
Simulated Epidemics in 3D Protein Structures to Detect Functional Properties

Mattia Miotto∗,1, 2 Lorenzo Di Rienzo∗,1 Pietro Corsi,3 Giancarlo
Ruocco,1, 2 Domenico Raimondo,4 and Edoardo Milanetti1, 2

1Department of Physics, Sapienza University of Rome, Rome, Italy
2Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy

3University “Roma Tre”, Department of Science, Rome, Italy
4Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy

The outcome of an epidemic is closely related to the network of interactions between individuals.
Likewise, protein functions depend on the 3D arrangement of their residues and the underlying ener-
getic interaction network. Borrowing ideas from the theoretical framework that has been developed
to address the spreading of real diseases, we study the diffusion of a fictitious epidemic inside the
protein non-bonded interaction network, aiming to study the features of the network connectivity
and properties. Our approach allowed us to probe the overall stability and the capability to propa-
gate information in the complex 3D-structures and proved to be very efficient in addressing different
problems, from the assessment of thermal stability to the identification of functional sites.

Introduction

Proteins are large bio-molecules responsible for the ma-
jority of live-sustaining tasks in cells [1, 2]. Their great
versatility is due to the complex three-dimensional struc-
ture they can acquire, which arises as a result of physical
and chemical interactions among all its constituent amino
acids. In particular, the global structure is uniquely de-
fined once the sequence of amino acids composing the
molecule is specified [3], with different sequences that
can give, up to local rearrangements, the same overall
3D architecture [4, 5].

The peculiar structural conformation each protein as-
sumes is the result of a long evolutionary optimization [6].
Proteins are adapted to carry on specific tasks, usually
binding to other molecules while being embedded in a
complex dynamical environment in the presence of both
thermal and molecular noises. In this scenario what evo-
lution does is to select sequences that allow proteins to
exert their task more efficiently in the environment they
live in while maintaining the same overall 3D architec-
ture [7, 8].

Understanding which changes in the amino acid se-
quence can improve protein efficiency while preserving
the biological function has both theoretical and practical
implications. Many works investigated the role of dif-
ferent amino acids in the protein structure, folding, sta-
bility and dynamics [9]. In this respect, methods based
on graph theory approaches have contributed consider-
ably to the understanding of protein structural flexibil-
ity, their hierarchy of structures and in the identification
of key residues [10–14]. All those findings demonstrated
that a network-based analysis can be pivotal to shed light
on the complex aspects relative to the organization of
protein structures [15]. However, network approaches
have often focused on a static description of the system
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while interesting properties, especially at the level of the
single residue, are related to the dynamical behavior of
the network [16].

Theoretical epidemic modeling indeed is a typical ap-
proach to study the dynamical behavior of an interaction
network, describing the evolution of a contagion process
across a population [17, 18].

In the last decades, epidemic models have seen appli-
cations in several fields [19, 20] thanks to the growth of
network sciences. From the spread of real diseases to the
diffusion of news in social networks, epidemic models give
a measure about the diffusion of information within ei-
ther the whole network or from a particular node to any
other.

Here, we combine a graph-based schematization of
proteins with an epidemic diffusion approach to study
the overall stability and the capability to propagate
perturbations (or information) in their complex 3D-
structures [21, 22].

In particular, our novel approach proved to be very
efficient in characterizing protein thermal stability and
in identifying functional sites of proteins, where trivial
static network descriptors exhibit a lower efficiency.

Methods

A. Datasets

To investigate the capability of a diffusion protocol to
grasp the essential feature of the protein structure and
function, we defined four different datasets: ‘Thermal
dataset’, ‘Enzyme dataset’, ‘Allosteric dataset’ and ‘HIV
dataset’. Details regarding their collection are provided
below.

• Thermal dataset. A set of 32 pairs of homologous
proteins with different thermal properties was man-
ually collected from literature [23–26]. Experimen-
tally determined structures were collected from the
PDB [27] and filtered according to method (x-ray

ar
X

iv
:1

90
6.

05
39

0v
2 

 [
q-

bi
o.

