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Abstract

During molecular simulations, three dimensional conformations of
biomolecules are calculated from the values of their bond angles, bond
lengths and torsional angles. In this paper we study how to efficiently
derive three dimensional molecular conformations from the values of
torsional angles. This case is of broad interest as torsional angles
greatly affect molecular shape and are always taken into account dur-
ing simulations. We first review two widely-used methods for de-
riving molecular conformations, the simple rotations scheme and the
Denavit-Hartenberg local frames method. We discuss their disadvan-
tages which include extensive bookkeeping, accumulation of numerical
errors and redundancies in the local frames used. Then we introduce
a new, fast and accurate method called the atomgroup local frames
method. This new method not only eliminates the disadvantages of
earlier approaches, but also provides lazy evaluation of atom positions
and reduces the computational cost. Our method is especially useful
in applications where many conformations are generated or updated
such as in energy minimization and conformational search.



1 Introduction

During the last two decades a lot of emphasis has been placed in study-
ing problems that involve reasoning about three dimensional (3D) molec-
ular conformations in simulation (e.g., docking, protein folding, molecular
dynamics, etc.) [3, 4, 6, 7, 8,9, 10, 11, 12]. Little research has been done,
however, to understand how to efficiently represent, derive and update molec-
ular conformations from molecular data. The efficient derivation of molec-
ular conformations can greatly impact the performance of conformational
search procedures, energy minimization procedures, and all computations
that involve large molecules and require frequent recalculation of conforma-
tions. This paper is a systematic investigation of the efficiency of different
representations for the derivation of molecular conformations. Two avail-
able methods, the simple rotations scheme and the Denavit-Hartenberg local
frames method, are reviewed and a new improved method, the atomgroup
local frames method, is introduced in this paper.

For computational purposes, a molecule is often represented as a collec-
tion of atoms and a collection of bonds between pairs of atoms. Additional
information is associated with each of the atoms and bonds, such as van der
Waals radii, electric charges, bond lengths, bond angles, torsional angles and
others [4, 7]. In most kinematics studies, bond lengths and bond angles are
considered constant, while the torsional angles are allowed to change [9, 11]
(see also Figure 1). That is why in this paper we assume that conformational
changes are solely due to the changes of torsional angles and investigate how
to efficiently derive and update conformations under this assumption.

A direct application of our work is in improving the running time of
procedures that generate and/or update a large number of conformations.
Take conformational search procedures as an example [6, 8, 9, 10, 11]. The
goal of conformational search is to find a set of low energy conformations of a
molecule. External constraints (such as specific distances between two atoms
in the molecule) may also be required [4]. Unfortunately, the conformational
spaces of even small molecules are high-dimensional (10-15 torsional angles).
As a result, conformational search is a computationally expensive procedure
and many researchers have developed a variety of algorithms to perform this
procedure as efficiently as possible [6, 8, 9, 10, 11]. The common theme of
these algorithms is to reduce the size of the search space and try to find,
in the reduced space, as many solution candidates as possible. Still, a large
number of conformations are checked and analyzed. It is therefore desirable



to have good computer representations for molecules and good algorithms for
finding the Cartesian positions of their atoms so as to minimize the cost of
the evaluation of each conformation and speed up the entire conformational
search procedure. Other applications that can benefit from our work in a
similar way are ligand-receptor docking, protein folding, molecular dynamics
and many more.

Available methods for deriving molecular conformations from the values
of torsional angles include the simple rotations scheme and the Denavit-
Hartenberg local frames method [9]. The simple rotations scheme applies a
sequence of rotations to update all atom positions, where each rotation is
determined by two points and an angle. The order of the updates of the
atoms is important — an atom can only be updated after all its ancestor
atoms have been updated. Thus some bookkeeping of the atom positions is
necessary. The Denavit-Hartenberg local frames method builds local frames
at the bonds [2, 9]. The relations between local frames at parents and children
are updated when a rotation is applied. The atom positions are computed
by series of matrix multiplications. An advantage of the Denavit-Hartenberg
local frames method is that no bookkeeping is needed. The drawback of this
method is that multiple local frames are needed at a bond if it has more than
one child.

