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ABSTRACT: Rational compound design remains a challenging problem for both
computational methods and medicinal chemists. Computational generative methods have
begun to show promising results for the design problem. However, they have not yet used
the power of three-dimensional (3D) structural information. We have developed a novel
graph-based deep generative model that combines state-of-the-art machine learning
techniques with structural knowledge. Our method (“DeLinker”) takes two fragments or
partial structures and designs a molecule incorporating both. The generation process is
protein-context-dependent, utilizing the relative distance and orientation between the
partial structures. This 3D information is vital to successful compound design, and we demonstrate its impact on the generation
process and the limitations of omitting such information. In a large-scale evaluation, DeLinker designed 60% more molecules with
high 3D similarity to the original molecule than a database baseline. When considering the more relevant problem of longer linkers
with at least five atoms, the outperformance increased to 200%. We demonstrate the effectiveness and applicability of this approach
on a diverse range of design problems: fragment linking, scaffold hopping, and proteolysis targeting chimera (PROTAC) design. As
far as we are aware, this is the first molecular generative model to incorporate 3D structural information directly in the design
process. The code is available at https://github.com/oxpig/DeLinker.

■ INTRODUCTION

Drug design is an iterative process that requires potential
compounds to be optimized for specific properties, ranging
from binding affinity to pharmacokinetics. This process is
challenging, in part, due to the size of the search space1 and
discontinuous nature of the optimization landscape.2 Typically,
molecule design is undertaken by human experts and therefore
is a subjective process.
Machine learning models for molecule generation have been

proposed as an alternative to human-led design and rule-based
transformations.3−5 Generative models have adopted either the
SMILES string representation of molecules6−10 or, more
recently, graph representations.11−16 Existing generative
models have primarily been used in two ways. First, methods
have been developed to generate molecules that follow the
same distribution as the training set, whether a general set of
molecules10 such as ZINC17 or ChEMBL,18 or a more focused
one such as inhibitors for a particular protein target.7,19

Second, generative models have been proposed to perform
molecular optimization, taking an input molecule and
attempting to modify one or several chemical properties,
typically subject to a similarity constraint.16,20,21

While substantial progress has been made for these two
problems, current methods have inherent limitations, in
particular, for structure-based design. Only one approach to
date has attempted to include any three-dimensional (3D)
information in the generative process,22 despite its importance
for designing potent and selective compounds. In this work,
Skalic et al.22 proposed a SMILES-based model for generating
molecules from 3D representations.22 A shape variational

autoencoder using convolutional neural networks (CNNs) was
coupled with a shape captioning network consisting of a
separate CNN used to condition a recurrent neural network
(RNN). In this formulation, 3D information was only provided
implicitly to seed the RNN, and the method did not allow
further control over generated compounds. As a result, their
generative model frequently changed the entire molecule and
recovered fewer than 2% of the seed molecules. This is
undesirable in many practical settings, such as the design
problems described below.
Fragment-based drug discovery (FBDD) has become an

increasingly important tool for finding hit compounds, in
particular, for challenging targets and novel protein families.
FBDD utilizes smaller than drug-like compounds (typically
<300 Da) to identify low potency, high-quality leads, which are
then matured into more potent, drug-like compounds. One
common way of maturing fragment hits is through a linking
strategy, joining fragments together that bind to distinct sites
via a linker. It is crucial for successful fragment linking that a
linker does not disturb the original binding poses of each
fragment.23,24 Thus, compound suggestions have strong 3D
constraints, determined by the binding mode of the fragments.
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Scaffold hopping, though a distinct problem, shares some
characteristics with fragment linking. The aim of scaffold
hopping is to discover structurally novel compounds starting
from a known active compound by modifying the central core
structure of the molecule.25 Such a change can result in much
improved molecular properties, such as solubility, toxicity,
synthetic accessibility, affinity, and selectivity.25,26

Numerous computational methods have been proposed for
fragment linking or scaffold hopping.27−32 However, almost all
methods published to date rely exclusively on a database of
candidate fragments from which to select a linker, with the
differences between approaches arising solely from how the
database is searched, how the linked compounds are scored, or
the contents of the database itself. As a result, these methods
are inherently constrained to a set of predetermined rules or
examples, limiting exploration of chemical space. In addition,
they can only incorporate additional structural knowledge (e.g.,
the fragment’s binding mode) via filtering or search
mechanisms.
Current machine-learning-based molecule generation meth-

ods have not been designed to effectively handle the structure-
based design tasks of fragment linking and scaffold hopping.
These scenarios require proposed molecules to contain specific
substructures, with the goal to design a molecule that
maintains the binding mode of the original compound or
fragments.
Numerous challenges using SMILES-based methods have

been previously noted, largely arising from using language to
represent inherently graph-based objects.12,33 In particular, the
grammar makes working with existing structures especially
difficult and has even led to alternative language-based
representations being proposed.34,35 We therefore do not
believe that design tasks requiring proposed molecules to
contain specific substructures naturally suit a SMILES-based

representation, although this remains an active area of
research.36

Graph-based methods have become more widely used, in
particular, for molecular optimization.16,20,21 Due to the nature
of these tasks, the shapes of the suggested molecules often
differ greatly from the starting points, and many of the
proposed changes are R-group modifications. In addition, most
methods do not afford a high level of control over the
generated molecule. Li et al.37 recently proposed a scaffold-
based molecular generator that designs molecules retaining
particular scaffolds as their core structures.37 This allows
greater control over generated molecules than most existing
methods. However, none of the graph-based methods to date
incorporate 3D structural information, with only one SMILES-
based approach, including any 3D information in the
generative process.22