B
M

] 
 1

2 
D

ec
 2

01
9



2

FIG. 1: Scheme of the diffusion procedure. a) Representation of the glutamate dehydrogenase (PDB id: 1HRD) protein
structure as ribbons (left) and as a Residue Interaction Network (RIN). Protein residues are considered as nodes and the non-
bonded energetic interactions between residues constitute the links between nodes. b) Outcomes of an epidemic diffusion using
interaction energy between residues and node degree as a proxy of infection and recover probability, respectively (as displayed
in panel a). Two parameters can be defined: the density of infected nodes at the stationary state, ρ?, and the time necessary
to reach the equilibrium value, t?. The red nodes represent infected residues at a different time of the epidemic time evolution.

diffraction), resolution (below 3 Å), and percentage
of missing residues (covering more than 95% of to
the Uniprot [28] sequence). Proteins for which ex-
perimentally determined structures were only avail-
able in a bound state, i.e. in complex with either a
ligand or an ion, were excluded. Further informa-
tion is available in Table 1 of the Supplementary
Material).

• Enzyme dataset. It was composed grouping all
the enzymes present among the proteins of the
Thermal dataset. For each enzyme, we retrieved
information about the residues forming the active
site (see Table 1 in the Supplementary Material),
from the Enzyme Portal of EBI [29].

• Allosteric dataset. We collected from [30] pro-

teins whose active and allosteric sites are both
known.

• HIV dataset. It is composed of 2 apo (free) struc-
tures of the HIV-1 e HIV-2 proteases together with
16 holo (bound) PDB structures (8 of HIV-1 and 8
of HIV-2) being in complex with different ligands
is taken from [31].

All protein structures were minimized using the stan-
dard NAMD [32] algorithm and the CHARMM force
field [33] in vacuum. A 1 fs time step was used and struc-
tures were allowed to thermalize for 10000 time steps.
This procedure aims at removing energetic clashes that
may be present due to the crystallization procedure.
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FIG. 2: The stationary density of infected nodes gives information on the thermal stability of the protein. a)
Mean density of infected nodes as a function of time for an explicative homologous couple. b) Bar-plot representation of the
density of infected node at the stationary state for the 32 mesostable (blue) and thermostable (red) proteins of the Thermal
dataset.

B. Network representation

Protein structures are represented as Residue Interac-
tion Networks [34] (RINs in short), where each node rep-
resents a single residue aai. The nearest atomic distance
between a given pair of residues aai and aaj is defined as

Dij . Two RIN nodes are linked together if Dij ≤ 12 Å
[32, 33]. Furthermore links are weighted by the sum of
two energetic terms: Coulomb (C) and Lennard-Jones
(LJ) potentials. The C contribution between two atoms,
al and am, is calculated as:

EC
lm =

1

4πε0

qlqm
rlm

(1)

where ql and qm are the partial charges for atoms al
and am, as obtained from the CHARMM force-field: rlm
is the distance between the two atoms, and ε0 is the vac-
uum permittivity. The Lennard-Jones potential is in-
stead given by:

ELJ
lm =

√
εlεm

[(
Rl

min +Rm
min

rlm

)12

− 2

(
Rl

min +Rm
min

rlm

)6
]

(2)
where εl and εm are the depths of the potential wells of
atom l and m respectively, Rl

min and Rm
min are the dis-

tances at which the potentials reach their minima. There-
fore, the weight of the link connecting residues aai and
aaj is calculated by summing the contribution of the sin-
gle atom pairs as:

Eij =




Ni∑

l

Nj∑

m

(
EC

lm + ELJ
lm

)

 (3)

where Ni and Nj are the numbers of atoms of the i-th
and j-th residue respectively.

C. Diffusion model on the protein network

Epidemic modeling describes the dynamical evolution
of the contagion process within a population. An indi-
vidual (or node) is said susceptible (S) when it is healthy
but could contract the disease, infected (I) when the con-
tagion is transmitted by an adjacent node and recovered
(R) when it manages to recover from the disease. In
principle, recovered individuals are immunized and hence
they are safe from other infections for a certain time. To
study the evolution of the density of infected individu-
als we have to define the basic processes that rule the
transition of individuals states, e.g.





Susceptible to Infected (S → I)

Infected to Recovered (I → R)

Recovered to Susceptible (R→ S)

(4)

More in details, we must specify (i) the topology of
the interaction network, i.e. which nodes directly interact
with each other; (ii) the strength of the interaction which
is linked to the transmission rate of the infection and
(iii) the recovering rate (i.e. the probability, if present,
of return healthy after having contracted the infection).
Depending on the choices one makes for the set of tran-
sitions in Eq. 4, different models and processes can be
simulated. A detailed description of the most studied
models in classical epidemiology is given in [[35].

