Supporting information for

Populating Chemical Space with Peptides using a Genetic Algorithm

Alice Capecchi, Alain Zhang and Jean-Louis Reymond*

Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland

Email: jean-louis.reymond@dcb.unibe.ch

Symbol ^{a)}	id ^{b)}	Description	Example				
Orn	0	Ornithine	0				
0111		0.11110110					
			$H_2N \sim \int OH_{NU}$				
T.T	7	II					
нур	L	Hydroxyproline					
			ноОн				
			ŃH				
bAla	!	Beta-alanine	O 				
			H ₂ N OH				
Gaba	?	Gamma-	0				
		aminobutyric	H ₂ N				
		acid	~ ~ OH				
a5a	=	Delta-	Q				
		aminopentanoic	НаМ				
		acid					
аба	%	Epsilon-	0				
		aminohexanoic	H ₂ N				
		acid					
a7a	\$	Zeta-	O				
		aminoheptanoic	H ₂ N				
		acid	2				
a8a	@	Eta-	O II				
		aminooctanoic	H ₂ N OH				
		acid					
a9a	#	Theta-	O 				
		aminononaanoic	H ₂ N OH				
	1	acid					
Dap	1	2,3-	Ala-Dap-Leu				
		diaminopropionic					
		acid as branching	ОН				
		unit					
			$\begin{bmatrix} H \\ N \end{bmatrix}$				
			HN				
			NH ₂ Ö				
			Ŭ T				
Dab	2	2,4-	Ala-Dab-Leu				
		diaminobutyric					
		acid as branching					
		unit					

 Table S1. PDGA recognized symbols and their correspondent internal character.

 Second ala)
 idb)

 Description
 Encount ala

BOrn	3	Ornithine as branching unit	Ala-BOrn-Leu $O \\ HN = O \\ H$
			$ \begin{array}{c} $
BLys	4	Lysine as branching unit	Ala-BLys-Leu $HN \rightarrow OH$ $HN \rightarrow OH$ $H_2N \rightarrow OH$ $HN \rightarrow$
су	X	Amide bond head-to-tail cyclization. It is always placed at the beginning (left, N terminus) of the sequence.	Cy-Arg-Ala-Cys-Leu-Gly HS HN NH HN HN HN HN HN HN
Cys1	Ä	First pair of cyclizes cysteines, Always in pair, never next to each other.	His-Cys1-Gly-Gly-Gly-Val-Cys1 $HN \xrightarrow{>} N$ $O \xrightarrow{>} OH$ $H_2N \xrightarrow{>} O$ $S \xrightarrow{>} S$ $HN \xrightarrow{>} O$ $HN \xrightarrow{>} HN \xrightarrow{>} O$ $HN \xrightarrow{>} HN \xrightarrow{>} O$

Cys2	Ö	Second pair of	Cys1-Cys2-Gly-Leu-Gly-Lys-Val-Cys1-Gly-Arg-Cys2-			
		cyclizes cysteines. They are always present in pair, never next to each other,	Ala HN H N H H_2N HN H H_2N HN H HN H			
		present only if Cys1 is already part of the sequence.	HN H H O O H H O O O O O O O O O O O O O			
Cys3	Ü	Third pair of cyclizes cysteines. They are always present in pair, never next to each other, present only if Cys1 and Cys2 are already part of the sequence.	Cys1-Cys1-Gly-Leu-Cys2-Gly-Lys-Val-Cys2-Gly-Arg- Cys3-Ala-Leu-Cys3-His H_2N , H_2N , H_1 , H_1 , H_2N , H_1 , H_2			
Ac	&	N-terminus acetylation. It is always placed at the beginning (N- terminus, left) of the sequence	Ac-Lys-Leu H_2N H_2N $H_$			
NH2	+	C-terminus amide. It is always placed at the end (C-terminus, right) of the sequence	Lys-Leu-NH2 H_2N H_2N H_2 $H_$			

^{a)} PDGA input. ^{b)} Internally used characters. ^{c)} Lower case.

Figure S1. Structures of the non-peptidic PAMAM target and its best analog.