Finally, Ståhl et al.38 introduced a fragment-based reinforce-
ment learning approach for multiparameter optimization.38 At
each step, their model selects a fragment contained in the
molecule and replaces it with a similar one. This typically leads
to minor changes in the compounds and could be utilized for
scaffold hopping. However, their model is not able to perform
fragment linking and is not designed for tasks requiring 3D
shape optimization.
In this work, we introduce the first graph-based deep

generative method that incorporates 3D structural information
directly into the design process. Our method takes as input two
molecular fragments and designs a molecule incorporating
both substructures, either generating or replacing the linker
between them. This allows our method to handle structure-
based design tasks such as fragment linking and scaffold
hopping effectively. The generation process integrates 3D
structural information, specifically the distance between the
fragments and their relative orientations. This 3D information

Figure 1. Overview of the generation process. The initial fragments (a) are iteratively expanded bond by bond (c−e) to produce a molecule,
including both fragments (f). Atoms are represented by nodes in a graph, with the color of the nodes representing different atom types, while bonds
are represented by edges, with different edge types for single, double, and triple bonds.
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is vital to successful compound design, and we demonstrate the
limitations of omitting such information, both quantifying its
impact in large-scale assessments and empirically showing how
our model uses the structural information.
We first demonstrate the effectiveness of our proposed deep

generative approach over a database method through large-
scale computational assessments. We show that our method,
DeLinker, designs 60% more compounds with high 3D
similarity to the original molecule compared to a database-
based approach on an independent test set. DeLinker
outperforms the database approach by 200% when the
evaluation is restricted to linkers with at least five atoms. We
then apply our method to several case studies encompassing
fragment linking, scaffold hopping, and PROTAC design.
DeLinker frequently recovers the experimental end point, even
in cases where the linker was not present in the training set,
and produces many novel designs with high 3D similarity to
the original molecules.

■ METHODS
The method takes two fragments and their relative position
and orientation and generates or replaces the linker between
them. This is achieved by building new molecules in an
iterative manner “bond by bond” from a pool of atoms that can
be initialized with partial structures (Figure 1). In this
framework, the user is able to control the generation process
by specifying both the substructures that should be linked and
the maximum length of the linker between them. The starting
substructures are always retained in the generated molecule,
with changes only from the specified exit vectors. In addition,
3D structural information in the form of the distance and angle
between the starting substructures is provided to the model to
inform the design process. Molecules are encoded by a set of
14 permitted atom types, and our model enforces simple
atomic valency rules via a masking procedure to ensure
chemical validity. This is the only chemical knowledge
incorporated directly into our model; all other decisions
required to generate molecules are learnt through a supervised
training procedure.
Generative Process. The generative process is illustrated

in Figure 1 and is similar to Liu et al.,14 in that our method
builds molecules bond by bond in a breadth-first manner.
Generation is initialized with two fragments or substructures
that are to be linked together with structural information
providing the distance and angle between the substructures.
The fragments are converted to a graph representation, where
atoms and bonds are represented by nodes and edges,
respectively. Each node is associated with a hidden state, zv,
and label, lv, representing the atom type of the node. A list of
the 14 permitted atom types can be found in the Supporting
Information. The graph is passed through an encoder network,
a standard gated graph neural network (GGNN),39 and the
hidden states of the nodes are updated to incorporate their
local environment (Figure 1a).
Next, a set of expansion nodes are initialized at random, with

hidden states zv drawn from the h-dimensional standard
normal distribution, I(0, ), where h is the length of the
hidden state (Figure 1b). The nodes are then labeled with an
atom type according to their hidden state, zv, and the structural
information by sampling from the softmax output of a learned
mapping f. Here, f is implemented as a linear classifier but
could be any function mapping a node’s hidden state to an
atom type. The number of expansion nodes determines the

maximum length of the linker and is a parameter chosen by the
user.
The new molecule is constructed from this set of nodes via

an iterative process consisting of edge selection, edge labeling,
and node update (Figure 1c−e). At each step, we consider
whether to add an edge between one of the nodes, v, and
another node in the graph. v is chosen according to a
deterministic first-in-first-out queue that is initialized with the
exit vectors of each fragment. When a node is connected to the
graph for the first time, it is added to the queue. New edges are
added to node v until an edge to the stop node is selected. The
node then becomes “closed” with no additional edges with that
node permitted.
All possible edges between the node v and other nodes in

the graph are considered (Figure 1c), subject to basic valency
constraints. A single-layer neural network assesses the
candidate edges using a feature vector. The feature vector for
the edge between node v and candidate node u is given by

t ds s H H D, , , , , ,v u
t

v
t

u
t

v u
t

, ,
0ϕ = [ ]

where sv
t = [zv

t , lv] is the concatenation of the hidden state of
node v after t steps and its atomic label, dv,u is the graph
distance between v and u, H0 is the average initial
representation of all nodes, Ht is the average representation
of nodes at generation step t, and D represents the 3D
structural information.
As such, when choosing which edge to add to the graph, the

model utilizes (1) local information about the nodes, (2)
global information regarding the unlinked fragments and the
current graph state, and (3) 3D structural information.
Once a node u has been selected, the edge between v and u

is labeled as either a single, double, or triple bond (subject to
valency constraints) by another single-layer neural network
taking as input the same feature vector ϕv,u

t (Figure 1d).
Finally, the hidden states of all nodes are updated according

to a GGNN (Figure 1e). At each step, we discard the current
hidden states vs s :t

v
t≔ { ∈ } and compute new representa-

tions st 1+ , taking their (possibly changed) neighborhood into

account. Note that st 1+ is computed from s0 rather than st .
This means that the state of each node is independent of the
generation history of the graph and depends only on the
current state of the graph.
Steps c−e in Figure 1 are repeated for each node in the

queue, until the queue is empty, at which point the generation
process terminates. At termination (Figure 1f), all unconnected
nodes are removed and the largest connected component is
returned as the generated molecule. We note that the
stereochemistry of generated molecules is not assigned during
the generative process.