In the present work, we simulated an epidemic diffu-
sion over the protein RINs (see Figure 1). While we pre-
served the full topological information, we restrained to
an SIS (susceptible-infected-susceptible) epidemic model,
where each node (i.e. residue) once infected, can trans-
mit the infection to near neighbor nodes in the network.
A residue can recover from the infection, returning to the
susceptible state (meaning that the transition R → S is
instantaneous). In this scenario, the probability of find-
ing a node i in infected state is given by:
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pit+1 = (1− δi)pit + (1− pit)
N∑

a=1

βijp
j
t (5)

where δi is the rate with which node i recovers from
infection, while βij represents the infection rate of node
i given that node j is infected at time t [36].

Eq. 5 can not be solved analytically for complex topolo-
gies like the RIN ones but a numerical treatment is re-
quired. In the Supplementary Material, we provide a
short treatment of the mean-field approximation, where
instead it is possible to analytically solve Eq. 5 for dif-
ferent choices of the transitions in Eq. 4. In our case, for
each RIN node we identify the recovering rate, δi, with
the node degree. While the infection rate between node i
and j, βij is given by the weight of the link (βij = Eij as
given by Eq. 3). Once defined the infection and recover-
ing rates, we simulated the diffusion process into the 3D
structure, starting from a specific set of residues or by
picking an initially random set, and looking at the mean
density of infected residues over time:

ρ(t) =

〈
NI(t)

Ntot

〉
(6)

where NI(t) is the number of infected residue at time t,
Ntot is the total number of protein residues and we indi-
cated with < · > the mean over the M realizations of the
diffusion process ( all results presented here, are obtained
setting M=1000 in order to avoid large fluctuations that
are unavoidable in a single realization). It has been found
that, depending on the connectivity matrix architecture
and the sets of {δi} and {βij} parameters, the system
can exhibit different behaviors. As t → ∞, the infec-
tion, starting from some nodes, propagates in the whole
network and reaches a stationary regime where a certain
density ρ? of nodes is constantly infected at each time,
independently from the size and the identity of the initial
set of infected nodes. Intuitively, ρ? = 0 if the number
of nodes that recover from the infection overcomes those
that become infected. On the other hand, ρ? = 1 when
the infection is too aggressive. The nontrivial scenario
(0 < ρ? < 1) is achieved when the network architecture
and the parameters allow having a balance between the
number of nodes that become infected and the ones that
recover.In the simulations, we defined the transient time
t? as the time after which ρ(t?) = ρ?−δ, with δ → 0 (see
Figure 1b); in other words t? is the number of time steps
needed by the epidemic to reach its stationary state.

Statistical analysis was performed by using R package
stats [37]. In particular, clustering analysis performed
on the HIV dataset was made using the HeatMap func-
tion, applying the Euclidean distance matrix (given by
the ‘dist’ function) and the ‘hclust’ method for the clus-
tering algorithm.

Results

D. Stationary epidemic behavior is a global
measure of protein thermal stability

Different thermal behaviors in homologous proteins
have long been studied and several features have been
identified as responsible for those differences (such as salt
bridges, charged amino acids disposition, etc. [38–44]).

These features are very well defined in network repre-
sentation, both in terms of network topology (structure)
and link weights (energy). Here we exploit our epidemic-
diffusion algorithm to assess the capability of the network
to reflect the protein thermostability.

In particular, we compared the stationary state density
of infected nodes between all the couples of the Thermal
dataset. For each protein, the diffusion was simulated,
starting each time from a randomly selected set of in-
fected residues. In particular, 5% of the nodes were in-
fected at t = 0.

In 84% of cases (27 out of 32 comparisons), ther-
mophilic proteins acquired a higher density of infected
nodes with respect to their mesophilic counterparts,
when epidemic diffusion reaches the equilibrium (Fig-
ure 2a). According to us this results reflects both the
overall higher connectivity and the higher energy of
the links in the thermophilic proteins compared to the
mesophilic ones. Our diffusion-based approach is able
to well capture this aspect, even better than the network
analysis alone is able to do (see supplementary material).
In Figure 2b, we reported an example of diffusion pro-
cess results where the different steady states are very well
visible (PDB id: 1PII-1DL3).

