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Abstract

Cheminformatics aims to assist in chemistry
applications that depend on molecular inter-
actions, structural characteristics, and func-
tional properties. The arrival of deep learning
and the abundance of easily accessible chemi-
cal data from repositories like PubChem have
enabled advancements in computer-aided drug
discovery. Virtual High-Throughput Screen-
ing (vHTS) is one such technique that inte-
grates chemical domain knowledge to perform
in silico biomolecular simulations, but predic-
tion of binding affinity is restricted due to lim-
ited availability of ground-truth binding assay
results. Here, text representations of 83,000,000
molecules are leveraged to enable single-target
binding affinity prediction directly on the out-
come of screening assays. The embedding
of an end-to-end Transformer neural network,
trained to encode the structural characteristics
of a molecule via a text-based translation task,
is repurposed through transfer learning to clas-
sify binding affinity to a single target. Clas-
sifiers trained on the embedding outperform
those trained on SMILES strings for multiple
tasks, receiving between 0.67-0.99 AUC. Visu-
alization reveals organization of structural and
functional properties in the learned embedding
useful for binding prediction. The proposed
model is suitable for parallel computing, en-
abling rapid screening as a complement to vir-
tual screening techniques when limited data is
available.

Introduction

Cheminformatics aims to assist in chemistry
applications that depend on molecular interac-
tions, structural characteristics, and functional
properties. The arrival of powerful computa-
tional techniques and the abundance of eas-
ily accessible chemical data from repositories
have enabled dramatic recent advancements in
computer-aided drug discovery. The domain of
computer-aided drug design ranges from quan-
titative structure activity relationship,1 drug
induced liver injury,2 toxicity modeling,3 vir-
tual screening,4 among others. All of these
tasks have been aided by models that make use
of computational techniques that leverage large
datasets and human expertise to encode molec-
ular features in order to predict biochemical ac-
tivity.5 Such techniques seek to expedite drug-
discovery pipelines by increasing the quantity
and quality of active compounds identified, po-
tentially resulting in new drug leads. Computa-
tional approaches are also advantaged in their
ability to integrate features from many sources
describing different chemical properties to ap-
proximate chemical function without the limi-
tations of traditional wet-lab approaches.6

Virtual High-Throughput Screening (vHTS)
is one such technique that integrates chem-
ical domain knowledge to perform in silico
biomolecular simulations. While binding as-
says are generally more accurate than tradi-
tional virtual screening approaches, they can
only identify drug leads from a set of com-
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pounds which are easy and cost-efficient to syn-
thesize. Computational techniques which sim-
ulate or approximate physical models of chem-
istry are not constrained by real-world limita-
tions, as molecules do not need to be synthe-
sized and resources for wet-lab experiments are
not required. Models or algorithms which are
driven by chemical data and expert knowledge
have been used to estimate structural and func-
tional properties and aid in scoring of existing
molecules,7,8 as well as in de novo drug design.9

Earlier approaches to the application of ma-
chine learning in cheminformatics involved
more traditional techniques such as support
vector machines (SVM), random-forest deci-
sion tree ensembles, markov models, and lin-
ear regression.10 However, the advent of deep
learning on parallel computing resources has in-
creased the power and utility of computational
models, leading to new opportunities to lever-
age the wealth of available machine-readable
chemical information. Deep neural networks
(DNNs) trained to classify molecular represen-
tations have reportedly been highly effective
for cheminformatic tasks in computer-aided
drug design, computational structural biology,
quantum chemistry, and computational mate-
rial design.