This paper introduces a new atomgroup local frames method to efficiently
derive molecular conformations from the values of torsional angles. In this
method, a single local frame is attached to each rotatable bond, and the posi-
tion of each atom is updated by a single matrix multiplication. This method
provides accumulated, lazy evaluations for atom positions. Thus the com-
putational cost can be greatly reduced, especially when many conformations
are generated and updated (e.g., during a minimization procedure). Another
advantage of the new method can be seen when selective atom positions need
to be calculated to check, for example, if they satisfy distance constraints to
fit a pharmacophoric pattern [4, 9]. Our approach easily permits the eval-
uation of the position of any atom in the molecule without computing the
positions of the rest of the atoms.

The rest of this paper is organized in the following way. Section 2 de-
scribes the simple rotations scheme for calculating the positions of atoms in a
molecule. Section 3 discusses the Denavit-Hartenberg local frames method.
In Section 4, we introduce the atomgroup local frames method. We give
some comparison results between the three methods and some discussion in
Section 5 and summarize our results in Section 6.



2 Simple Rotations

A molecule is characterized by a collection of atoms and a collection of bonds
between pairs of atoms [9]. A graph can then represent the molecule with
vertices denoting atoms and edges denoting bonds. An atom is chosen as the
anchor for the molecule — root of the corresponding graph. (The choice of
the anchor atom is arbitrary.) In this section, we assume that the underlying
graphs are trees— that is, there are no rings in the molecules. Another
way to view this is that rings are considered rigid and have been replaced
by special single “atoms”. Therefore, for any atom in the graph, there is
only one unique way to traverse back to the root (anchor) atom. Thus, the
parent-children relations among the atoms are unambiguous. Figure 1 gives
an example.

Anchor (root)

Rotatable bonds

Figure 1: Tree representation of a molecule.

Method In the simple rotations method, all atom positions are updated
by series of rotations. Below we show how to compute the new position
(2,4, 2")" of an atom initially at (x,y,2)" when the values of the torsional
angles change. Here the superscript ¢ denotes the vector transpose.

Let Q;—1 and @; be the parent and child atoms of a bond b;. When bond
b; rotates by an angle 6;, all descendant atoms of @); rotates around b; by 6;.
This rotation is determined by (the centers of) the two atoms Q; 1, @;, and
the angle 0;.

Let (vg, vy, v,)" be the unit vector along bond b; (from Q; to Q;_1). As-
sume P is an arbitrary point in space. Let the coordinates of P before
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Figure 2: Bond b;, atoms @; 1, Q;, torsional angle ;.

and after the rotation around b; by angle 6; be (z,v,2)" and (2/,y', )" re-

spectively. Then the coordinates (2,4, 2')" and (z,y, )" have the following
relation:

(" ¢ 2 1)'=R-(z y z 1), (1)
where the matrix R; is given by [5]
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and 7 is the translation matrix

1 0 0 Qig

_ 10 1 0 Qi

T= 0 0 1 Qi
0 0 0 1

In the above, Q; 4, Qiy, @i, are the coordinates of Q;; cf; = cost); and s0; =
sinb;.

Thus, if b;, b;_1, ..., by is a sequence of bonds in the path from atom @);
to the root (anchor) atom )y, the position of atom @); is updated (after the
bonds by, ..., b;_; rotate by angles 6, ..., §; 1 respectively) by

(¢ 3y 2 1)=R_1...Ri-(z y 2z 1),

Note that the rotation around bond b; does not change the position of @);.

It is necessary to add the effect of the Euler angles since the whole
molecule can rotate along the z,y, z axes. Let the Euler angles be «, 3,7,
then the effect can be expressed in the following matrix [2]

cacf casfsy— sacy casfey+ sasy 0

o sacf  sasfsy+ cacy sasPey—casy 0
—sp cBsy cBey 0
0 0 0 1



Taking the effect of Euler angles into account, the final position of atom
Qi is
(.TI y, Z' 1)t:Rz_1RzE($ Yy 2 1)t (4)

Advantages The simple rotations scheme is conceptually straightforward.
The coordinates of all atoms are referring to the global frame (world co-
ordinate system). The implementation is also obvious: the coordinates of
each atom are updated by applying a sequence of rotations. In fact, the
rotation matrix for @Q;_1 is R;_o...R; - E, and the rotation matrix for Q);
is Ri_1- Ri_o... Ry - E. Therefore, if the rotation matrix is saved for atom
Q;—1 and passed to @;, then @); can obtain its rotation matrix by one ma-
trix multiplication R; ; - (R; o...R; - F) instead of a sequence of matrix
multiplications.