E. Epidemic transient phase permits local
characterization of protein structures

After demonstrating that we can properly apply the
epidemic diffusion approach exploring global features of
a three-dimensional structure of a protein, we investi-
gated our diffusion approach at a single residue level. i.e.
we tested if residues that functionally need to have strong
communication with the rest of the protein are character-
ized by peculiar diffusive properties. In this framework,
one of the most important challenges in computational
biology is the characterization of the active and allosteric
sites in proteins. Since the substrate-binding has to be
detected also far from the binding region through a cas-
cade of residue-residue interactions [30], we hypothesize
that the diffusive approach could be a perfect approach
to capture this aspect.

So we investigated, in particular, the transient phase
of the epidemic, i.e. the number of time steps neces-
sary to reach the equilibrium (t?). The time t? varies
according to some features of the infected initial nodes.
In particular, if the epidemic starts from energetically in-
terconnected residues, it is very likely that the stationary
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FIG. 3: An epidemics starting from a functional site of protein spreads faster. a)We report an example of a protein
functional site mapped by using diffusion based approach. Ribbon representation of protein, identified by PDB code 1D09,
was colored according t?, from red (highest values) to blue (lowest values). It is clear that allosteric site (residues reported
as spheres) present lowest values of t? parameter. b) Distribution of the z-score values regarding the active site amino acids
of the 24 enzymes in the Thermal dataset. c) Distribution of the z-score values regarding the active sites and allosteric sites
amino acids of the 20 proteins in the Allosteric dataset.

state will be obtained in a shorter time when compared
with the other residues.

We simulated an epidemic originating from every single
residue of all proteins in the Enzyme dataset. In particu-
lar, since epidemic originating from a single node usually
are characterized by a fast extinction, for each residue,
we selected also its two closest neighbors in sequence as
a contagion starting point.

We normalized results over each protein size by using
the z-score, in order to make the comparison between
proteins with sequences of different length possible.

The z-score of the i-th residue was defined as:

zi =
t?i − t?√

(t?)2 −
(
t?
)2 (7)

where the over-bar represents the mean of t? over all
the amino acids in the analyzed protein.

Charged residues exposed on the protein surface and
core residues are obviously very fast in propagating the

infection, because of the high energy interactions the
charged residues are involved in and because of the high
number of contacts the core residues have. We pre-
liminary confirmed this (see supplementary material) as
shown in Suppl. Figure 1. We also correlated protein sec-
ondary structure location (as calculated by STRIDE [45])
of each residue with its t? because we can suppose that,
on average, residues belonging to secondary structures
are assembled in a dense part of the interaction network.
As expected, Beta Strand and Alpha Helix components
are characterized by lower t? (see supplementary mate-
rial).

We then proceeded to apply the diffusion protocol in
order to analyze t? values for 11 pairs of (thermostable-
mesostable) enzymes in the Enzyme dataset for which we
know residues forming the active site. The comparison
between the t? values of the active site with that of the
other residues clearly shows that the former is character-
ized by a statistically significant lower t?. The ‘functional
information’ the protein receives after ligand binding into
the active site needs to be fastly communicated to the
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whole protein and our diffusive method is able to well
characterize this important biological aspect. We show
in Figure 3b the distribution of z-scores belonging to the
active site residues. The 77% of residues belonging to
active sites presents a z-score lower than 0, represented
by the orange area under the curve. This means stronger
connectivity of active site residues with the whole protein
than the average value of all other residues.

Then we have considered the twenty allosteric proteins
with known active and allosteric site residues (see Al-
losteric dataset in Methods). Even in this case, we ap-
plied our epidemic protocol in order to evaluate the num-
ber of time steps necessary to reach the equilibrium. As
shown in Figure 3c, 66% of allosteric residues shows a z-
score value lower than zero, demonstrating that allosteric
residues are faster than average residues in propagating
information inside the protein network due to their bio-
logical functional role in the 3D structure. Interestingly,
the active sites of these proteins are not characterized by
peculiar diffusive characteristics because just 52% active
sites reach z-score values lower than 0. The reason for
this behavior, different from what observed before, can
be due to their different binding ‘state’: in the Ther-
mal dataset the proteins were in the apo form, while in
the Allosteric dataset the proteins are in the holo form,
with the ligand occupying the active site and diffusive
approach seems to be very sensitive to these two states.