The recent success of deep learning can be
attributed in part to the availability of large,
labeled datasets.11 Repositories such as Pub-
Chem12 which compile information on molec-
ular structure and properties have enabled the
application of deep learning vision and natural
language processing (NLP) techniques to many
molecular property prediction tasks. These in-
clude training convolutional neural networks
(CNN) on raw SMILES strings,13,14 adapting
CNNs to atom graphs and connectivity ma-
trices,15–18 and using neural networks to clas-
sify molecules from fingerprints or other hand-
designed molecular descriptors.19

A number of approaches attempt to replace
the hand-designed scoring function of tradi-
tional molecular docking algorithms with a
learned scoring function.16,20–22 Another class
of deep learning applications for drug discov-
ery attempts to simulate molecular docking.
Large databases such as PDBBind23 contain

3D conformations of molecules bound to rel-
evant sites on thousands of target structures.
Deep learning approaches encode this 3D in-
formation to learn a model of physics and
identify molecules with low-energy conforma-
tions and high likelihood of binding.24 Though
physics-based molecular docking models are less
constrained than wet-lab screening approaches,
they can still be computationally expensive and
require significant time and/or resources.

As an alternative to docking, other deep
learning approaches attempt to improve the
quality of virtual screening predictions by learn-
ing to represent molecules with automatically
selected features.25,26 In particular, transla-
tion between distinct molecular representations
have previously been shown as an effective
technique for learning useful representations of
molecular properties.9 By learning from ex-
isting representations and other information
which describe structural patterns, these tech-
niques develop custom chemical feature sets
which can match or increase performance on
molecular classification/prediction tasks com-
pared to existing representations. Learning new
representations expands the scope of chemin-
formatics applications by allowing prediction
of molecular function, as improved representa-
tions can increase the predictive quality of mod-
els trained on limited amounts of data.

While the application of deep learning to pre-
diction of molecular properties and other tasks
has shown promise in aiding drug discovery, the
direct application of deep learning to prediction
of screening assay results has been made diffi-
cult by the limited quantity of available data.
Molecules screened against a particular target
likely constitute a much less representative sam-
ple of chemical space than is typical of dataset
samples from vision or NLP populations, where
deep learning has been most successful. The
application of deep learning is especially diffi-
cult for datasets that are not primarily hand-
engineered.5

To address these limitations, we leverage the
vast wealth of publicly available and easily com-
putable molecular structure data to augment
training of a neural network for binding affin-
ity prediction from historical assay data. To do
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so, we train a Transformer neural network, an
architecture first introduced in the context of
natural language translation,27 to translate be-
tween two distinct, text-based molecular rep-
resentations in a well-studied subset of chem-
ical space. An intermediate set of features
computed by this trained model is considered
as an embedding which contains abstract fea-
tures describing general molecular structure.
Molecules represented by this abstract embed-
ding are then used to train a binding affinity
prediction model directly on a limited set of as-
say results which quantify binding to a single
target. The organization of structural and func-
tional properties in embedding feature space en-
ables simple classifiers to simulate screening as-
says in limited data scenarios.

Learning abstract representations of chem-
ical information has recently been shown to
improve performance in predicting molecu-
lar function.5,28 Another recent study derived
word embeddings and repurposed them through
transfer learning for multiple NLP tasks, out-
performing classification tasks without such
embeddings.29 Here, we utilize a Transformer
network to create such embeddings for func-
tional assays that may otherwise be poor can-
didates for virtual screening. Since the molec-
ular representations from the Transformer net-
work are learned by text-translation to encode
the functional properties indicated by struc-
ture, they can be applied to any screening assay
model, regardless of bioactivity. This approach
shows pretraining embeddings for generic chem-
ical representations can improve supervised
classification. Our translation-based pretrain-
ing extends that insight to the task of predict-
ing binding assay results.

We evaluate our novel molecular embedding
learned by our Transformer on three single-
target prediction tasks and observe improve-
ment upon baselines for direct prediction of
binding assay results. Since neural network
training is data-driven, embedding features are
also suitable for fine-tuning to consider target-
specific information. Furthermore, The oper-
ations in the transformer model used to com-
pute molecular embeddings are easily paral-
lelizable on modern computing infrastructure

(GPUs), enabling rapid screening of millions of
molecules to assist wet-lab screening assays and
other drug discovery pipelines.