Multimodal Encoder−Decoder Setup. Our goal is to
learn a multimodal mapping from unconnected fragments to
connected molecules. During training, we utilized a data set of
paired fragments and molecules and trained our model in a
supervised manner to reconstruct known linkers. While in this
data set there may be a unique molecule associated with two
fragments, in practice, there are many ways to link two
fragments. As such, given a new pair of starting points, a model
should be able to generate a diverse set of output compounds.
To this end, we took inspiration from Jin et al.16 and

augmented the basic encoder−decoder model with a low-
dimensional latent vector z to explicitly encode the multimodal
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aspect of the distribution of suitable linkers. The generative
mapping is converted from F: X→ Y to F: (X, z)→ Y, where X
represents the starting substructures and Y the connected
molecule, with latent code z drawn from a prior distribution,
chosen to be the standard normal distribution, I(0, ).
There are two challenges in learning this mapping. First, as

shown in the image domain,40 the latent codes are often
ignored by the model unless they are forced to encode
meaningful variations. Second, the latent codes should be
suitably regularized so that the model does not produce invalid
outputs. That is, the generated molecule F(X, z) should belong
to the domain of the target molecule Y (i.e., connected and
able to satisfy the structural constraints provided) given a
latent code drawn from the prior distribution. We overcame
both of these challenges through our training procedure, where
we derived z during training from the embedding of the linked
molecule, but regularized the latent vector to follow a standard
normal distribution so that we can sample z during generation.
Training. We trained our generative model under a

variational autoencoder (VAE) framework on a collection of
fragment−molecule pairs (Figure 2). For a given pair of
fragments X and linked molecule Y, the model is trained to
reconstruct Y from (X, z), while enforcing the standard
regularization constraint on both z and the encoding of X, zX
≔ {zv: v ∈ X}.
To encode meaningful variations, the latent code z is derived

via a learnt mapping from the average of the node embeddings
of the ground truth molecule Y, the linked molecule. Crucially,
z is constrained to be a low-dimensional vector to prevent the
model from ignoring input X and degenerating to an
autoencoder for Y. The decoder is trained to reconstruct Y
when taking as input a combination of the low-dimensional
vector z and the node embeddings zX of the unlinked
fragments X (Figure 2).
The training objective is similar to the standard VAE loss,

including a reconstruction loss and a Kullback−Leibler (KL)
regularization term

recon KL KLλ= +

The reconstruction loss, recon, is composed of two cross-
entropy loss terms, resulting from the error in predicting the

atom types and in reconstructing the sequence of steps
required to produce the target molecule.
The KL regularization loss, KL, contains two terms, one for

the encoding of the unlinked fragments, X, and the other for
the low-dimensional vector z derived from the linked molecule
Y. These terms are the standard VAE terms capturing the KL
divergence between the encoder distributions and the standard
Gaussian prior.
We performed limited hyperparameter tuning, measuring

performance via the validation loss and not generative
performance directly. We found that overall the model was
fairly robust to the choice of hyperparameters. Full details of
the model architecture and hyperparameters can be found in
the Supporting Information.

Data Sets. There have only been a limited number of
examples of successful fragment linking or scaffold hopping
reported. As such, for training and large-scale evaluation, we
constructed sets of fragment−molecule pairs using standard
transformations from matched-molecular pair analysis.5

ZINC. To construct our training set, we used the subset of
ZINC17 selected at random by Goḿez-Bombarelli et al.10 that
contains 250 000 molecules. We constructed possible
fragmentations of each molecule by enumerating all double
cuts of acyclic single bonds that were not within functional
groups, the same procedure adopted by Hussain and Rea.5

Fragmentations satisfying basic criteria regarding the number
of atoms in the linker and fragments were retained, removing
trivial and unrealistic scenarios (see the Supporting Informa-
tion for further details).
The remaining fragment−molecule pairs were filtered for

several two-dimensional (2D) properties, namely, synthetic
accessibility,41 ring aromaticity, and pan-assay interference
compounds (PAINS),42 to remove unwanted examples. Full
details of the property filters can be found in the Supporting
Information.
By filtering the training set for specific 2D properties, we are

also able to assess whether the model is able to learn to
generate linkers with certain properties implicitly from the data
alone. Since these properties are not input explicitly into the
model, these could easily be tailored to a specific project or
other requirements.

Figure 2. Illustration of training and generation procedures. (a) Pairs of fragments and linked molecules are provided as input. The model is trained
to reproduce the linked molecule from a combination of the encodings of the fragments and linked molecule. (b) At generation time, the model is
given only the unlinked fragments and structural information and is able to sample a diverse range of linked molecules by combining the encoding
of the fragments with random noise.
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To provide structural information, we generated 3D
conformers for the ZINC set using RDKit,43 adopting the
filtering and sampling procedure proposed by Ebejer et al.44