Disadvantages The drawback of the simple rotations scheme is that book-
keeping of atom positions is necessary to update the coordinates of all atoms.
Indeed, to compute the position of ();, the positions of all atoms at the path
b1, ...,b;_1 must be computed beforehand, because these positions are needed
in matrices R;,1 < j <7 — 1. Thus, an atom can only be updated after all
its ancestor atoms have been updated.

Moreover, errors accumulate in the simple rotations scheme. Whenever
a bond rotates, the new position of an atom (after the rotation) depends
on its old position (before the rotation). Therefore, any numerical error of
the old position is accumulated to the new position. This accumulated error
may grow beyond tolerance when many rotations are performed around the
bonds. The choice of the anchor atom also affects accuracy: an anchor atom
at the very end of a molecule chain will generate large errors at the other
end.

3 Denavit-Hartenberg(DH) Local Frames

The Denavit-Hartenberg(DH) local frames method is a simple and widely
used method for deriving molecular conformations. The theory behind it
was initially developed in robotics. By considering molecules as tiny robots,
one can transfer much of this theory to molecular modeling [2, 9]. In this
section, we also assume that the underlying graphs of molecules are trees.



Figure 3: Local frames F;_;, F;, and bond angle ¢;_;.

Method In the DH local frames method, each local frame is attached at
the end of a bond (the center of the child atom of the bond). Let b; be a
bond following bond b;_;. A local frame F;_; = {Q;_1;u;_1,Vi_1,W;—1} is
attached to bond b;_; as follows: w;_; has the direction of bond b;_1; u;_;
is perpendicular to both b; | and b;; v; 1 is perpendicular to both u; ; and
w; 1. Similarly, a local frame F; = {Q;; u;, v;, w;} is attached to bond b;.
The two local frames are related by the following matrix [2, 9]

c@i —891' 0 0
R; = sOichi1  clichi1  —spi1 —lispiq ’ (5)
s0;spi—1 s chia licgiy
0 0 0 1

where cf; = cos(0;), s0; = sin(6;), ch; 1 = cos(Pi_1), sp; 1 = sin(¢;_1), I;
is the length of bond b;, 6; is the torsional angle of b;, and ¢; ; is the bond
angle between bond b; ; and b;.

Note that local frames rotate along with the bonds. That is, frame F;
rotates along with bond b;. Moreover, since all descendant atoms of (); rotate
when bond b; rotates, the local frames attached with these atoms will rotate
along with bond b;, too.

Assume P is an arbitrary point in space, and let the coordinates of P in
frame F;_; be (2',1,2')! and the coordinates of P in frame F; be (z,v, 2)".
Then the two sets of coordinates are related as

(z' ¢ 2 1) =Ri-(z y 2z 1),

Now the position of any atom can be obtained by chaining the matrices
R;. If an atom @; is connected to the root atom )y by a sequence of bonds
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bi, ..., by, then the coordinates of @); are
(z y z 1))=Ry...R;-(0 0 0 1), (6)

If the root atom @ lies at the origin of the global frame, i.e., the local
frame Fj is the same as the global frame, then the coordinates obtained from
Equation (6) are referring to the global frame. Otherwise, the coordinates in
the global frame of any atom can be computed by adding one translation

(z y 2z 1)=Tr-R...Ri-(0 0 0 1), (7)
where
1 00 Qog
o 1 0 Qo
Tr = 001 Qo |’ (8)
000 1

and Qo z, Qo,y, Qo,. are the coordinates of .
Combining the effect of Euler angles, the final position of (); in the global
frame is

(z y 2z 1)'=Tr-E-Ry...R;-(0 0 0 1). (9)

Advantages To update the position of an atom, the DH local frames
method does not need to keep the positions of all its ancestor atoms —
no bookkeeping is necessary. Instead, the method records the angles of the
bonds in the matrices ;. Thus multiple rotations around a bond can be
combined into one rotation. Once the rotation matrix of an atom is known,
the final position of the atom is just the last column of the matrix. Moreover,
the numerical error of the old position of an atom does not propagate to the
new position of the atom when a bond rotates — the new position does not
depend on the old position. Finally, note that the accuracy of calculation is
independent of the choice of the anchor atom.

