iguration, that is, a set of independent
parameters that characterize the position of a body in the
world. When the object can freely move in a three-dimensional
environment, its configuration c is described by six
independent parameters specifying its position and orientation
in space. The conf iguration space of a rigid body is a
topological space in which each point uniquely corresponds to
a configuration. A subspace of the configuration space
containing only those configurations of the object in which it
does not collide with obstacles is called the object’s f ree space

free. A connected component of the free space is a subspace in
which every pair of points can be connected by a collision-free
path. A connected component is bounded if it has finite size
(or, mathematically, if it is contained in a ball of finite radius)
and unbounded otherwise. Exactly one of the components of

free is always unbounded. Intuitively, it represents “the outside
world”.
This formalism leads to an equivalent definition of caging:

an object is caged if it is located in a bounded connected
component of its free space. Thus, the question of whether a
rigid three-dimensional object can be caged by a set of
obstacles of a certain shape (or simply by another object) is
equivalent to understanding the topological structure of its free
space: if there exists at least one bounded connected
component in it, then the object can be caged.
The problem of explicit reconstruction (either exact or

approximate) of configuration spaces has been studied for
several decades. Reconstruction can be achieved by discretizing
the space and representing it as a collection of small geometric
primitives, such as rectangles, triangles, or their higher-
dimensional analogues. However, the number of geometric
primitives grows exponentially with the number of dimensions
in the space, resulting in high and practically infeasible memory
and time complexity of straightforward reconstruction
algorithms. Therefore, configuration space approximation is a
challenging problem. In a recent survey on robotic caging,20

Makita and Wan hypothesized that recovering a six-dimen-
sional configuration space is computationally infeasible. Later,
we proposed a provably correct algorithm for approximating
three- and six-dimensional configuration spaces.18,19 To the

Figure 4. Illustration of the concept of caging in robotics. On the left,
an object is caged by two robotic hands: the object is not completely
immobilized, but it cannot escape from the manipulator (reprinted
with permission from ref 54; copyright 2016 IEEE). On the right, a
simplified illustration of its configuration space topology is presented:
an object’s configuration is a caging conf iguration when it is fully
surrounded by collision space (in blue). Here, q represents a single
configuration of an object.

Figure 5. Geometric approach for screening of molecular caging complexes: (a) iterating through a pool of host and guest candidates; (b) selecting
conformations for the analysis; (c) representing conformations as rigid bodies composed of balls; (d) analyzing the free space of the guest object.
Here, SO(3) is the space of possible orientations, and 3 corresponds to different positions in the Euclidean space.
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best of our knowledge, this is the first algorithm that can solve
this problem in real time and has been proven to be
mathematically correct. In this work, we apply this algorithm
to molecules.

4. PROBLEM FORMULATION AND MODELING
In this section, we formulate the goal of the paper and
introduce our modeling approach. Namely, we discuss how we
model molecules and their motions in space.
4.1. Problem Statement. In this paper, we address the

problem of identifying whether a pair of molecules form a
caging complex, which is a key part of the computational
discovery of new caging complexes. A proposed workflow of
the latter is illustrated in Figure 5, with a particular host−guest
pair as an example. Rational design of hosts is usually based on
the available building blocks and synthetic methods for their
assembly, thus enabling the generation of numerous molecular
structures of host candidates16 (Figure 5a). Since the notion of
a caging complex is defined geometrically, we consider
molecules as geometric objects. Furthermore, in this paper
we consider only rigid objects, as deformability is a complex
property that is challenging to address. In certain contexts
molecules can be treated as rigid bodies. For example, one of
the common approaches is to represent a molecule as its most
stable conformation16 or a conformational ensemble27 (Figure
5b). Given the fixed atomic positions in each conformation,
one can build a space-filling model that can serve as a
geometric representation of a molecule42 (Figure 5c). Finally,
we apply our algorithm that takes two three-dimensional
geometric shapes as input and determines whether they form a
caging complex (Figure 5d).
4.2. Geometric Representation of Molecules. In reality,

molecules are composed of atoms, which can be envisioned as
interacting particles with spherical symmetry. Although an
atom does not have a particular physical boundary, it is
common to define the van der Waals radius (rvdW) of an
atom;43 this radius depends on the atom type. In order to
model repulsion between molecules, we represent a molecule
as a solid body with the shape of the van der Waals surface and
an atom as a solid ball with radius rvdW corresponding to the
chemical element.43,44 Since rvdW is half of the minimal
distance between two noninteracting atoms of the same
element, using the van der Waals radius is a natural approach
to the space-filling model, which approximates intermolecular
interactions as solely geometric intersections. However, in
certain cases this model is inaccurate, as it does not take into
account non-covalent interactions. Strong specific interactions
between the host and the guest might favor certain
configurations, so that the guest might not be able to leave
the host cavity even without steric restrictions (see section 7).
Typically, one of two sources of molecular structure