We took the lowest-energy conformation as the reference 3D
structure for each molecule.
These preprocessing and filtering steps resulted in a data set

of 418 797 example fragment elaborations, with linkers of
between 3 and 12 atoms. We selected 800 fragment−molecule
pairs at random for model validation (400) and testing (400)
and used the remainder to train our model, ensuring no
overlap between the molecules in the training and held-out
sets.
CASF. A major limitation of the ZINC data set is the use of

generated conformers, as opposed to experimentally verified
active ones. To address this, we used the CASF-2016 data
set,45 also known as the PDBbind core set, which consists of
285 protein−ligand complexes from PDBbind with high-
quality crystal structures from a diverse set of proteins, as an
independent test set. We followed the same preprocessing
procedure as for the ZINC data set (except for conformer
generation), resulting in a set of 309 examples.
We performed large-scale evaluations of our method on both

the held-out ZINC test data and the CASF data set. For each
example, we generated 250 molecules from each pair of
unlinked fragments, assuming that the linker length was equal
to the linker length of the original molecule.
Assessment Metrics. We assessed the generated mole-

cules with a range of 2D and 3D metrics. As is standard in the
assessment of models for molecule generation,46 we first
checked the generated molecules for validity, uniqueness, and
novelty. We then determined if the generated linkers were
consistent with the 2D property filters used to produce the
training set. In addition, we recorded in how many cases the
original molecule used to produce the fragments was recovered
by the generation process.
Molecules that passed the 2D property filters were assessed

on the basis of their 3D shape. Conformers of the generated
molecules and the original molecule were compared using two
distinct methods: (i) a shape and color similarity score
(SCRDKit) and (ii) root-mean-square deviation (RMSD).
The shape and color similarity score (SCRDKit) uses two

RDKit functions, based on the methods described in Putta et
al.47 and Landrum et al.48 The color similarity function scores
two 3D conformers against each other based on the overlap of
their pharmacophoric features, while the shape similarity
measure is a simple volumetric comparison between the two
conformers. Each produces a score between 0 (no match) and
1 (perfect match), which are averaged to produce a final score
between 0 and 1. Scores above 0.7 indicate a good match,
while scores above 0.9 suggest an almost perfect match. An
illustration of several conformers and their similarity scores can
be seen in Figure 3.
SCRDKit can either be calculated by comparing only the

atoms of the starting fragments (SCRDKit Fragments) or by
comparing the entire generated molecule to the original
molecule (SCRDKit Molecule). The first measure assesses how
closely the conformations of the fragments match, whereas the
second also incorporates whether the generated linker matches
the original (Figure 3). Our method is trained to output a
diverse range of linkers and not to map exactly to a previously
observed linker. However, in the case of scaffold hopping, this
metric is important as typically the new linker should match
the shape and pharmacophoric features of the original core.26

RMSD between the coordinates of atoms in the starting
fragments in the original and generated molecules can be
calculated to give a different measure of 3D similarity (RMSD
Fragments). A perfect match has an RMSD of 0 Å, with a
higher figure indicating greater deviation. An RMSD of below
0.5 Å suggests an almost perfect match, while an RMSD of
above 1.0 Å corresponds to a poor match given the alignment
procedure and number of heavy atoms. An illustration of
several conformations and their RMSDs can be seen in Figure
3. Due to the need to match specific atoms, RMSD can only be
(reliably) calculated between the atoms of the fragments that
are linked and not the entire molecule.
For each proposed molecule, we generated 3D conformers

using RDKit,43 adopting the filtering and sampling procedure
proposed by Ebejer et al.,44 and scored all conformers. The
score for each similarity measure was the best score among all
generated conformers for a particular molecule.

Comparison to Other Methods. Several traditional
methods exist for linking fragments or replacing the core of
a molecule.27−32 Almost all methods rely on a database from
which to select linkers. As a baseline with which to compare
our method, we created a set of all linkers from the training
data and sampled from this set, joining the linker in one of the
two possible orientations at random. This setup ensures that
both methods are constructed using the same data and allows
us to assess whether the generated molecules have better shape
complementarity than using linkers from the database, while
still obeying 2D chemical constraints.
Liu et al.14 proposed constrained graph variational

autoencoders to generate molecular graphs. They sought to
generate arbitrary molecules that conformed to the distribution

Figure 3. Examples of the 3D metrics used to assess the similarity of
conformers. The reference conformer is shown in magenta, while
conformers of the generated molecule are shown in cyan. (a)
Represents very strong alignment by both fragment-based metrics but
lower similarity by SCRDKit Molecule due to the different linker. (b)
Shows modest similarity by all three metrics, while (c) represents
poor similarity by all three measures.
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observed in the training data. Similar to our method, they
assumed a sequential ordering of graph extension steps,
constructing molecules in a bond-by-bond manner. To
compare their work to our method, it was necessary to modify
their implementation to perform the molecular design tasks
described.
Our work differs from the model of Liu et al.14 in three key

ways. First, our model takes as input structural information in
the form of the distance and angle between the starting
substructures and uses this to augment the feature vector used
in the generation process. Second, our model is designed to be
trained for molecular translation, in particular, taking as input
unlinked substructures and generating linked molecules. While
others have developed methods for molecular translation,16,21

none have taken two unlinked substructures as input. Third,
we have modified the training procedure from a standard
encoder−decoder framework to explicitly encode the set of
possible linkers. The training process combines encodings of
both the unlinked substructures and the linked molecule, as
opposed to solely the starting point (Figure 2). In addition,
there are several minor architectural differences between
DeLinker and their model (further details can be found in
the Supporting Information). The impact of these changes is
detailed in Tables S2 and S3.
Experimental Setup. In all of our experiments, we used

the same training set derived from the ZINC data set to train
DeLinker and construct the database for the Database baseline.
In both of the large-scale evaluations on the held-out ZINC
test data and the CASF data set, we generated 250 linkers for
each pair of starting fragments to be assessed for both
DeLinker and the Database. The number of atoms in the linker
was set equal to the linker length of the original molecule for
both DeLinker and the Database baseline in each of the large-
scale evaluations. We also demonstrated the applicability of
DeLinker using case studies from fragment linking, scaffold
hopping, and PROTAC design. There are minor differences in
the evaluation of our generative method for the case studies.
These deviations are detailed in the Results and Discussion
section with the appropriate case study.
Generated molecules were first assessed by the 2D metrics

described above. Molecules that passed the 2D property filters
were assessed on the basis of their 3D shape, as described
above. We reported the proportion of molecules that pass the
2D metrics that meet 3D similarity thresholds.