Disadvantages The drawback, however, of the DH local frames method is

that multiple local frames are needed if an atom has more than one child. For

example, if atom @); ; has two children atoms @; and @)}, two local frames

will be attached to );_; since bonds b; and b} are different (see Figure 4).
Therefore, the position of (); is updated using

ITr-E-Ri...Ri_o-Ri_1- R,



Figure 4: Multiple local frames at @;_; (both have origin at Q;_1).

while the position of @)} is updated using
TT'E'Rl...RZ’,Q 'R;'—l R;,

where the last two matrices are different: R;_y # R,_,, R; # R,. As far as
implementation is concerned, the product Tr-E-R; ... R;_5 is saved for Q;_1,
and then used to compute the position of Q;_; (together with R; ; or R]_,).
This product is inherited by @; and @} to update their positions (together
with R,y - R; and R._, - R}). Thus, if an atom has only one child, then its
rotation matrix can be completely inherited by the child; the child obtains
its rotation matrix by one matrix multiplication. Otherwise, the rotation
matrix is only partially inherited by the children; the children obtain their
rotation matrices by two matrix multiplications.

Another drawback of the DH local frames method is that local frames
are attached to every bond, whether a bond rotates or not. Since the non-
rotatable bonds just provide the spatial structure, carrying local frames (es-
pecially multiple local frames) is unnecessary. The atomgroup local frames
method in Section 4 will eliminate this redundancy and inconvenience.

4 Atomgroup Local Frames

To speed up the computations and efficiently calculate molecular conforma-
tions, we introduce the concept of atomgroups. A set of connected atoms are
in one atomgroup if none of the bonds between these atoms rotates. Equiv-
alently, each rotatable bond separates two distinct atomgroups. It is easy to
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see that the number of atomgroups is one more than the number of rotatable
bonds.

We will assume in this section that all atoms are grouped into atomgroups.
Therefore, all atoms of a ring are in one atomgroup; there is no need to
replace rings by special atoms. Thus, the underlying graph of a molecule
is a tree with each vertex denoting an atomgroup and each edge denoting
a (rotatable) bond between a pair of atomgroups (see Figure 5). Once an
atomgroup is chosen as the root group, the parent-children relations among
all atomgroups are well defined.

Root atomgroup

Figure 5: Atomgroups of a molecule.

Below, we introduce a new scheme to attach local frames to atomgroups.
For each atomgroup, only one local frame is needed no matter how many
children atomgroups there are.

4.1 Attaching Local Frames

A local frame F; = {Q;;u;, v;,w;} is attached to atomgroup g; as follows
(Figure 6):

Q; is the child atom (in g;) of bond b;; w; is the unit vector
along bond b; pointing toward g;_1; u; is an arbitrary unit vector
perpendicular to w;; v; is perpendicular to w; and u;.

Note that the construction of local frame F; depends on the atomgroup g;
and its parent group g; 1; no information about g;’s children groups is used.
Therefore, there is only one local frame F; constructed for g; no matter how
many children groups g; may have.
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Figure 6: Local frame F; = {Q;;u;, v;, w;} at atomgroup g;.

The root group does not have any parent group, so we will translate the
global frame to any atom in the root group.

4.2 Relational Matrices

Suppose that the frame at atomgroup g; is F; = {Q;; u;, v;, w; } and the frame
at its parent group g¢;_1 is Fj_1 = {Qi_1;1;_1,Vi_1,w;_1}. Below we derive
the relation between F; and F;_;.