Methods

To accurately predict binding assay results for
a single target with few active compounds, we
first perform an auxiliary text translation task
based on state-of-the-art NLP techniques and
structural text representations of millions of
molecules. We collect SMILES strings and IU-
PAC chemical names for a large set of molecules
on PubChem. SMILES and IUPAC representa-
tions are selected because they both describe
similar aspects of molecular structure following
consistent rules in a machine-readable format.
While the atoms, bonds, and substructures de-
scribed in the two representations are similar,
the SMILES grammar and IUPAC nomencla-
ture have distinct text representations. By
learning to translate between the two, the com-
mon information they contain must be orga-
nized efficiently in an intermediate set of fea-
tures. We then repurpose these features of the
learned embedding for direct prediction of as-
say results, treated as a binary classification
task between binding and non-binding regions
of chemical space.

An overview of this process is shown in Fig-
ure 1. In Step 1, a high-level depiction of
the network architecture is illustrated which
demonstrates how the network layers gener-
ate molecular embeddings when performing
SMILES-IUPAC translation. In Step 2, embed-
dings generated from the trained network are
provided as input to a target-specific binding
classification network.

Transformer Neural Network

The Transformer27 is a deep neural network
suited for NLP tasks. It relies on large weight
matrices to store patterns and learn short and
long-term dependencies in training sequences.
The Transformer network architecture is flexi-
ble and can be used for both classification and
text generation tasks. In our implementation,
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Figure 1: Diagram of the two-step procedure
followed to predict binding affinity using the
learned embedding of a Transformer network.

the Transformer is used to generate output as
an IUPAC chemical name which corresponds to
a molecule described by a SMILES string pro-
vided as input.

Before being processed by the main layers
of the Transformer, SMILES strings are con-
verted to an initial, random embedding. Each
character in the SMILES alphabet is replaced
with a random vector, where the same vector
is used for multiple occurrences of the same
character. The values in this vector are the
first network weights of the Transformer, and
they are tuned during training based on the
frequency, co-occurence, and sequential depen-
dencies of each SMILES character. Periodic
functions at different frequencies are added to
the signal of each vector so that the frequency
of the added signal encodes a character’s loca-
tion in the SMILES sequence. This allows the
character-specific layers of the Transformer to
determine the order of one character relative to
others.

Once an initial embedding of character vec-

tors are generated, the signal in each vector is
modulated by the layers in the Transformer’s
encoder stack. An encoder layer consists of
a self-attention operation which modifies each
character vector based on its relation to other
characters in the sequence, followed by a simple
matrix multiplication and nonlinearity which is
applied on each character vector individually.
The output of each layer is a set of character
vectors with the same size as the input. The
output of the final encoder layer is treated as
a molecular embedding, where each character
vector has been modified to contain abstract
features useful for describing the structure of a
molecule. The features in this embedding are
used by an equivalent set of decoder layers for
IUPAC name generation. Character vectors are
processed by the decoder stack one at a time,
resulting in a new character in the IUPAC al-
phabet being predicted. Decoder layers share a
similar structure to encoder layers, except for
a slightly modified form of self-attention which
looks at previously predicted IUPAC characters
to inform prediction of the next character. Dur-
ing training, previous predictions are ignored
in favor of characters from the correct IUPAC
name for a molecule.

Molecular Self-Attention

The core mechanism of the Transformer is ’self-
attention’. In this operation, input vectors rep-
resenting each character in a SMILES string are
output as a linear combination of vectors for
all characters in the string. The output of the
attention layer is a vector for each character
with the same length as the input. However,
vectors for each character are weighted by an
output-specific attention score which represents
how relevant every character in the string is to
a particular output. Attention scores are com-
puted by weight matrices, which accept char-
acter vectors as input. The meaning of the at-
tention scores depends on the task on which
the model is being trained, and multiple sets of
model weights are used to produce multiple sets
of scores which may attend to different relevant
feature in the input. In the case of our trans-
lation task, attention scores may indicate the
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Figure 2: Left: A selection of attention weights
for SMILES string CCCCC1CCNCC1F are vi-
sualized, showing how the character vectors of
each input on the left are weighted to pro-
duce the output vector for the 3rd carbon atom
on the right. Opacity indicates larger atten-
tion values. Right: Some of the self-attention
weights from the trained Transformer are vi-
sualized for a molecule. Separate weights in a
single layer attend to different features which
describe the same structure.