■ RESULTS AND DISCUSSION
We demonstrate DeLinker, a deep generative method that
designs a molecule incorporating two starting substructures
using 3D structural information. We first checked the impact of
the structural information and then assessed our generative
method in three experiments: (i) large-scale validation on
ZINC (generated conformers), (ii) large-scale validation on
CASF (experimentally determined active conformations), and
(iii) three case studies covering fragment linking,49 scaffold
hopping,50 and PROTAC design.51

Importance of Structural Information. To assess the
importance of including structural information, we empirically
examined its impact on the generation process (Table 1). We
considered three almost identical fragment−molecule pairs
based on ZINC7670105 from the held-out ZINC test set (see
Methods). In all three cases, the starting substructures
remained constant, but the substitution pattern of the benzene
linker differed. This resulted in the distance and angle between

the fragments changing but no other differences between the
input data to our model. We generated 1000 linkers with a
maximum of six atoms for each set of structural information
and assessed the substitution pattern of generated molecules
that contained a six-membered ring as the linker (Table 1).
DeLinker generated a high number of six-membered rings in

all three cases (33−54%). Most rings were generated with the
para structural information. This is consistent with the
chemical knowledge since there are fewer possibilities given
these structural constraints. The generated molecules closely
followed the substitution pattern of the molecule used to
calculate the structural information, with between 83 and 98%
of the rings produced following the same pattern (Table 1).
The effect of the structural information on the performance of
DeLinker in a large-scale evaluation is discussed below and can
be found in Tables S2 and S3.

Validation on ZINC.We next evaluated our method on the
held-out test set from the ZINC data set, consisting of 400
pairs of fragments. We primarily compared DeLinker to a
method based on database lookup (“Database”). The Database
samples linkers from the same set of data used to train our
method, joining the fragments in one of the two possible
orientations at random. This setup ensures that both methods
are constructed using the same data and allows a direct
comparison to be made between database lookup and our
deep-learning-based generative approach.
We generated 250 linkers for each pair of fragments,

resulting in 100 000 generated molecules to be assessed for
both DeLinker and the Database (see Methods for details).
For the evaluation of the ZINC test set, the number of atoms
in the linker was set equal to the linker length of the original
molecule. This is an easier test for both methods than if the
linker length was assumed to be unknown but allows us to
assess whether the two methods presented are able to generate
molecules that possess desired 2D chemical properties and
high 3D structural similarity.
DeLinker generated a high proportion of valid molecules

that passed the 2D chemical property filters (Table 2) and
substantially outperformed the Database method by all 3D
similarity measures (Table 3). DeLinker displayed a similar
improvement over the graph-based molecular generative model
of Liu et al.,14 which performed broadly comparably to the

Table 1. Impact of Structural Information on Generated
Ring Substitution Patternsa

aThe generated compounds closely followed the true substitution
pattern, with only the structural information provided differing
between examples.
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Database method (Tables S2 and S3). Further metrics and an
ablation study showing the effects of including different
structural information can be found in Tables S2 and S3.
Without any structural information, the deep generative model
performed similarly to the Database method by the 3D
similarity measures (Table S3). Including only the distance
between the fragments substantially improved performance,
with further benefit from including the angle between
fragments.
A molecule is deemed “valid” if it contains both starting

fragments (i.e., the fragments have been linked), and its
SMILES representation can be parsed by RDKit43 (i.e., satisfies
atomic valency rules). The small proportion of invalid
molecules produced by DeLinker (Table 2) was due to the
fragments remaining unlinked, rather than failing atomic
valency. This is a design choice by the deep learning system
and is beneficial in reducing the number of unsuitable linkers
suggested.
A fundamental benefit of our deep generative method over

any database is evident in the proportion of novel linkers. The
Database method is unable to suggest linkers not in the
database, and thus 0% of the proposals were novel. In contrast,
DeLinker proposed a linker not in the training set in around
40% of suggestions, despite the training set of linkers
containing over 5000 unique linkers. Examples of novel linkers
proposed by DeLinker are shown in Figure S1.
Both methods recovered over 75% of the original molecules

(Table 2), demonstrating that they are able to sample from the
distribution of linkers effectively. However, this is in part due
to the chemical redundancy of molecules in ZINC. Indeed, all
of the original linkers in the held-out ZINC test set were
present in the training set.

DeLinker was able to learn the 2D filters implicitly, although
it produced slightly fewer molecules passing these filters than
the Database method (Table 2). Both methods had high
success rates of 95% or above for all of the individual filters
(Table S2).
For all of the 3D measures at all thresholds assessed,

DeLinker produced a substantially higher proportion of linkers
with the required 3D similarity than the Database (Table 3). In
particular, at the highest levels of similarity, DeLinker
generated over 80% more molecules, scoring >0.9 for SCRDKit
Fragments and over 60% more molecules with an RMSD <
0.5Å.
Performance of both methods is impacted by the length of

the generated linkers and in particular the number of short
(three/four atoms) linkers in the test set (Table S1), where
there are a limited number of possibilities. The degree of
outperformance of DeLinker over the Database increased
substantially when only considering linkers with at least five
atoms (Table S4). In this setting, DeLinker generated around
190% more molecules, scoring >0.9 for SCRDKit Fragments and
130% more molecules with RMSD Fragments <0.5 Å or
SCRDKit Molecule >0.9.