information is used as a starting point for computations:
(molecular or quantum-mechanical) modeling or crystallo-
graphic data. In this work, we used crystal structures obtained
from the Cambridge Crystallographic Data Centre (CCDC)
database. Structures of compounds that cannot be crystallized
in conditions suitable for X-ray diffraction (e.g., liquids) were
extracted from crystal structures of clathrates (where solvent
molecules are entrapped in the crystal). Most of the structures
used in this work possess a single stable conformation.
4.3. Configuration Space of a Molecule. Here we

investigate the ability of a molecule to move from one area of
space to another in principle. Therefore, we assume that a

molecule can move arbitrarily in a continuous fashion. In other
words, if two configurations are connected by a continuous
curve in free (see section 3.2), we say that there exists a path
connecting them, and a molecule can move between these
configurations. It should be noted that we do not consider any
force exerted by the real physical environment, and therefore,
we do not make any assumption about the probability or time
of transition between configurations.
Analogously to rigid objects, we can define connected

components of the free space of a molecule. If a pair of
molecules is a caging complex, then free contains at least one
bounded connected component. Points inside bounded
components correspond to configurations of the guest inside
the cavity of the host from which it cannot escape arbitrarily
far. To predict whether two molecules form a caging complex,
we approximate the free space free of the guest and analyze its
connected components. If there are bounded connected
components, then the pair form a caging complex. It should
be noted that computing potential paths of guests is beyond the
scope of this paper; instead, our goal is to analyze the existence
of such paths between different parts of the configuration
space.

5. GEOMETRIC ALGORITHM FOR MOLECULAR
CAGING PREDICTION

Since the configuration space of a molecule is six-dimensional
with the representation we use, we can apply our geometric
algorithm18,19 to approximate the free space of a guest. As a
result, we get a list of connected components of the free space
of the guest. Let us now briefly summarize the key steps of the
configuration space approximation algorithm.

5.1. Slice-Based Representation of the Configuration
Space. We represent the configuration space of a guest as
the Cartesian product

= × SO(3)3

where 3 and SO(3) are the translational and rotational
components, respectively. Instead of explicitly reconstructing a
six-dimensional configuration space, which is computationally
infeasible, we represent it as a set of “slices”parts of the
configuration space that correspond to small fixed-orientation
neighborhoods (see Figure 6). More specifically, a slice (Sl) is
the Cartesian product of the translational component 3 of the

Figure 6. We decompose the configuration space of a rigid body into
a product of orientational and translational subspaces (SO(3) and 3 ,
respectively). The orientation space is subdivided into a finite number
of neighborhoods, and each of them is projected into translational
space. The sphere on the left is a simplified illustration of SO(3); the
green and yellow patches represent overlapping orientation
neighborhoods (Ui and Uj). Their respective slice approximations
are visualized on the right (Sla(Ui) and Sla(Uj), in green and yellow,
respectively).
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configuration space and a small neighborhood Ui ⊂ SO(3) of
the rotational component:

= ×Sl U U( )i i
3

In this way, we approximate as the union of a finite set of
slices, i.e., = ∪iSl(Ui), where the set of all orientation
neighborhoods Ui covers the entire rotation space:

∪ =U SO(3)
i

i

This approach allows us to overcome the main computational
challenge, namely, the high dimensionality of the space.
Instead of explicitly constructing and storing the entire six-
dimensional space, we approximate it as a set of three-
dimensional approximations Sla(Ui) of slices Sl(Ui). Each
approximation is computed by fixing a particular orientation
from Ui.
Let us now introduce the concept of the ε-core of a guest

molecule that makes this possible.
5.2. The “ε-Core” of the Guest and Theoretical

Guarantees. In order to compute an approximation of a
slice, we introduce the concept of the ε-core of a guest
molecule. Geometrically, it is contained inside the actual
molecular model. If we take a model of the guest molecule and
reduce all of the ball radii by ε > 0, the resulting smaller model
is an ε-core of the guest model. If we now slightly change the
orientation of the initial guest model while the ε-core remains
fixed, the ε-core will remain inside the rotated model provided
that the change in the guest’s orientation is small enough and is
restricted to a neighborhood Ui ⊂ SO(3). Since the ε-core is
located strictly inside the rotated guest, whenever the ε-core is
in collision with the host, the rotated guest molecule is also in
collision. This means that the collision space of the slice

× Ui
3 can be approximated by computing the collision space

of the ε-core with a fixed orientation (see Figure 7).