Let P be any point in space. Suppose P has coordinates (x;, ¥, ;)" in
frame F;, and coordinates (z;_1,¥;i_1,2;i_1)" in frame F;_;. When bond b;
rotates by an angle 6;, frame F; also rotates by angle 6; (around w; axis) (see
Figure 7). Let the original frame (before b; rotates) be F} = {Q;; u}, vi, w;}.
Let the local coordinates of P be (z},y}, 2)" in frame F, then

Ti—1 u;—1 - 11; u;—1 V; U;—1 -W; fE; ;g - (Qi - Qi—1)

Yier | = | vici-u) vico-vE v owy |- yE |+ vier - (Qi — Qi)

Zi—1 Wi;—1 - 112 W;_1 'V§ Wi_1 - W; Zé Wi_1- (Qi - Qi—l)
(10)

It is easy to determine that

z} cd; —sb; 0 T;
ZZ{ 0 0 1 Zi

It follows from Equations (10), (11) that the coordinates (z;, y;, 2;) of a point
P in frame F; and the coordinates (z;_1,y;_1,2;_1)" of P in F;_; are related
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Figure 7: Local frame F; = {Q;;u;, v;, w;} at atomgroup g;; local frame
= {Qi; 4}, vl, w;} is frame F; before bond b; rotates by angle 6;; local
frame Fi_; = {Qi—1; W1, Vim1, Wi_1 }.

by
Ti1 Wg-u; Wi—q-V; UWiq- ) 0; —892 0 Z;
Yi—1 = Vi-Wj ViV Viq- i 0 yi | +
Zi1 Wi WiV Wig- 1 Z;
u;—1 - ( 1)
-+ Vi_1° ( Qz 1) . (12)
Wi_1° ( — Qi 1)

Note that the dot products in Equation (12) all remain unchanged when
bond b; rotates. (Of course, these dot products do not change when any
other bonds rotates.) Thus these dot products can be computed and saved
for each atomgroup once the local frames are constructed. Therefore, for each
atom A in atomgroup g;, the coordinates (z;, y;, 2;)* in F; and the coordinates
(i 1,%i 1,2 1)" in F;_; are related by

(zih i1 20 V)'=Ri-(z; v = 1), (13)

12



where the relational matrix R; is

; u;—1 'Vé u;—1-WwW; U;_q- (Qi - Qi—l) ch; —sb; 0
; P Vi Wy vim e (Qi — Qi) s0; 0
Wi U WiV, Wi W Wig - (Q — Q1) 0 0 1

0 0 0 1 0 0

4.3 Updating the Atom Positions

Suppose g;, gi—1, - - -, go is a sequence of groups, where g; is the parent group
of gj+1, 0 < j <i—1, and g is the root group. Then the coordinates in the
local frame at the root group of atom A € g; are

(z y 2z 1)'=Ry...Ri-(zi v = 1),

where (z;,y;, z;) are the coordinates of A in the local frame at atomgroup g;.
Taking the effect of the Euler angles into account, and also considering that
the local frame at the root group may be different from the global frame, the
coordinates of any atom A (€ g;) in the global frame are

In the atomgroup local frames method, all atoms within an atomgroup
share the same rotation matrix. Thus the number of rotation matrices is
greatly reduced from the number of total bonds to the number of rotatable
bonds — the former is generally several times larger than the latter. The
atomgroup local frames method records the rotations around the bonds in
the relational matrices. Thus, it can combine multiple rotations around one
bond into one rotation. Moreover, to update the position of an atom, the
method does not have to keep records of the positions of the ancestor atoms.
In fact, the method does not need the position of any other atom to update
the position of an atom. The update of any atom position can be delayed
until it is necessary, for example when its position is needed to check if it
collides with another atom or structure in a docking simulation experiment.
Therefore, the atomgroup local frames method provides lazy evaluation for
atom positions.

Comparing with the DH local frames method, the atomgroup local frames
method attaches only one local frame to each rotatable bond, no matter
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how many children bonds there exist. The relations between the parent-
children frames are easily determined by Equation (14). In the product
of two matrices, the first matrix remains constant when any bond of the
molecule rotates, so it can be saved when the local frames are constructed.
Updating the positions of the atoms in the atomgroup local frames method
becomes easier than in the method of DH local frames method. In fact, all
atoms in atomgroup g; share the same rotation matrix 7r- E- Ry ... R;. The
position of every atom in g; is updated by multiplying the rotation matrix
to its local coordinates in frame F; — these local coordinates remain fixed.
Atomgroup g¢; inherits the rotation matrix from g¢; ; and obtains its own
rotation matrix by one matrix multiplication: (I'r-E - Ry ...R;_1) - R;.