Validation on CASF. We saw similar performance when
we evaluated the methods on the CASF data set (Tables 2 and
3). Both methods found producing 3D similar molecules more
challenging for the CASF set than for the held-out ZINC set.
Two possible explanations are the lower molecular similarity
and use of experimentally determined structures in the
evaluation. The average Tanimoto similarity of the Morgan
fingerprints52 (radius 2, 1024 bits) of the 250 most similar
starting fragments in the training set to each starting point in
the test set was 0.36 for the held-out ZINC set but only 0.26
for the CASF set. However, our method was still frequently

Table 2. 2D Performance Metrics for Molecules Generated by DeLinker, Our Deep Generative Model, Compared to a
Database Baseline on the Held-Out ZINC Test Set and the Independent CASF Data Set

ZINC CASF CASF ≥5 atoms

metric Database (%) DeLinker (%) Database (%) DeLinker (%) Database (%) DeLinker (%)

valid 100.0 98.4 99.0 95.5 98.4 94.7
unique 38.8 44.2 43.0 51.9 58.3 72.9
novel 0.0 39.5 0.0 51.0 0.0 68.7
recovered 78.0 79.0 42.8 53.7 14.9 29.8
pass 2D filters 97.0 89.8 95.0 81.4 93.6 71.7

Table 3. 3D Performance Metrics for Molecules Generated by DeLinker, Our Deep Generative Model, Compared to a
Database Baseline on the Held-Out ZINC Test Set and the Independent CASF Data Seta

ZINC CASF CASF ≥5 atoms

metric Database (%) DeLinker (%) Database (%) DeLinker (%) Database (%) DeLinker (%)

SCRDKit Molecule
>0.7 33.5 47.1 14.9 22.3 7.8 16.3
>0.8 8.5 14.2 3.3 5.2 1.1 3.6
>0.9 1.3 1.8 0.5 0.8 0.3 0.8

SCRDKit Fragments
>0.7 60.2 71.3 28.4 39.1 24.2 38.7
>0.8 24.7 35.8 8.7 12.7 6.1 12.3
>0.9 4.5 8.2 1.4 2.3 0.5 1.6

RMSD Fragments
<1.00 Å 46.9 58.6 19.4 28.1 14.6 26.6
<0.75 Å 20.5 30.0 7.1 10.2 4.3 9.3
<0.50 Å 5.7 9.3 2.0 3.1 0.9 2.4

aSee Methods, assessment metrics for a description of the metrics.
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able to generate compounds with high similarity to the original
molecule (Table 3).
In particular, DeLinker generated around 60% more

molecules than the Database at the highest 3D similarity
threshold (>0.9 SCRDKit Fragments and SCRDKit Molecule, <0.5
Å RMSD Fragments). When restricting the evaluation to
linkers with at least five atoms, the degree of outperformance
substantially increased, with DeLinker producing 200% more
molecules that scored >0.9 by SCRDKit Fragments than the
Database (Table 3).
DeLinker recovered 54% of the original linkers, compared to

only 43% for the Database method, while around 50% of
molecules generated by DeLinker were novel. The proportion
recovered was lower than in the evaluation on ZINC; however,
this set is more challenging with an average length of the true
linker 5.9 atoms, compared to 4.9 for the held-out ZINC test
set and 4.7 for the ZINC training set. In addition, only around
70% of the true linkers were present in the training set,
providing an upper bound for the Database method. Similar to
the ZINC set, DeLinker substantially outperformed the
Database method for longer linkers; DeLinker recovered
around 30% of molecules with a linker of at least five atoms,

twice as many as the Database method that only recovered
15% (Table 2).
As previously noted, a fundamental limitation of a database

method is an inability to generate linkers that are not present
in the database. Despite being trained on the same database of
linkers, DeLinker has learnt to extrapolate from this set to
novel linkers. The following is an example of when this is
crucial for successful compound design.
Dequalinium is a nanomolar binder (Ki: 70 nM) of chitinase

A (PDB ID: 3ARP, Figure 4b).53 One possible fragmentation
of the dequalinium−chitinase complex is shown in Figure 4a.
To recover dequalinium from these fragments requires joining
them with a decane linker, which is not present in the training
set of linkers and thus the Database is unable to recover the
original molecule. We generated 250 molecules with DeLinker,
which included several highly similar novel linkers. The five
most similar measured by SCRDKit Fragments are shown in
Figure 4c. While DeLinker did not recover the decane linker
within 250 generated compounds, simple chain linkers that
closely resemble the true decane linker are prevalent. We
compared this to an exhaustive search of linkers in the
Database of the same length as the true decane linker (790
unique molecules). None of the Database-generated molecules

Figure 4. Comparison of DeLinker with an exhaustive Database search. A fragmention of dequalinium (PDB ID: 3ARP, (b)) is shown in (a). The
most 3D similar molecules by SCRDKit Fragments proposed by DeLinker and the Database method are shown in (c) and (d), respectively, together
with the 3D similarity score. (c) DeLinker was able to produce several very similar molecules, despite limited sampling (250 samples). (d)
Exhaustive search of the database was not able to recover the original molecule or produce any highly similar molecules.