In our previous work,19 we proved that if the value of ε
corresponds to the chosen discretization of the orientation
space SO(3), our free-space approximation is conservative, i.e.,
it is guaranteed to contain the real free space. This guarantee is
provided by the notion of the ε-core.
In more detail, let the guest model in some orientation ϕ ∈

Ui be denoted by ϕ, and let its geometric center be the origin.
Consider another orientation θ ∈ Ui and the rotation operator

Rϕ→θ(.) that describes the rotation of between the
orientations ϕ and θ. We assume that the guest is rotated
around the origin. Let ∈ ϕx be a point in the guest model in
orientation ϕ and Rϕ→θ(x) its image after application of the
rotation operator. For any pair of orientations ϕ, θ ∈ Ui and
any point ∈ ϕx , we define the following requirement:

ε ≥ −ϕ θ→R x x( ) (1)

where ∥Rϕ→θ(x) − x∥ is the distance between x and Rϕ→θ(x).
Intuitively, for each point x of the guest model , the distance
between x and its image Rϕ→θ(x) needs to be smaller than ε for
all possible orientation pairs ϕ, θ in Ui (see Figure 7).
Let ρ(ϕ, θ) be the angular distance between two elements ϕ

and θ in the space of orientations SO(3), defined as45 ρ(ϕ, θ)
= arccos(|⟨ϕ, θ⟩|), where ϕ and θ are represented as unit
quaternions, which are regarded as vectors in 4 , and ⟨ϕ, θ⟩ is
their inner product. In our previous work,19 we derived the
following upper bound for ∥Rϕ→θ(x) − x∥:

ρ ϕ θ− = · ·ϕ θ
∈

→
∈ϕ ϕ

R x x xmax ( ) 2 sin( ( , )) max
x x

where ∥x∥ is the distance between x and the origin.
Now, let Δ(∪iUi) be an upper bound on the distance

between any two orientations belonging to the same
neighborhood Ui:

ρ ϕ θΔ ∪ ≥
ϕ θ{ }⊂

U( ) max ( , )
i

i
i U, , i

To ensure that the requirement given by eq 1 is satisfied, we
define the minimal acceptable ε value, denoted by εmin:

ε = · Δ ∪ ·
∈ ϕ

U x2 sin( ( )) max
i

i
x

min
(2)

In this way, we can guarantee that the ε-core stays inside the
rotated guest model provided that ε is greater than or equal to
εmin.
The value of Δ(∪iUi) is a parameter of the partitioning of

SO(3), ∪iUi (see our previous work
19 for more details). Thus,

from the chosen partitioning of SO(3), we can find the
corresponding value of εmin. As explained in the next section,
the values Δ(∪iUi) are computed in advance.
To compute ∈ ϕ

xmaxx , we iterate over all atoms and find

the one that is the furthest away from the origin; the sum of
this atom’s radius and the distance from its center to the origin
gives us the distance to the point that is the furthest away from
the origin. The complexity of this procedure is O(n), where n
is the number of atoms in . In our experiments, this process
takes less than 1 ms.

5.3. Slice Computation. We choose a discretization of
SO(3) and use it as input to our algorithm. In our
implementation, we use a grid representation of SO(3)
computed with the help of the software provided by Yershova
et al.45 There, the authors present a method for constructing
deterministic grids on SO(3) and, in particular, derive an upper
bound on the distance between neighboring nodes of the grid,
Δ(∪iUi). Thus, each orientation neighborhood Ui is
represented by a grid node and an open ball around it. The
radii of the balls are chosen such that ∪iUi covers the entire
space SO(3).
For each Ui, we approximate the collision space of the

corresponding slice Sl(Ui) as the collision space of the ε-core
in the corresponding fixed orientation representing the
orientation neighborhood Ui. The resulting approximation is

Figure 7. Illustration of the ε-core principle. First, the intersection I of
molecules with all possible orientations within neighborhood Ui is
considered (outlined with dashes). Then ε is defined as min Δr for all
Δr such that a model with all balls’ radii reduced by Δr is contained
strictly inside I.
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a finite collection of three-dimensional balls ∪Bi (see
Algorithm 1). The approximation of the free space of each
slice Slfree

a (Ui) is the complement of ∪Bi. We construct it as the
dual diagram Dual(∪Bi) defined by Edelsbrunner.46

The dual diagram of a union of balls ∪Bi is a finite collection
of balls and half-spaces (which can be considered as degenerate
balls with infinite radius, or “infinite balls” to simplify the
terminology). Importantly, this approximation of the free space
is guaranteed to contain the actual free space strictly inside if ε
≥ εmin, as discussed in the previous section. This provides
theoretical guarantees to our method: whenever our algorithm
reports that a pair of molecules is a caging complex, it is
guaranteed to be one, provided that molecular models are
adequate. More details can be found in our previous work.19

Given an explicit approximation of the free space of each
slice, we then construct a graph representation a

freeof the
entire six-dimensional configuration space (see Algorithm 2).