F. HIV-1 and HIV-2 Proteases can be
discriminated by their epidemic diffusion profile

Finally, we used epidemic diffusion time analysis in or-
der to discriminate HIV-1 and HIV-2 proteases. Despite
the structural similarities, HIV-1 and HIV-2 proteases
show dramatic disparities in susceptibility to HIV-1 pro-
tease inhibitors [31]. Each of the 18 HIV proteases (HIV
dataset) has been represented by a diffusion time pro-
file (e.g. the concatenation of single residue t?) and all
profiles have been easily compared since all protein se-
quences have the same length.

The heatmap reported in Figure 4a shows clustering
analysis results performed on residues and proteins of the
HIV dataset. All of the proteins are correctly identified
as HIV-1 or HIV-2 protease demonstrating the possibility
to use an epidemic diffusion approach in order to eval-
uate functional differences related to three-dimensional
protein structures.

We then explored key residues responsible for discrim-
ination of the two groups. For each residue of HIV-1 and
HIV-2 proteases, we compared their zi scores distribu-
tions with a t-test. The 39 residues showing the most
significant difference, when we set p-value threshold to
0.05 are: 14, 19, 22, 23, 40, 41, 43, 56, 61, 62, 64, 70, 72,
73, 84, 95, 103, 108, 114, 115, 116, 118, 120, 134, 136,
140, 142, 155, 160, 163, 165, 167, 168, 170, 179, 190, 191,
192, 193.

Notably, lowering the p-value threshold to 0.005, we

identified a subgroup of seven residues, i.e. 14, 19, 64,
95,1 18, 142, 190, shown in Figure 4b. As we said before,
although HIV-1 and HIV-2 proteases share a great deal
of structural similarity the reasons for intrinsic protease
inhibitor resistance in HIV-2 are not known. Very in-
terestingly, the subgroup of seven residues we identified
occur at sites distant from the active site (see Figure 4c)
and two out of seven residues are also identical in the
two proteases. This leads us to present a hypothesis that
perhaps our epidemic approach could have been captured
subtle structural changes, imparted by a limited number
of residues, causing dramatic functional differences be-
tween homologous proteins (HIV-1 and HIV-2 proteases).
That is the seven amino acids outside the HIV-2 protease
active site may cause subtle changes in conformation and
in long-range effects compared to HIV-1, which might im-
pact protease inhibitors binding affinity.

I. DISCUSSION

Proteins are complex systems where evolution must be
very proficient in tuning parameter (e.g. selecting muta-
tions) to obtained more fitted proteins with respect to
some features while maintaining the protein functional.
For instance, optimizing enzymes to be more efficient at
high temperatures (i.e. increasing their thermal stabil-
ity) must not reduce enzyme flexibility and the ability to
change configurations.

Graph theory-based methods represent a powerful ap-
proach to investigate protein topological and energetic
properties. However, we could consider it a static view
of the protein structures that does not allow us to de-
scribe their complexity in a complete way. To overcome
this limitation several aspects of proteins were investi-
gated through dynamical approaches, like molecular dy-
namics or perturbation-response approaches, which take
into account the dynamical properties. A problem con-
nected with these approaches is that they are typically
characterized by a high computational cost.

In this work, we explored the possibility to adopt
an epidemic diffusion-based method as an efficient way
to study functional aspects (both local and global) of
proteins strictly connected with their three-dimensional
structural organization. The new idea we introduced
with this approach was to investigate the dynamic prop-
erties of the interactions network of a protein structure
by using epidemic diffusion-based algorithms, preserving
in this way both the topology and the energy properties
of the interactions. The most striking advantage of this
method is that it is not very computationally expensive
allowing for a fast exploration of complex problems re-
lated to protein function (diffusion on an average protein
requires few minutes on a standard personal computer).
Starting from the RIN formalism [46, 47], we studied the
diffusion of a fictitious epidemic inside the protein struc-
ture represented as a network using energies and node
degrees as proxies of infection and recovery rates.
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FIG. 4: The epidemic diffusion profile discriminates different HIV proteases. a) Heatmap representation of the
clustering analysis performed on the zi scores of the proteases of the HIV dataset. b) Boxplot of the distributions of the zi
scores of the 7 most different HIV residues. c) Representation of the HIV protease (PDB id: 3ECG). Green sticks highlight
the seven residues most responsible for the difference between HIV-1 and HIV-2 protease sets.

A large number of mathematical models have been for-
mulated to study the spread of infectious diseases, but
most of these are just variants of Kermack and McK-
endrick epidemic model [17, 18]. Reproducing different
aspects of the spread of real diseases, all models ulti-
mately provide a measure of the information diffusion
throughout the entire network.