importance of a certain substructure for gener-
ating part of a molecule’s IUPAC name. Exam-
ple visualizations from the trained Transformer
are shown in Figure 2. The matrices on the
right of the figure demonstrate the capacity of
the Transformer network to learn a descriptive,
varied set of abstract molecular features useful
for describing structure.

Training Procedure

To train the Transformer network for trans-
lation, pairs of SMILES strings and IUPAC
names are sourced directly from the PubChem
compound database for 83,000,000 molecules.
SMILES strings are used as-is, and no canon-
icalization is performed . Similarly, IUPAC
names for each molecule are collected from Pub-
Chem with no modification. Deep neural net-
works trained on large, labeled datasets have
been shown to be robust to unreliable anno-
tation.30 Noise during neural network training
can increase generalization due to the intrica-
cies of network optimization,31 making the un-
modified molecular text representations robust

to under-fitting.
A Transformer network is created with 512-

dimension character embedding vectors. A
maximum SMILES string length during train-
ing of 256 characters is imposed, although this
limit can be exceeded during screening infer-
ence. Thus, each molecular embedding contains
256 ∗ 512 dimensions. Training is performed in
batches of 96 molecular string pairs. The Adam
optimization algorithm32 is used to to update
the weights of the network. The learning rate
during optimization begins at 0.001 and de-
creases two orders of magnitude, following half
a period of a cosine function, over the course
of a single pass, or epoch, over the 83,000,000
molecule training set. Training continues for
three epochs.

Experiments

The utility of the Transformer embedding was
investigated by training and evaluating bind-
ing prediction models on molecular embeddings
for three binary classification tasks. Equiva-
lent prediction models are also trained on two
representation baselines to quantify the Trans-
former embeddings’ usefulness for binding affin-
ity prediction and explain the relation between
learned features and molecular properties. Fi-
nally, an unsupervised evaluation of the learned
embedding is performed by visualizing how
changes in molecular structure compare corre-
spond to embedding changes.

Assay Datasets

Three datasets for supervised prediction of
binding assay results were compiled. In each,
the results of an assay (or compilation of assays)
for binding affinity to a target were sampled
into a small, labeled dataset. Binary classifi-
cation of molecular embeddings was performed
by binning continuous, assay-specific binding
affinity values into binding and non-binding
categories according to an activity threshold.
In each assay, fewer binding than non-binding
molecules were identified. To account for this,
the non-binding sets were randomly undersam-
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Table 1: Screening Assay Datasets

HIV-1 Protease AID 652067 AID 1053197
Data Source BindingDB33 PubChem34 Pubchem35

Target HIV-1 Protease DAF-12 Sialic Acid Acetylesterase
Measured Ki (nM) % Activation at 6.8uM % Inhibition at 9.66uM

Activity Cutoff <100nM >5.55% >18%
Tested 7,462 370,276 370,256
Active 2,159 5,354 2,555

Balanced Dataset Size 4,318 10,708 5,110

pled to match the count of binding molecules
for the purpose of training and evaluating a bal-
anced binding classifier. Thus, the dataset for
each experiment was equally balanced between
binding and non-binding compounds. Addi-
tional details regarding the assay procedures
and results used in each of the three experi-
ments are located in Table 1.

HIV-1 Protease

Molecules identified by various sources to bind
and inhibit HIV-1 Protease were compiled from
the BindingDB33 filtered based on binding
affinity. To acquire non-binding examples, ran-
dom molecules were sampled from the Pub-
Chem Compound database. Any molecules
which appeared in the HIV-binding set were ex-
cluded. Any discrepancies in the experimental
procedures of the multiple screening assays in
this compiled dataset were ignored and all Ki
measurements were treated equivalently.