Figure 5. Fragment linking case study. (a) Left: the initial fragment hits (5OU2). Right: the most potent experimentally verified linked molecule of
Trapero et al.49 (PDB ID: 5OU3). DeLinker recovered this and two other experimentally verified active molecules. (b) 3D similarity metrics and
AutoDock Vina Minimized Affinities. Unique ligands with SCRDKit Fragments >0.8 were docked with AutoDock Vina using a local minimization.
DeLinker produced more than twice as many molecules than the Database method with better Vina scores than the most potent reported binder
(Lead).
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are highly similar to dequalinium (Figure 4d), with only one
molecule with SCRDKit Fragments >0.7. In contrast, DeLinker
generated 34 unique molecules with SCRDKit Fragments >0.7.
This illustrates the importance of de novo design and the
limitations of any database-based solution.
Finally, we showed the applicability of our method in three

diverse examples from the literature, covering fragment
linking,49 scaffold hopping,50 and PROTAC design.51 Due to
the availability of independent experimental structural data for
both the initial and optimized complexes, this represents the
most realistic evaluation, albeit with limited sample size.
Fragment Linking Case Study. Trapero et al.49

considered both growing and linking strategies to create
potent inhibitors of inosine 5-monophosphate dehydrogenase
(IMPDH, UniProt: G7CNL4), a tuberculosis drug target.
Linking proved most successful, with the authors identifying
several promising compounds, the most potent with more than
1000-fold improvement in affinity over the initial fragment hits.
Three direct elaborations of the initial fragments were reported
(compounds 29−31 in Table 4 of Trapero et al.49), with
structures of both the initial fragments (PDB ID: 5OU2) and
most potent linked compound (PDB ID: 5OU3) available
(Figure 5a).
In previous experiments, we chose the linker length based on

the number of atoms in the linker of the original molecule. To
reflect prospective use more accurately, we assumed that the
linker length was unknown and generated 1000 linkers for each
length between 3 and 11 atoms, inclusively. We assessed the
generated linkers using the same criteria as before.
Both DeLinker and the Database method recovered all three

experimentally validated compounds. However, DeLinker
identified more than twice as many unique compounds as
the Database with high 3D similarity (>0.8 SCRDKit Fragments)
to the initial fragments (301 vs 129, Figure 5b and Table S5).
The compounds meeting the above 3D similarity threshold
were docked with AutoDock Vina54,55 via a local minimization
after alignment with the starting fragments. This allows us to
understand whether the proposed molecules are complemen-
tary to the active site and are able to maintain the binding
mode of the original fragments. Around 40% of molecules

generated by both DeLinker and the Database were scored
better than the most potent experimentally validated
compound. As a result, DeLinker suggested more than twice
as many unique compounds as the Database with better
docking scores than the active compound (123 vs 51, Figure
5b).

Scaffold Hopping Case Study. Kamenecka et al.50

designed JNK3-selective (UniProt: P53779) inhibitors that
had >1000-fold selectivity over p38 (UniProt: Q16539),
another closely related mitogen-activated protein kinase family
member. Starting with an indazole class of compounds, they
were not able to establish significant selectivity for JNK3 over
p38. However, changing scaffolds led to an aminopyrazole
linker that afforded compounds with >2800-fold selectivity.
The two inhibitors displayed nearly identical binding mode
(RMSD 0.33 Å, Figure 6a) and affinity for JNK3 (indazole:
IC50 12 nM, aminopyrazole: IC50 25 nM) but significantly
different binding affinity to p38 (indazole: IC50 3.2 nM,
aminopyrazole IC50 3.6 μM).
Starting with the indazole-based inhibitor (PDB ID: 3FI3),

we explored the ability of our method to change molecular
scaffold, in particular, toward the aminopyrazole-based
inhibitor (PDB ID: 3FI2). We generated 5000 linkers with
both eight and nine atoms and assessed the generated linkers
using the same criteria as before. In particular, we focused on
the diversity of molecular scaffolds proposed by DeLinker that
satisfied the 3D structural information and could adopt a
highly similar conformation to the original indazole-based
inhibitor.
Of the 10 000 compounds generated by DeLinker, there

were 2688 unique compounds that satisfied the 2D chemical
filters (Table S6). Six hundred and ninety-nine of these had an
SCRDKit fragment score of above 0.75, of which 627 were not in
the training set (89.7% novel). These compounds covered 182
unique generic Murko scaffolds.56 Five of the most common
are shown in Figure 6b, together with an example linker and
the number of unique linkers generated with the same generic
Murko scaffold that also met the 3D similarity threshold. The
examples from all five scaffolds show an almost perfect overlap

Figure 6. Scaffold hopping case study. (a) Overlay of the indazole (PDB ID 3FI3, magenta carbons) and aminopyrazole (PDB ID 3FI2, cyan
carbons) structures, with JNK3 shown in green. DeLinker recovered both active molecules, despite neither linker being in the training set. (b)
Structures of the indazole (left) and aminopyrazole (right) linkers and their Murcko scaffolds. (c) Overlay of the indazole compound (PDB ID
3FI3, magenta carbons) and example linkers (yellow carbons) from several highly 3D similar scaffolds.
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with the indazole linker while maintaining the conformation of
the remainder of the molecule.
In addition, DeLinker recovered both the indazole- and

aminopyrazole-based linkers, despite neither being present in
the training set.
PROTAC Case Study. Farnaby et al.51 developed

PROTAC degraders of the BAF ATPase subunits SMARCA2
(UniProt: P51531) and SMARCA4 (UniProt: P51532) using a
bromodomain ligand and recruitment of the E3 ubiquitin
ligase VHL (UniProt: P40337). They first designed a
PROTAC by combining known binders of SMARCA2/4 and
E3 ubiquitin ligase VHL using poly(ethylene glycol)-based
linkers (PDB ID: 6HAY, Figure 7a). The linker was then
optimized to improve interactions with the lipophilic face
created in part by Y98 of the VHL protein. In particular, they
designed the linker to mimic the conformation observed in the
ternary complex structure, resulting in improved molecular
recognition (PDB ID: 6HAX). This was confirmed by the two
crystal structures displaying near-identical ternary complexes
(Figure 7b).
We investigated the ability of our model to design alternative

linkers to the known poly(ethylene glycol)-based linker (PDB
ID: 6HAY) that could maintain the same conformation
observed in the ternary complex. We generated 5000 linkers
with a maximum of either 9 or 10 atoms. There were almost
3000 unique linkers that passed the 2D chemical filters (Table
S7).
Due to the size and complexity of the PROTAC, we

generated conformers constraining the two starting substruc-
tures (Figure 7a) to adopt poses close to their known binding
conformation, removing any high-energy poses. DeLinker
produced 2150 unique compounds with SCRDKit Fragments
>0.85, of which three novel linkers that accurately recapitulate
the linker geometry observed in PROTAC 2 are shown in
Figure 7c. In all three cases, the aromatic systems perfectly
align with that of PROTAC 2 and are likely to fulfill the goal of
improving interactions with the lipophilic face compared to