Simulations of diffusion processes were performed con-
sidering typical network parameters for calculating the
probability of transmission of infection (proportional to
the link energy) and the probability of each node of re-
turning susceptible (proportional to node degree).

From diffusion simulations, two descriptors were de-
fined, one (ρ?) providing global information and the other
(t?) local one. In particular, a residue-specific descriptor
is of fundamental importance because the identification
of functional key residues in a protein structure is a useful
aspect for protein design in many open biological ques-
tions.

Considering the stationary phase, the mean of the per-
centage of infected nodes is constant over the steps bal-
ancing the rate of infection and recovery. The The value
of the stationary percentage of infected nodes is a very
compact way to quantify the global properties of the en-
tire protein related to residue-residue energetic interac-
tions. A protein characterized by strong interconnectiv-
ity will have a very strong energetic coupling between its
residues showing, at the equilibrium, a higher number of
infected nodes.

Given an overall fold, the arrangement of side chains
organizes the inter-molecular interaction to better resist
the thermal noise. Therefore, we test the sensibility of
this formalism applying it on a well-defined set of ho-
mologous protein pairs, one protein from a mesostable
organism, the other one from a thermostable one.

We found that thermophilic proteins have a signifi-
cantly higher percentage of infected residues than ho-
mologous mesophilic counterparts, meaning that ther-
mophilic proteins organize their network of interactions
in order to promote infection. We could, therefore, con-
clude that thermophilic proteins have, on average, a
higher level of interconnectivity than mesophilic proteins.

Another important aspect we explored in this work
was the local properties of proteins that often are gener-
ated by long-range effects. In this case, the problem was
studied by taking into account the transient phase of the
diffusion simulation, which is composed of steps between
the initial infection and the stationary state.

The number of steps necessary in order to reach the
stationary phase, t?, is depending on the choice of the
starting infected nodes, expressing their centrality in the
energy network. This local characterization can be uti-
lized in order to identify which kind of residues (or do-
mains) are more central in a protein, in terms of their
connection with the rest of the protein. We clearly
demonstrated that both residues belonging to enzyme al-
losteric and active sites typically reach the state of equi-
librium with a number of steps smaller than any other
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residue.
We also investigated the local property of each residue

of two HIV-1 and HIV-2 proteases. The method showed
its perfect ability to separate the two classes of proteases,
in terms of transient phase, elucidating non-trivial differ-
ences (HIV-1 and HIV-2 protease share 50% of sequence
identity) by analyzing the dynamic properties of residues
represented as a network. The epidemic approach was
also able to select seven residues responsible for the dis-
crimination of the two groups, which might impact pro-

tease inhibitors binding affinity helping to understand the
key differences between HIV-1 and HIV-2 infections. We
believe that the study of the dynamical aspect of the pro-
tein structure network is, in general, a promising direc-
tion for the future. We intend to investigate how far our
results can be generalized to other types of protein func-
tional elements, other types of proteins like membrane
proteins and hopefully to other kinds of macromolecules
like nucleic acids.
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PLoS Computational Biology 9, e1002861 (2013).

[7] F. S. Domingues, W. A. Koppensteiner, and M. J. Sippl,
FEBS Letters 476, 98 (2000).

[8] A. Karshikoff, L. Nilsson, and R. Ladenstein, FEBS Jour-
nal 282, 3899 (2015).

[9] B. Chakrabarty and N. Parekh, Nucleic Acids Research
44, W375 (2016).

[10] N. V. Dokholyan, L. Li, F. Ding, and E. I. Shakhnovich,
Proceedings of the National Academy of Sciences 99,
8637 (2002).

[11] A. del Sol, H. Fujihashi, D. Amoros, and R. Nussinov,
Molecular Systems Biology 2 (2006).

[12] G. Amitai, A. Shemesh, E. Sitbon, M. Shklar, D. Ne-
tanely, I. Venger, and S. Pietrokovski, Journal of Molec-
ular Biology 344, 1135 (2004).

[13] M. Vendruscolo, N. V. Dokholyan, E. Paci, and
M. Karplus, Phys Rev E Stat Nonlin Soft Matter Phys
65, 061910 (2002).

[14] M. Aftabuddin and S. Kundu, Biophysical Journal 93,
225 (2007).