AID 652067

Molecules tested in a high-throughput screen-
ing assay for activation of the DAF-12 nuclear
receptor in H.contortus 34 were compiled. The
binding affinity threshold was set by the as-
say authors as three standard deviations above
the average percent activation measured at the
tested concentration. Molecules beyond this
threshold were labeled binding to DAF-12. A
random sample of molecules within three stan-
dard deviations of the average were used as the
non-binding set.

AID 1053197

Results from a high-throughput screening as-
say for binding and inhibition of Sialic Acid
Acetylesterase (SIAE) were sampled. Molecules
which caused inhibition greater than three stan-
dard deviations above the average of screen
compounds were labeled as binding, while
molecules within three standard deviations
were randomly sampled as non-binding.

Affinity Prediction and Baselines

A simple, fully-connected neural network with
four layers was created to classify each assay
dataset. The number of input neurons in the
network is determined by the size of the molecu-
lar representation used for classification. In the
case of the Transformer embeddings, 256 ∗ 512
neurons are used. 500 neurons are computed in
the first two hidden layers. Dropout36 is used to
mask a random 20% of network activations after
the second layer. Following dropout, a hidden
layer with 100 neurons is computed. Finally,
two output neurons are used for binary classifi-
cation. The Rectified Linear Unit (ReLU) non-
linear activation function37 is applied after each
hidden layer except the final output, where the
softmax function is applied to convert the two
raw outputs to non-binding and binding class
probabilities, respectively. Embedding inputs
are not normalized before classification.

In order to quantify and explain the Trans-
former embedding’s predictiveness for binding
affinity tasks, identical networks for two base-
line representations are trained and evaluated
on all three datasets.
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Table 2: Numerical Features Computed for Each Molecule

RDKit Feature Name Description
ExactMolWt molecular weight
FractionCSP3 fraction of carbons with SP3 orbitals
HeavyAtomCount count of heavy atoms
LabuteASA accessible surface area
MaxAbsPartialCharge largest partial charge
MinAbsPartialCharge smallest partial charge
MolLogP Log P (octanol-water partition coefficient)
NumAliphaticCarbocycles count of carbocycles containing a non-aromatic bond
NumAliphaticHeterocycles count of hetereocycles containing a non-aromatic bond
NumAromaticCarbocycles count of carbocycles containing aromatic bonds
NumAromaticHeterocycles count of heterocycles containing aromatic bonds
NumHAcceptors count of nitrogen and oxygen atoms
NumHDonors count of NH and OH bonds
NumHeteroatoms count of atoms excluding carbon and hydrogen
NumRotatableBonds count of bonds physically likely to rotate
NumSaturatedCarbocycles count of carbocycles with only single bonds
NumSaturatedHeterocycles count of heterocycles with only single bonds
NumValenceElectrons count of valence electrons in the entire molecule
RingCount count of all rings
TPSA Surface area of polar atoms (oxygen and nitrogen)

Random Embedding Baseline

First, we compare trained versus untrained
Transformer embeddings to quantify the rele-
vance of features learned through our SMILES-
IUPAC translation task for binding affinity pre-
diction. In this case, the SMILES string for
each molecule is converted to a random embed-
ding of 512-dimensional vectors for each charac-
ter. The random embeddings have the same ini-
tialization scheme as the Transformer network.
Thus, this baseline is equivalent to evaluating
embeddings produced by an untrained Trans-
former configured for our translation task. This
is also equivalent to classifying SMILES strings
directly with a neural network, as vectors are
consistent for repeated characters across the
dataset.