For each slice, the respective three-dimensional representation
Sla(Ui) might have multiple connected components. To find
them, we abstract each Sla(Ui)which, as we explained, is a
union of three-dimensional ballsas a graph in which nodes
correspond to balls and edges are added if two balls overlap.
We then perform a depth-first search in this graph to find the
connected components of Sla(Ui) (see our previous work

19 for
a more detailed explanation). As a result, we obtain a set of
connected components {Qk} of the slice approximation
Sla(Ui). These connected components are then abstracted as
vertices in the graph representation of the entire six-
dimensional configuration space, a

free.
We proceed as follows: if two orientation neighborhoods Ui,

Uj ⊂ SO(3) overlapi.e., if Sla(Uj) ∈ Neighbors(Sla(Ui))we
look at the three-dimensional representations Sla(Ui) and
Sla(Uj) of the respective slices × Ui

3 and × Uj
3 . If two

connected components Q ∈ Sla(Ui) and Q′ ∈ Sla(Uj) of two
neighboring slices Sla(Ui) and Sla(Uj) overlap, then these
three-dimensional connected components Q and Q′ represent
parts of the entire six-dimensional configuration space that can
be connected by a path. As each of the components consists of

a collection of finite and infinite balls, two components overlap
if at least two balls belonging to different components overlap.
In this case, we add an edge between the nodes corresponding
to Q and Q′ in the graph of a

free.
Once the graph representation is computed, we check

whether the free space of a guest molecule has any bounded
connected components (see Algorithm 3). For this, we

perform a depth-first search (DFS) to find the connected
components of a

free and see which ones are bounded (i.e., do
not contain infinite balls). In order to find connected
components, we start with the first vertex and continue until
all of the vertices are marked as processed. If there are
bounded connected components, then a pair of molecules
under consideration is a caging complex, i.e., the host molecule
does not allow the guest to escape when the latter is located
inside.

5.4. Overall Process. Now that we have described the
crucial parts of the algorithm, we can summarize the entire
process (see Algorithm 4). The algorithm takes as input the

models of the guest and host and a discretized representation
of SO(3). On the basis of this grid, we compute the required
minimal ε. For each orientation neighborhood Ui, we compute
the corresponding slice approximation Sla(Ui). Then we
connect the slices and obtain an approximation of the free
space a

free. Finally, we compute its connected components and
check whether there exist bounded connected components. If
so, we conclude that the pair of molecules form a caging
complex.

5.5. Robustness of the Results. As discussed above, the
proposed algorithm offers provable guarantees for the
discovered caging complexes, provided that the underlying
structural models are adequate. If it reports that two given
molecules form a caging complex, the result holds only for the
specific conformations that are supplied to the algorithm and
might change if slight modifications to the input are made.
Since the algorithm works with static molecular geometries, in
the present section we consider the modeling assumptions that
are related to the representation of a single molecular
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conformation as a set of balls (see section 4.1), i.e., coordinates
of the centers and values of the radii.
The centers of the balls represent the positions of atomic

nuclei, which can be obtained either from computational
modeling or crystallographic data. Both methods provide
atomic positions xi accompanied by certain confidence
intervals xi ± Δxi. Inaccuracies in the positions are caused
both by limitations of the method (i.e., crystal imperfection,
theoretical models) and by thermal vibrations. To account for
these uncertainties within the rigid-body model, let us first take
a single ball ω with radius r and assume its center lies within a
confidence interval x ± Δx. Then let us consider all balls ω̃j
with radius r whose centers lie within x ± Δx and use their
intersection ω′ = ∩ω̃j as a conservative approximation of a
geometric representation of an atom (see Figure 8a).
Conveniently, ω′ is simply a ball with center x and radius r
− Δx.
This approach allows us to model an atom with uncertainty

in its position as a ball with a reduced radius. In other words,
this “reduction” of all balls of the molecular model ensures that
the resulting object will be fully contained in the original object
(see Figure 8b), independent of the exact positions of the balls
composing it. This conclusion is important for retaining the
correctness of the algorithm: if the reduced model cannot
escape, then the initial molecular model cannot escape either
(Figure 9c,d). In contrast, if the reduced model is not caged,
we cannot guarantee that the original model is not caged
(Figure 9a,b). Therefore, by accounting for the uncertainty in
the atomic coordinates through the reduction of the balls’ radii,

we maintain the theoretical guarantees provided by the
algorithm.
Unlike the centers of the balls, which represent a real

physical property, namely, the positions of atoms, the radii of
the balls model only intermolecular interactions. Van der
Waals radii do not define strict boundaries of atoms, meaning
that an interval of rvdW values would be a more realistic model
than just a single value. In particular, we would like to know
whether the result obtained from the algorithm (two molecules
form a caging complex) holds at higher or lower values of van
der Waals radii rvdW = rvdW