[15] M. Miotto, P. P. Olimpieri, L. D. Rienzo, F. Ambrosetti,
P. Corsi, R. Lepore, G. G. Tartaglia, and E. Milanetti,
Bioinformatics (2018).

[16] L.-Q. Yang, P. Sang, Y. Tao, Y.-X. Fu, K.-Q. Zhang, Y.-
H. Xie, and S.-Q. Liu, Journal of Biomolecular Structure
and Dynamics 32, 372 (2013).

[17] W. O. Kermack and A. G. McKendrick, Proceedings of
the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 115, 700 (1927).

[18] W. O. Kermack and A. G. McKendrick, Proceedings of
the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 138, 55 (1932).

[19] A. Vespignani, Nature Physics 8, 32 (2011).
[20] H.-X. Yang and B.-H. Wang, Physica A: Statistical Me-

chanics and its Applications 443, 86 (2016).
[21] C. Castellano, S. Fortunato, and V. Loreto, Reviews of

Modern Physics 81, 591 (2009).

[22] R. Albert and A.-L. Barabási, Reviews of Modern
Physics 74, 47 (2002).

[23] K. V. Brinda and S. Vishveshwara, Biophys. J. 89, 4159
(2005).

[24] N. Kannan and S. Vishveshwara, Protein Eng. 13, 753
(2000).

[25] A. Mozo-Villarias, J. Cedano, and E. Querol, Protein
Engineering, Design and Selection 16, 279 (2003).

[26] R. hard Sterner and W. Liebl, Critical Reviews in Bio-
chemistry and Molecular Biology 36, 39 (2001).

[27] W. G. Touw, C. Baakman, J. Black, T. A. te Beek,
E. Krieger, R. P. Joosten, and G. Vriend, Nucleic Acids
Res. 43, D364 (2015).

[28] S. Pundir, M. J. Martin, and C. O’Donovan, Methods
Mol. Biol. 1558, 41 (2017).
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I. EPIDEMIC MODELS

In the last decades epidemic spreading has seen applications in several fields [1, 2] thanks to the growth of network
sciences. Starting from the spread of real diseases and going to news diffusion in social networks, the epidemic
models gives a measure about the information diffusion within either the whole network or from a particular node
to any other. Epidemic modeling describes the dynamical evolution of the contagion process within a population.
A node (or individual) is said susceptible (S) when it is ”healthy”, infected (I) when the contagion is transmitted
by an adjacent node and recovered (R) when it is immunized and hence is safe from other infections. In order to
understand the time evolution of the density of infected individuals we have to define the basic processes that rule
the transition of individuals from one of the states early described to another. A description of SIS (Susceptible-
Infected- Susceptible), SIR (Susceptible-Infected-Recovered) and SI (Susceptible-Infected) models with the classical
epidemiology [3] is given. Approaches based on mean-field theory are also available, but we are more interested in
a clear explanation of the algorithms and their applications rather than their theoretical treatment. An epidemic
process can be seen as a stochastic reaction-diffusion process (van Kampen, 1981) in which individuals belonging to
the different states (i.e. S, I or R) evolve according to a given set of mutual interaction rules. These represent the
possible transitions between the states that can be specified by stoichiometric equations, indeed we can adopt the
reaction-diffusion formalism to describe simple epidemic models. The SIS model thus obeys the reactions

S + I
β→ 2I (1)

I
µ→ S (2)

where β and µ are transition rates for infection and recovery respectively, that is the probabilities of a node to be
infected by an adjacent node or to be recovered ad hence removed (or immunized) by the network. In this model
infection can be sustained forever for sufficiently large β or small µ. The SIR is instead a three-states model coupled
by the reactions

S + I
β→ 2I (3)

I
µ→ R. (4)

For any value of β and µ, the SIR process will always extinguish after infecting a given population density. A useful
variant is the SI model, which only considers the first transition in SIS (Eq. 1) and SIR (Eq. 3), that is nodes become
infected and never leave this state. In this way the process ends when the entire population will be infected. While the
SI model is a strong simplification (valid only in cases where the time scale of recovery is much larger than the time
scale of infection), it approximates the initial time evolution of both SIS and SIR dynamics. The classical description
of epidemic dynamics is based on taking the continuous-time limit of difference equations for the evolution of the
average number of nodes in each state.