Properties Baseline

Second, we compare trained embedding per-
formance versus a set of hand-selected proper-
ties describing molecular structure to investi-
gate how the embedding may represent different

quantifiable structural metrics. Properties were
selected based on their potential relevance to
the structural information in SMILES strings,
as well as for binding affinity prediction. Val-
ues for 20 total properties were computed us-
ing RDKit38 implementations. The properties,
their RDKit identifiers, and brief descriptions
are detailed in Table 2. Numeric property val-
ues were normalized between 0 and 1 accord-
ing to the minimum and maximum values of
all screened molecules, on a per-dataset basis.
The networks used to classify binding affinity
are identical to the Transformer and random
embedding networks, except only 20 input neu-
rons are needed in this case.

Evaluation

Binding classification networks trained on the
three datasets for the Transformer embedding
and two baseline representations were evalu-
ated by computing balanced, binary classifica-
tion accuracy between binding and non-binding
categories, where chance is 50%. ROC curves
and AUC were also computed by comparing
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Figure 3: Left: The depicted molecule was given to the trained Transformer, and three segments
of the predicted IUPAC name are highlighted in green, blue, and red. Right: The IUPAC name
in the training data for the corresponding molecule is shown, where matching segments from the
predicted name are highlighted with matching colors. The structure described by the predicted and
target strings is identical.

binding confidence predictions to ground-truth
binned assay results. Each dataset was split
into 10 folds, and networks were trained 10
times to perform 10-fold cross validation. The
average accuracy and AUC across the 10 runs is
reported, along with the standard deviation of
scores. A single standard deviation confidence
interval is added for each ROC curve.

Reaction Experiments

To analyze how the learned molecular em-
beddings encode binding properties, we mod-
ified molecular sequences and observed changes
in binding confidence to HIV-1 Protease from
a binary classifier. Changes in confidence
could then be compared to changes in molecu-
lar embeddings produced by the Transformer.
Molecules were modified by three methods:
neutralizations, deletions, and functional group
swapping. The same model used in all three
reaction experiments was a simple CNN com-
posed of an input layer, two hidden convo-
lutional layers with ReLu, and a fully con-
nected output layer originally trained on the
HIV dataset for target binding classification us-
ing a random embedding of SMILES strings.
Values from the two output neurons of the
CNN were modified with the softmax function
to compute probabilities of non-binding and
binding to HIV. Probabilities were obtained
for both the original molecules and modified
molecules in each reaction experiment. The

change in binding confidence was then calcu-
lated by subtracting the modified and original
probabilities. Chances in confidence from the
classifier were then visualized against changes
in dimensionality-reduced embedding space to
observe how the Transformer’s embedding en-
codes features for molecules of similar structure,
and whether features useful for binding affinity
prediction can be seen in unsupervised visual-
ization of the embedding.

Neutralizations

Neutralization-capable reactions were identi-
fied as molecules containing molecular ion frag-
ments and reacted to form neutralized products
as seen in Table 3 .

Table 3: Neutralization Reaction Experiment

Reactant Product
[n+;H] n

[N+;!H0] N

[$([O-]);!$([O-][#7])] O

[S-;X1] S

[$([N-;X2]S(=O)=O)] N

[$([N-;X2][C,N]=C)] N

[n-] [nH]

[$([S-]=O)] S

[$([N-]C=O)] N

The molecules were “reacted” with RDKit
protocol to neutralize the ion charges resulting
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in a new smiles formation.

Deletions

Deletions were performed by randomly select-
ing one of the identified functional groups in
the molecule and replacing it with the chemi-
cally correct number of hydrogens using RDkit
chemical API protocol. Some of the modified
molecules from this experiment resulted in sep-
arate compounds, likely do to chemical bond
constraints. Thus, the resultant smiles were dis-
carded from the visualization process. Function
groups identified are provided in Supplemental
Information One (SI:1).

Functional Group Swapping

Functional group swapping was performed sim-
ilarly to the deletion modifications. A ran-
domly selected functional group was replaced
with another random functional group. If the
substitution resulted in a chemically incorrect
molecule, it was discarded from the set of eval-
uated molecules and excluded from visualiza-
tions. Function groups identified are provided
in Supplemental Information One (SI:1).