0 ± Δr. This can be realized by
increasing or decreasing the balls’ radii by Δr.
From a computational point of view, the algorithm uses the

balls’ radii only to identify intersections between host balls and
guest balls using the trivial equation ∥x1 − x2∥ ≤ r1 + r2, where
x and r are balls’ coordinates and radii, respectively. Since the
right side of this equation always contains a sum of two radii,
one from the host model and another from the guest model, it
does not matter which model’s balls are reduced as long as the
sum of the reductions is preserved. In other words, from the
geometric point of view, changing the host model’s balls by rh
and the guest model’s balls by rg is equivalent to changing
either model’s balls by rh + rg.
In this way, a simple change of the balls’ radii allows us to

account for the aforementioned disadvantages of the “solid
sphere model”. This approach improves the applicability of the
proposed algorithm, and it is generally useful for the estimation
of the “robustness” of its results. For example, some caging
complexes that can be discovered by the algorithm might
disappear (i.e., become reported as not forming a caging
complex) upon small changes in the input geometries (see
Figure 10, top). Let us call these caging complexes “weak with
threshold Δr” and the rest of the cages “strong with threshold
Δr”. Here Δr is a subjective parameter that can be selected on
the basis of, for example, uncertainties in the input geometries.
The distinction between weak and strong cages becomes useful
when discovered cages are to be reproduced experimentally.
Under experimental conditions, molecular geometries can be
slightly different, and modeling of intermolecular interactions
as geometric collisions is not perfect. Caging complexes that
are predicted to be “strong” have higher chances to be caging
complexes in a real experiment. Here we do not set any specific
threshold for the complex “weakness”, allowing it to be a
variable parameter. Instead, for a caging complex formed by a
host H and a guest G we define as the threshold the value of Δr
such that if all of the radii of H and G are increased or
decreased by Δr, H and G still form a caging complex.

Figure 8. (a) Conservative approximation of a ball whose center can lie within a certain neighborhood as a ball with a reduced radius. (b)
Illustration of the ball “reduction” on a water molecule model represented as three balls (red, oxygen; gray, hydrogen).

Figure 9. (a) The host (H), the guest (G), and their “reduced”
derivatives (H′ and G′); G′ is not caged by H′. (b) When G′ is not
caged by H′, there might exist some host (H̃) and guest (G̃) models
obtained from H and G by the constrained shift of their balls such that
G̃ is not caged by H̃. (c, d) Same as (a, b) except that G′ is caged by
H′; in this case, any G̃ is also caged by H̃.
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6. EXPERIMENTAL RESULTS
In order to demonstrate the algorithm operation, we ran three
sets of computational experiments (see the Supporting
Information for implementation details). First, caging com-
plexes with monatomic guests that were discovered computa-
tionally in previous studies27,33 were analyzed. Then several
host−guest pairs that were previously studied in laboratory
experiments were considered. Finally, screening of a number of
reported shape-persistent hosts and guests was performed in an
effort to predict new complexes.
6.1. Algorithm Validation. 6.1.1. Spherical Guests. As

mentioned in section 2.1, existing approaches for the
computational discovery of caging complexes can be used
only with guests possessing spherical symmetry. Although not
formulated in terms of geometric caging, algorithms such as
pyWINDOW report values of the PLD and LCD that can be
used to identify complexes with spherical guests according to
the following equation: PLD < 2r < LCD, where r is the radius
of a guest.33 Similarly, our algorithm can be used to determine
the PLD of a host as the minimum radius of a sphere that can
be caged by the host. Such an analysis can be performed by
multiple runs of the algorithm with different values of the
radius. Since the primary feature and computational expense of
our algorithm is geared toward handling guests with more than
three degrees of freedom, it runs significantly faster with
spherical guests (see the Supporting Information).
First, we consider five hosts previously used to evaluate

other computational algorithms33 and compare the PLDs
calculated using our algorithm to those reported for these
algorithms (see Table 1). The obtained values are in good
agreement, confirming that our algorithm can be used to
identify pores using the conventional spherical probe
approach.31 A comparison with the results published by
Miklitz and Jelfs33 reveals that the values obtained with
pyWINDOW are slightly larger than the actual window sizes.
We almost completely eliminated these discrepancies by
increasing the sampling frequency in pyWINDOW, which
diminished its performance (see the Supporting Information).
To investigate the applicability of our algorithm to an

ensemble of host conformations, we analyzed MD trajectories
of the covalent cage CC333 and compared our results with
those produced by pyWINDOW for each trajectory frame. In
this context, discrepancies between results could be mitigated
by increasing the number of surrounding sphere sampling