This deterministic approach relies on the homogeneous mixing approximation, which assumes that the nodes in the
population are well mixed and interact with each other completely at random, in such a way that each member in a
compartment is treated similarly and indistinguishably from the others in that same compartment.

Under this approximation, information about the state of the epidemics is fully expressed with the node density
ρα = Nα/N , where N is the population size and α is the state.

The time evolution of the epidemics is described by deterministic differential equations, which are constructed
applying the law of mass action, stating that the average change in the population density of each compartment due
to interactions is given by the product of the force of infection times the average population density (Hethcote, 2000).
The deterministic equations for the SIR and SIS processes are obtained by applying the law of mass action and read
as

SIS





dρI

dt = βρIρS − µρI

dρS

dt = −βρIρS + µρI

ρS = 1− ρI (normalization condition)

(5)
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SIR





dρI

dt = βρIρS − µρI

dρS

dt = −βρIρS

ρR = 1− ρS − ρI (normalization condition)

(6)

If we consider the limit ρI ' 0, generally valid at the early stage of the epidemic, we can linearize the above equations
obtaining for both the SIS and SIR models the simple equation

dρI

dt
' (β − µ)ρI (7)

whose solution

ρI(t) ' ρI(0)e(β−µ)t (8)

represents the early time evolution. last Equation illustrates one of the key concepts in the classical theoretical analysis
of epidemic models. The number of infectious individuals grows exponentially if

β − µ > 0⇒ R0 =
β

µ
> 1 (9)

where we have defined the basic reproduction number R0 as the average number of secondary infections caused by
a primary case introduced in a fully susceptible population (Anderson and May, 1992). This result allows to define
the concept of epidemic threshold: only if R0 > 1 (i.e. if a single infected individual generates on average more than
one secondary infection) an infective agent can cause an outbreak of a finite relative size (in SIR-like models) or lead
to a steady state with a finite average density of infected individuals, corresponding to an endemic state (in SIS-like
models). If R0 < 1 (i.e. if a single infected individual generates less than one secondary infection), the relative size of
the epidemics is negligibly small, vanishing in the thermodynamic limit of an infinite population (in SIR-like models)
or leading to a unique steady state with all individuals healthy (in SIS-like models).

II. DATASETS
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Couple Thermostable Mesostable Active Site

1 1FJQ 1NPC Tyr157; Asp226; His231; His142 A; His146 A: Glu 166 A; Glu 143

2 3PFK 2PFK Asp127; Gly 11; Arg72; Thr125; Arg171

3 1RIL 2RN2 Asp10; Asp70; Glu48; His124; Asp134

4 1BMD 4MDH His186; Asp158

5 2PRD 1JFD —

6 1PHP 3PGK —

7 1THM 1ST3 —

8 1EBD 1LVL —

9 1BTM 1TIM Gly171; Ser211; Lys13; Glu97; Asn11; His95; Glu165

10 1IQZ 1DUR —

11 1VJW 1FCA —

12 1XYZ 2EXO Glu127; Asp235; Asn169; Glu233; His205

13 1CAA 1IRO —

14 2GD1 4GPD —

15 1TIB 1LGY —

16 1ZIP 2AKY —

17 1AIS 1VOL —

18 1FFH 1FTS —

19 1OBR 2CTC His69; Glu72; His196; Arg127; Glu270

20 1PHN 1CPC —

21 1BLI 1HVX —

32 1TMY 3CHY —

23 1AYG 2PAC —

24 1GHS 1GHR Glu231; Glu279; Lys282; Glu288

25 1BVU 1HRD Asp165; Lys125

26 1CIU 1CGT —

27 1OSI 1CM7 —

28 3MDS 1QNM —

29 1XGS 1MAT His161; Asp82; Asp93; His153; Glu187;Glu280; Glu187

30 1DL3 1PII Cys7; Asp126

31 1IGS 1PII Asn180, Ser211; Glu51; Lys110; Glu159; Glu210; Lys53

32 1BXB 1QT1 —

TABLE I: Table of the 32 couples of proteins of the Thermal dataset, collected from the literature. The proteins corresponding
to the rows of the table with the annotated active site are enzymes and constitute the Enzyme dataset.
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A B

FIG. 1: A) The mean tr for each of the 20 amino acids in all proteins of thermostable dataset. B) The mean tr for each type
of secondary structure, obtained using all proteins of thermostable dataset.
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FIG. 2: Correlation coefficients between common network node descriptors and diffusion transient time, t?i .
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