Results

IUPAC Name Prediction

After the transformer network’s stack of de-
coder layers, the output of the final linear trans-
formation used to predict each character in the
IUPAC name of a molecule is assessed. Due to
the triviality of our translation task, we do not
perform exstensive NLP evaluation of IUPAC
name predictions made by the trained Trans-
former network. Instead, qualitative results are
assessed. In general, predictions conform to
the IUPAC nomenclature without error. How-
ever, for a significant minority of molecules,
the IUPAC string predicted by the Transformer
bears little character similarity to the matching
string label in the dataset compiled from Pub-
Chem. While, the predicted and target strings
are empirically different, they are simply per-
mutations of one another which still accurately

Figure 4: Percent binary classification accu-
racy for each dataset is shown as a bar plot.
The Transformer embedding and baseline ap-
proaches are color-coded, and single standard
deviation confidence intervals are represented
with a vertical black bar.

describe the same molecular structure. This
phenomenon is exemplified in Figure 3

Binding Prediction on Assay
Datasets

ROC plots including AUC scores for the Trans-
former embedding and baseline classifiers on all
three datasets are displayed in Figure 5. Per-
cent accuracy from the same experiment results
is displayed in Figure 4. Based on these results,
the binary classification networks trained on
the Transformer embedding outperform both
selected baseline representations on two out of
three binding prediction datasets. In the third,
the Transformer embedding classifier’s mean
accuracy and AUC is within a standard deva-
tion confidence interval of the classifier trained
on computed properties, and significantly out-
performs the random embedding classifier. In
general, there is large variation in the predic-
tive ability of all classifiers depending on the
dataset. It should be noted that the accuracy
metric displayed here is based on a balanced
ratio of binding to non-binding molecules in or-
der to perform a fair comparison. This devi-
ates from best practices in real-world machine
learning applications, where class ratio should
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Figure 5: ROC curves for the three modified molecular datasets, with AUC displayed in the figure
legends. ROC lines for the Transformer embedding and baseline approaches are color-coded and
confidence intervals representing 1 standard deviation are transparently shaded in the matching
color.

be considered to avoid unnecessary false posi-
tives.

Interpretation

Transformer Learns Meaningful
Representation rather than Mem-
orization

The trained Transformer network has learned
the IUPAC nomenclature needed to describe
the molecular structure, but exhibits poor per-
formance if judged on its ability to output
the exact character sequence from the train-
ing data. In many cases, the predicted IUPAC
name for a molecule is a permutation of the
IUPAC name uploaded to PubChem which de-
scribes an identical set of atoms, bonds, and
groups. This phenomenon is likely due to the
size of the SMILES-IUPAC pair dataset col-
lected for training. These findings indicate
the weights of the transformer network are not
simply used for memorization of string pairs.
Rather, the trained network has developed an
internal representation of molecular structure
which is distinct from the SMILES and IUPAC
naming conventions.

Changes in Embedding Space Cor-
respond with Binding Affinity

Visualizations of the reaction experiments per-
formed are shown in Figure 6. This visualiza-
tion gives insight into how properties related
to binding are encoded by the transformer and
suggests that the learned embedding contains
information predictive of binding in addition
to obvious structural properties. On the left
plot for each reaction experiment the differ-
ence between original and reacted molecules in
the first two principal components of embed-
ding space indicates that structurally similar
molecules are in fact represented with similar
abstract features learned by the Transformer.
The decrease in SMILES string length after re-
actions, and thus molecular weight, likely ex-
plains the tighter grouping of reaction products
compared to original molecules.

When the modified molecular embeddings are
compared to the original embeddings, changes
in magnitude of binding confidence correspond
with changes in distance and direction of the
embedding space, as shown in the right images
of Figure 6. This pattern is especially apparent
for deletion and functional group swapping re-
actions, even though no supervised learning or
information about molecular function has been
used in the training of the embedding or the
production of the figures. This finding suggests
the presence of information useful for binding
prediction in the latent embedding. Using these
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Figure 6: Change in the first two principal components embedding space after deletion reactions
are used to modify a set of molecules. Binding affinity is predicted against HIV-1 Protease using
a Random Embedding network. The percentile rank change in the network’s binding confidence
across the set of displayed molecules is color-coded, where brighter colors indicate a larger change
in binding confidence after the reaction.
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learned embeddings can allow for more robust
virtual screening in conditions where assay data
is limited, which is often the case for newly dis-
covered targets.