points in pyWINDOW from 250 to 6250 (see Figure 11a−c).
However, in some cases, increasing the number of samples led
to an increase in the detected PLDs. Because it is a sampling-
based algorithm, pyWINDOW is sensitive to the orientation of
the input geometry and thus requires several runs with random
host orientation to find the best approximation of the PLD
value. Running pyWINDOW with these considerations led to a
good match to the results obtained by our algorithm (see
Figure 11d). This highlights the advantages of our method,
which is more precise and more computationally efficient,
without any parametrization for single-sphere guests (see the
Supporting Information for runtimes). The PLD distribution
curves were also successfully reproduced (see Figure 11e),
rendering the analysis of multiple host conformations possible
with our algorithm.
Both generating a PLD distribution and running our

algorithm on spherical guests with Xe and Kr radii allow the
prediction of the penetration dynamics for Xe and Kr in solid
CC3. Only 66 out of 515 conformations (13%) cage Kr, while
451 out of 515 (88%) cage Xe. This indicates that Kr can
penetrate the solid quickly and that the adsorption level should
be low because of low matching with the cavity size. In
contrast, Xe is not caged only ∼12% of the time, and therefore,
the adsorption, which implies traveling between cage cavities,
should be slow. At the same time, Xe is expected to fill most of
the cages in the material, suggesting high adsorption levels over
long times. These conclusions are well-supported by
experimental results.13

6.1.2. Guests of Arbitrary Shape. The capability of hosts to
exhibit selectivity toward guest molecules on the basis of their
shapes was first demonstrated in a breakthrough work by Mitra
et al.12 In their study, organic hosts in the solid state were
tested for the adsorption of several gaseous alkylbenzenes of
similar size with different shapes. Crystallization from solutions
containing the host and an excess amount of the guest
molecules yielded caging complexes with the guest molecules
trapped inside the host cavity, thus providing experimental
evidence concerning whether the guest fits inside the host
cavity (see section 2.1). When these crystals were redissolved
in pure solvent, slow or fast guest release could be observed,
providing an answer to the question of whether the guest could
escape from the cavity. By combining these two answers, the
authors were able to determine which pairs form caging
complexes.
To validate our algorithm on the experimentally discovered

caging complexes and noncomplexes, we aimed to reproduce
key results on molecular shape sorting.12 We tested our

Figure 10. (top) A guest that might escape (left) or not fit (right) the
host cavity upon small distortion of its geometry is reported as
forming a weak caging complex with the host. (bottom) A guest that
remains caged upon small distortion of its geometry is reported as
forming a strong caging complex with the host.

Table 1. Comparison of PLD Values (in Å) Obtained by
Various Algorithms; Host Structures and Exact Parameter
Settings for Each Algorithm Can Be Found in the
Supporting Information

host this work pyWINDOW33,a Zeo++21 circumcircle35

CC3-147 3.63 3.63 (3.64b) 3.66 3.63
CB648 3.72 3.72 (3.73b) 4.12 3.69
IC249 7.86 7.87 (7.90b) 7.89 7.70
CCC47 9.17 9.17 (9.17b) 9.09 8.99
C60 0.00c 0.00 0.00 0.00

aThe PLD was estimated as the largest diameter of all windows found.
bThe value in parentheses is the one reported by Miklitz and Jelfs
with default parameters.33 cThis molecule is a C60 fullerene, where
carbon atoms form a dense shell with no opening window.
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algorithm on three pairs of molecules described in that study:
the host CC3 and three guests. First, we evaluated our
algorithm on a single conformation of CC3 derived from its
crystal structure. Then an additional analysis of 515 host
conformations simulated by MD was performed. In both cases
we obtained results that are consistent with reported ones (see
Figure 12). More precisely, we considered the following pairs:

• CC3 and mesitylene (Mes). Our algorithm reports this
pair to form a caging complex, and this result holds with
a threshold of 0.3 Å (vide infra). This result is in full
agreement with the solid-state, solution, and gas-phase
studies by Mitra et al.,12 which showed that Mes was
either caged inside CC3 (when crystallized together and
then exposed to the solution) or, if introduced after CC3
synthesis, did not enter the cavity at all.

• CC3 and 4-ethyltoluene (4ET). Unlike the previous
pair, CC3 and 4ET are not predicted to form a caging
complex, and this result holds with a threshold of 0.3 Å.
Since our algorithm is designed to give a conservative
estimate of complex prediction, this does not guarantee
that CC3 and 4ET do not form a complex but rather

gives a hint that this pair is unlikely to be a caging
complex. Indeed, this conclusion is supported by the
experimental studies, in which 4ET was found to both fit
inside the cavity of CC3 and escape it easily.