Description	SMARTS	HBA/HBD ^{a)b)}	Charge ^{b)}
Aliphatic	[C]	0	0
carbon			
Nitrogen	[#7]	1	0
Tertiary	[NX3;H0]	0	0
nitrogen			
Aliphatic	[0]	2	0
oxygen			
Thiol	[SH1X2]	1	0
Hydroxyl at	[\$([OHX2]-[CX4])]	3,0	0,0
aliphatic			
carbon			
Tyrosine	N[CX4H1]([CH2X4][cX3]1[cX3H][cX	1,0,0,0,0,0,0,3,	0,0,0,0,0,0,0,0,0
	3H][cX3]	0,0,0,2	,0,0,0
	([OHX2,OH0X1-		
])[cX3H][cX3H]1)[CX3]=[OX1]		
Proline	N1[CX4H]([CH2][CH2][CH2]1)[CX3](0,0,0,0,0,0,2	0,0,0,0,0,0,0
	=[OX1])		
Histidine	N[CX4H]([CH2X4][#6X3]1:[\$([#7X3H	1,0,0,0,2,0,1,0,	0,0,0,0,0,0,0,0,0
	+,#7X2H0+0]:	0,2	,0
	[#6X3H]:[#7X3H]),\$([#7X3H])]:[#6X3		
	H]:		
	[\$([#7X3H+,#7X2H0+0]:[#6X3H]:[#7		
	X3H]),\$([#7X3H])]:		
	[#6X3H]1)[CX3](=[OX1])		
Charged	[\$([NH2X3]-[CX4]),\$([N]=[CX3])]	1,0	1,0
nitrogen			
Carbonyl	[\$([O]=[C])]	2,0	0,0
Carboxyl	[OH,O-]-[C](=O)	2,0,2	-1,0,0
Ether	[OX2]([CX4])[CX4]	2,0,0	0,0,0
Phenol	[OH1X2]-[c]	3,0	0,0

Table S2. SMARTS HBA/HBD and charge assignment.

a) 0 = no hydrogen donor or acceptor site; 1 = donor site; 2 = acceptor site; 3 = donor and acceptor site.b) When more values are present, they refer to the SMARTS atom in the correspondent position.

Target	Ν	Μ	G	Treshold	Topology	Excluded	Time
				CBD		bb ^{a)}	limit
Indolicidin	50	1	0.8	300	linear	Hyp, Orn,	24 h
						bAla,	
						Gaba, a5a,	
						a6a, a7a,	
						a8a, a9a,	
						Ac	
Indolicidin	50	1	0.8	5	linear	Hyp, Orn,	6 h
SEQSIM						bAla,	
						Gaba, a5a,	
						аба, а7а,	
						a8a, a9a,	
						Ac	
Tyrocidine	50	1	0.8	300	cyclic	bAla,	24 h
А						Gaba, a5a,	
						аба, а7а,	
						a8a, a9a,	
						Ac	
ω-	50	1	0.8	300	polycyclic	Hyp, Orn,	72 h
conotoxin-						bAla,	
MVIIA						Gaba, a5a,	
						a6a, a7a,	
						a8a, a9a,	
~~~~				200		Ac	10.1
G3KL	50	1	0.8	300	dendrimer	Hyp, Orn,	48 h
						bAla,	
						Gaba, a5a,	
						a6a, a7a,	
						a8a, a9a,	
	50	1	0.0	200	1	Ac	241
Acetyl-CoA	50		0.8	300	linear	AC	24 n
Epothilone	50	1	0.8	300	cyclic	Ac	24 h
A C1 1: A : 1	50	1	0.0	200	1'		241
Cholic Acid	50	1	0.8	300	cyclic	Ac	24 h
α-	50	1	0.8	300	cyclic	AC	24 h
cyclodextrin	50	1		200	1 1 1		241
PAMAM	50	1	0.8	300	dendrimer	Ac	24 h
aenarimer		1	1			1	1

 
 Table S3. Input parameters and excluded building blocks (bb).
 Target Treshold Topology  $\mathbf{G}$ 

^{a)} For a definition of the mentioned building blocks refer to Table S1.