Conclusion

Overall, we found that learning a mapping
of chemical space via a Transformer network
achieved increased accuracy of data-driven
models on multiple binding affinity prediction
tasks compared to models trained on hand-
designed or untrained representations. In addi-
tion, we found that the abstract embedding of
the trained network contains mappings of prop-
erties which are useful for predicting molecular
function. While overall accuracy was somewhat
limited and varied per-target, these results sug-
gest a promising direction for further research
into the application of deep learning to direct
modeling of assay experiment results as a com-
putational screening aid to existing drug dis-
covery pipelines. Data-driven models trained
on the Transformer embeddings can be applied
as a quick, inexpensive computational screen-
ing method to assist the early drug discovery
process for targets where a functional assay has
been designed. Since the learned representa-
tion is data-driven, it also has the flexibility
to be fine-tuned for simultaneous prediction of
multiple properties relevant to the discovery of
drug leads for a particular target. This new
approach is not only an innovative computa-
tional method for conducting virtual screening,
but increases the utility of previous HTS assay
results for the identification of new drugs.
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Fisicoqúımica Instituto de Qúımica, UNAM
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Recent applications of deep learning and

13



machine intelligence on in silico drug dis-
covery: methods, tools and databases.
Briefings in bioinformatics 2018, 20,
1878–1912.

(29) Liu, X.; He, P.; Chen, W.; Gao, J. Multi-
task deep neural networks for natural
language understanding. arXiv preprint
arXiv:1901.11504 2019,

(30) Rolnick, D.; Veit, A.; Belongie, S.;
Shavit, N. Deep learning is robust
to massive label noise. arXiv preprint
arXiv:1705.10694 2017,

(31) An, G. The effects of adding noise dur-
ing backpropagation training on a general-
ization performance. Neural computation
1996, 8, 643–674.

(32) Kingma, D. P.; Ba, J. Adam: A Method
for Stochastic Optimization. 2014;
http://arxiv.org/abs/1412.6980, cite
arxiv:1412.6980Comment: Published as a
conference paper at the 3rd International
Conference for Learning Representations,
San Diego, 2015.

(33) Gilson, M. K.; Liu, T.; Baitaluk, M.;
Nicola, G.; Hwang, L.; Chong, J. Bind-
ingDB in 2015: a public database for
medicinal chemistry, computational chem-
istry and systems pharmacology. Nucleic
acids research 2015, 44, D1045–D1053.

(34) National Center for Biotechnology Infor-
mation. PubChem Database. Source=The
Scripps Research Institute Molecu-
lar Screening Center, AID=652067.
https://pubchem.ncbi.nlm.nih.gov/

bioassay/652067(accessedonDec.

31,2019).

(35) National Center for Biotechnology Infor-
mation. PubChem Database. Source=The
Scripps Research Institute Molecu-
lar Screening Center, AID=1053197.
https://pubchem.ncbi.nlm.nih.gov/

bioassay/1053197(accessedonDec.

31,2019).

(36) Srivastava, e. a., Nitish Dropout: a sim-
ple way to prevent neural networks from
overfitting. The journal of machine learn-
ing research 2014, 15, 1929–1958.

(37) Nair, V.; Hinton, G. E. Rectified lin-
ear units improve restricted boltzmann
machines. Proceedings of the 27th inter-
national conference on machine learning
(ICML-10). 2010; pp 807–814.

(38) Landrum, G. RDKit: Open-source chem-
informatics. http://www.rdkit.org.

14



Supporting Information Available

SI #1: Functional groups for deletion and swapping reactions.

15