• CC3 and m-xylene (mX). This pair of molecules is
found to form a caging complex, but this result does not
hold upon decrease of the radii by 0.3 Å, meaning that
mX is likely to fit the cavity but might escape it easily.
This is consistent with the experimentally observed
crystals containing mX inside the CC3 cavity, from
which m-xylene escaped upon dissolution (which
amplified the cage flexibility).

Although crystal structures show the genuine placement of
atoms in a solid, they represent a single set of atomic positions,
averaged over the entire crystal. In reality, host molecules
adopt various conformations that are also subjected to thermal
vibrations. One way to account for this without considering all
of the conformations separately is the aforementioned
reduction of radii. In these experiments, we estimated the
variability of atomic positions composing the host and guest by
their corresponding root-mean-square deviations obtained
from solid-state MD simulations (0.25 Å for CC3 and 0.05
Å for all guests; see the Supporting Information). Although this
way of accounting for differences in conformations is simplified
and is applicable only to relatively rigid hosts and guests (with
atomic displacements significantly smaller than the corre-
sponding van der Waals radii), it allows an analysis to be
performed at low computational cost and can thus be used for
high-throughput screening.
To fully account for the flexibility of the CC3 host, we

considered its 515 solid-state conformations (i.e., snapshots of
its molecular dynamics trajectory33) and we ran our algorithm
on each one of them. We found that 499 out of 515
conformations (97%) cage Mes, in accordance with exper-
imental evidence; 293 out of 515 conformations (57%) cage
mX, confirming that it can escape the host cavity in nearly half
of the cases; and only 175 out of 515 conformations (34%)
cage 4ET, which is reflected by experimental results showing it
can travel through the host windows easily (see Figure 13).

Figure 11. (a−d) Comparison of 515 PLDs generated by our algorithm and pyWINDOW using (a) 250, (b) 1250, or (c) 6250 surrounding sphere
samples. (d) Minimum of (a−c) runs for 10 random orientations for each host. (e) PLD distributions generated by our algorithm and
pyWINDOW. The diameters of Kr and Xe (3.69 and 4.10 Å, respectively) are marked with vertical dashed lines. (f) Structure of CC3-1.

Figure 12. Illustration of the caging complex prediction results. 4-
Ethyltoluene (4ET) is not caged by CC3; mesitylene (Mes) and m-
xylene (mX) are caged by CC3. The robustness of all results (see
section 5.5) was evaluated by varying the radii of the balls composing
the guest models (±0.3 Å). Guest models that are caged by CC3 are
depicted in green; those that escape the cage are depicted in red.
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The seemingly large number of reported caging complexes for
mX and 4ET is due to a certain number of “deflated”
conformations. In contrast, the high percentage for Mes
indicates that it is also caged by a significant number of
“inflated” conformationsa feature of Mes being caged by
CC3 as a result of shape rather than size selectivity.12 In
addition, all of the guests were found to be caged by some
conformation of CC3, meaning that they all fit inside the
cavity; on the other hand, Mes and 4ET can escape through
the host windows, as proposed by Mitra et al.12

6.2. Prediction of New Caging Complexes. A potential
application of the present work is the prediction of new caging
complexes. As host synthesis is a time-consuming process,
computational prediction and screening is the most feasible
strategy for the development of new caging complexes. In this
section, we report the use of our algorithm to search for new
complexes that are not described in the literature. In particular,
we aimed to answer the following question: “which hosts can
exhibit selectivity in the caging of several guests with similar
shape?” For illustrative purposes, we selected four guests
monohalobenzenes with close molecular volumes50 and similar
shapes: fluoro- (FB), chloro- (CB), bromo- (BB), and
iodobenzene (IB). The hosts belong to a set of 46 shape-
persistent molecules with cavities (CDB46), a modified version
of the CDB41 database27 (see the Supporting Information).
Since several crystal structures are available for hosts CC1,
CC3, and CC4, all of them are included. Each result is

evaluated for its sensitivity to the input geometry using a
threshold of 0.3 Å, as in section 6.1.2.
In the screening process, we ran our algorithm on all 184

host−guest pairs and discovered 20 strong caging complexes
and 38 weak complexes (see Figure 14). Among the strong
ones, 16 out of 20 were formed by four hostsRCC3b, CB6,
WC2, and WC3with all four guests. Interestingly, a single
bounded connected component was found in the RCC3b−FB
pair, while in the pairs formed by RCC3b with CB, BB, and
IB, four bounded connected components were detected. This
result is due to the hampered rotation of the guests: large
halogen atoms prevent the molecule from rotating freely inside
the cavity, producing four different alignments of the guest
molecule due to the tetrahedral symmetry of the host cavity
(see Figure 15). In contrast, the smaller fluorine atom in FB is

small enough to allow for free rotation. Such information could
be utilized in the rational design of caging complexes and the
fine-tuning of existing complexes by small modifications of the
guests.
Apart from RCC3b, three other hosts cage all four guests:

CB6, WC2, and WC3. It is noteworthy that these hosts are
reported to have small internal cavity volumes of 36, 52, and 59
Å3,27 while the molecular volume of the smallest guest,
fluorobenzene, is 88 Å3.50 This discrepancy emphasizes the
importance of using our algorithm for hosts with arbitrary
cavity shapes. Previous work defined the cavity size as the
LCD,17 which is generally applicable only to hosts with nearly
spherical cavities and to monatomic guests.27

Our results show that only four other hosts (CC3-1, CC3-5,
WC4, and NC1) form strong caging complexes, all with FB
(see Figure 14), suggesting that their cavities are too small to
fit bigger guests. Among all 46 hosts, only WC4 produces all
three possible outcomes: a strong complex (with FB), a weak
complex (with CB and BB), and not a complex (with IB). This
feature may render WC4 a good candidate for the separation
of halobenzenes.

Figure 13. Illustration of the caging prediction results. Each colored
square corresponds to a single algorithm run with one of CC3
conformations. Color code: green, caging complex; red, not a caging
complex. Conformations were obtained from a molecular dynamics
trajectory (see the Supporting Information; the conformation index
can be obtained with the following formula: i = row·50 + column −
50).

Figure 14. Results of the screening of 184 host−guest pairs: s, strong caging complex; w, weak complex; n, not a complex. Only hosts that were
found to form at least one caging complex are shown; the complete table is given in the Supporting Information.

Figure 15. Illustration of (a) the restricted intercavity rotation of CB
and (b) the free rotation of FB.
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This experiment demonstrates that our algorithm is capable
of handling various hosts. Moreover, this algorithm is
conservative (see section 5), meaning that it might not report
certain caging complexes because of the overapproximation of
the free space of the guest. Theoretically, this could result in a
very low rate of detected complexes. However, the results
obtained in this section indicate otherwise, highlighting the
applicability of our approach.

7. DISCUSSION

As demonstrated above, the present approach is remarkably
useful for molecular caging prediction with hosts and guests of
arbitrary shape. Given the theoretical guarantees of our
algorithm, the only limitation of its practical applicability is
the representation of molecules as rigid bodies composed of
balls. As previously stated, such representation consists of
molecular geometry and modeling of intermolecular inter-
actions as intersections of geometric objects. Luckily, a number
of limitations, such as thermal vibrations and imperfect values
of van der Waals radii, can be taken into account within the
same model (see section 5.5).
The present method, when combined with conformational

analysis, can be easily applied to the analysis of both hosts with
low levels of structural rigidity and guests with internal
rotational degrees of freedom. Results obtained for different
conformations can be analyzed using statistical methods. Such
an approach was first illustrated by Miklitz et al.,27 who
generated a number of host conformations and ran a
corresponding spherical guest caging algorithm for each one.
In this work, we successfully used this method with
nonspherical guests. Sometimes uncertainty in the host
conformation can be solved by conservative estimation. For
example, if the cage can “inflate”,51 then an “inflated”
conformation with bigger escape windows can be used.
The core of our approachreduction of the dimensionality

in the analysis of the configuration space of a moleculeallows
for the extension of our algorithm beyond geometric analysis.
The definition of a caging complex in geometric terms (when
the guest molecule is caged for purely steric reasons) can be
revised by considering chemical interactions, a standard
approach in biomolecular interactions modeling.52 Usually,
molecules at equilibrium are located at a local minimum E = E0
on the potential energy surface (PES) and can move on it
without exceeding a certain small barrier ΔE (typically defined
by the temperature). Thus, the condition of a collision in the
definition of the configuration space can be replaced by the
condition E ≥ E0 + ΔE. From the computational point of view,
this approach can be formulated as an energy-bounded caging
problem,53 i.e., caging with respect to an energy field. We are
therefore interested in developing our approach in this
direction in the future.

8. CONCLUSIONS

In this paper, we have proposed a screening algorithm that
predicts whether two given molecules form a caging complex.
Our approach, based on the approximation of a six-dimen-
sional configuration space that was originally developed for
robotic applications, allowed us to extend the toolbox of cage
prediction, which was previously limited to monatomic guests.
Our method successfully reproduced the experimentally
discovered phenomenon of molecular shape sorting. The
algorithm also proved to be efficient in a computational

screening of potential cage candidates, finding 20 strong cages
among 184 analyzed pairs. The generality of the selected
molecular representation allows the present method to be used
in the analysis of any molecular system with a well-defined
structure, including organic cages, protein cages, covalent and
metal−organic frameworks, etc.
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Iehl, R.; Simeón, T.; Corteś, J. MoMA-LigPath: a Web Server to
Simulate Protein−Ligand Unbinding. Nucleic Acids Res. 2013, 41,
W297−W302.
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