PROTAC 1. In particular, the pyrrole-based linker (Figure 7c,
left) appears to be making an NH−π interaction with the Y98
residue, possibly improving the CH−π interaction being made
by the benzene in PROTAC 2. When the structures were
minimized using AutoDock Vina,54,55 the compound with the
pyrrole-based linker scored comparably to PROTAC 2
(−14.17 vs −14.32), with both scoring substantially better
than PROTAC 1 (−12.66). However, we note that AutoDock
Vina does not model electrostatics explicitly and thus does not
capture NH−π or CH−π interactions. The other two
compounds shown (Figure 7c, center, right) scored better
than PROTAC 2 (−14.81 and −14.33 respectively), as did
almost 20% of all of the minimized compounds (536).
For each of the three case studies, the top 20 molecules

generated by DeLinker that met the 3D similarity threshold
(SCRDKit Fragments >0.80) ranked by AutoDock Vina54,55

score are shown in Figures S2−S4.

■ CONCLUSIONS
We have developed a graph-based deep generative method for
fragment linking or scaffold hopping that integrates 3D
structural information, utilizing the relative distance and
orientation between the starting substructures in the design
process. Unlike previous attempts at computational fragment
linking or scaffold hopping, our method does not rely on a
database of fragments from which to select a linker but instead
designs one given the fragments provided and 3D information.
Through two large-scale assessments, we have demonstrated

that our generative method is able to learn to produce a
distribution of linkers that matches the constraints present in
the training set, while being able to generalize to novel linkers
that satisfy both 2D and 3D constraints. In addition, the
generated molecules consistently have high 3D similarity to
both the initial fragments and the original molecules,
outperforming a Database baseline by 60% in the evaluation
on CASF, increasing to 200% when restricting the evaluation
to linkers with at least five atoms.

Figure 7. PROTAC design case study. (a) Two-dimensional chemical structures of PROTAC 1 and PROTAC 2. (b) Overlays of ternary crystal
structures of PROTAC 1 (PDB ID 6HAY, magenta carbons) and PROTAC 2 (PDB ID 6HAX, yellow carbons), with SMARCA2 shown in orange
and VHL in blue. (c) Overlays of three linkers with different scaffolds produced by DeLinker (green carbons); all three accurately recapitulate the
linker geometry observed in PROTAC 2 (yellow carbons). None of these linkers were present in the training set.
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Finally, through three case studies, we have shown that our
method can be applied to fragment linking, scaffold hopping,
and PROTAC design. In the fragment linking example, our
method reproduced all of the reported potent molecules using
only the crystal data of the initial fragment hits. In addition, in
docking-based evaluation, many of the generated molecules
were scored more highly than the original hits while
maintaining similar binding modes. In the scaffold hopping
case study, our method reproduced both the starting and final
molecules, while suggesting many other scaffolds with high 3D
similarity to the initial crystal data. Finally, in the PROTAC
design case study, our method suggested a range of novel
linkers that met the design goal of maintaining the linker
geometry of PROTAC 1, while improving interactions with the
lipophilic face created in part by residue Y98 of the VHL
protein.
Our generative model can be readily combined with

previous methods for fragment linking or scaffold hop-
ping.27−32 This can be achieved by using the compounds
generated by DeLinker to augment the database that is used as
input for the search and filtering methods adopted by existing
database-based methods.
As is frequently the case with machine-learning-based

generative models, some of the molecules generated by
DeLinker might have unstable functional groups or be hard
to synthesize. We have demonstrated that our method was able
to learn to produce molecules that frequently passed the 2D
filters used to construct the training set through implicit
supervision alone, thus, altering the training set composition
would likely reduce the number of undesirable molecules
generated. The properties of generated molecules could also
potentially be improved through direct supervision with
reinforcement learning57 or filtered via a postprocessing
approach.58

As far as we are aware, this is the first molecular generative
model to incorporate 3D structural information directly in the
design process. Currently, the only 3D information utilized by
the model is the distance between the fragments or starting
substructures and their relative orientations. This provides
explicit constraints for a given compound but only implicit
information about the shape of the binding site. Despite this
minimal parametrization, there is a substantial impact on the
generated molecules.
Extending our method to use additional structural

information that incorporates further constraints from the
protein is a direction for future research. This could be
achieved directly by providing our method with a richer
representation of the protein−ligand binding site or indirectly
through the combination of reinforcement learning8,59,60 and
existing methods from structure-based drug discovery.54,55,61,62

Both directions promise substantial benefits for structure-based
molecular generative methods.
While we have shown that our method can be applied to

fragment linking, scaffold hopping, and PROTAC design, we
believe that our framework is general and readily extendable to
other design tasks. Applications of DeLinker to other design
tasks such as fragment growing, R-group optimization, and
macrocycle design would be interesting avenues for further
studies.
The code is available at https://github.com/oxpig/

DeLinker.
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