5 Comparison and Discussion

In this section, we give a quantitative comparison of the three methods for
deriving the molecular conformations presented in this paper.

Let the number of atoms be n, and the number of rotatable bonds be n,;.
Note that the number of atomgroups is n,;, + 1. Below we give the number
of (scalar) multiplications needed to update the positions of all atoms in a
molecule. (Here we ignore the cost of computing the sine and cosine functions
of the torsional angles since the cost is the same for all three methods.)

In the simple rotations scheme, if bond b; rotates, 39 multiplications are
required to obtain the matrix R; from Equation (2): 24 multiplications to
compute the middle matrix; 9 multiplications for multiplying 7-!; 3 mul-
tiplications, 1 square root operation, and 3 divisions to compute the unit
vector (vg,vy,v,)". R; is then multiplied with the rotation matrix inherited
from the parent atom, and this requires 36 multiplications — a 3 x 3 matrix
times a 3 x 4 matrix. If bond b; does not rotate at all, then the matrix R; is
identity; atom @); just passes its rotation matrix to its child(ren). Since there
are n,, rotatable bonds, (39 + 36) * n,, = 75n,;, multiplications are needed to
update the rotation matrices. Each atom needs 9 additional multiplications
to obtain its coordinates. Therefore, the total number of multiplications to
update all atom positions in a molecule is 75n,, + 9n,.

In the DH local frames method, depending on whether a bond has one
or more children bonds, each atom needs to compute one or two matrices
R; (Equation (5)) or R;_1, R; [c.f. the end of Section 3|. Thus, it takes 6
or 12 multiplications to obtain R; or R;_;, R;. Each atom needs one or two
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matrix multiplications to get its rotation matrix which requires 30 or 60 scalar
multiplications (each R; has two zeroes in the first row). The coordinates of
each atom are simply the last column of the rotation matrix — no additional
multiplications needed. Thus (6 + 30) * n, = 36n, to (12 + 60) *x n, = 72n,
multiplications are required to compute all atom positions. If we assume
that half of the bonds have more than one children bonds, then the total
number of multiplications needed to update atom positions in a molecule is
(3614 + T2n,)/2 = 54n,.

In the atomgroup local frames method, all atoms within an atomgroup
share the same rotation matrix. For each atomgroup, it takes 12 multipli-
cations to obtain the matrix R; (Equation (14)) and 36 additional multipli-
cations to compute the rotation matrix. Each atom within the atomgroup
still needs 9 multiplications to compute its coordinates. Therefore, the num-
ber of multiplications needed to update the atom positions in a molecule is
(124 36) * ngp + 9 % ng = 48n4p + 9Ing.

Usually the number of atoms is much bigger than the number of rotatable
bonds. If we assume that n, = 3 *xn,;, then multiplications needed by simple
rotations scheme, DH local frames method, and the atomgroup local frames
method is 102n,, 162n,5, 751, respectively.

We run all three algorithms using two molecules shown in Figure 8.

The running time is measured for 10,000 rounds of random rotations and
updates of all atom positions for each round of rotation. The atomgroup local
frames method is 33% and 28% faster than the simple rotations scheme, and
156% and 166% faster than the DH local frames method. The results are
shown in Table 1.

molecule 1 | molecule 2
simple rotations 1 1
DH local frames 1.92 2.07
atomgroup local frames 0.75 0.78

Table 1: Normalized running time of the three methods.

We also have the following observations about the three methods.

(i) From Equation (2), if bond b;_; does not rotate, then R; ; is the iden-
tity matrix; hence atom (; directly inherits its rotation matrix from
its parent. Therefore, in the simple rotations scheme, the number of
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(i)

(iii)

Figure 8: Two testing molecules.

rotation matrix updates equals the number of rotatable bonds. How-
ever, in the DH local frames method, even if a bond b; does not rotate,
the relational matrix R; [c.f. Equation (5)] may not necessarily be the
identity matrix. Thus a matrix multiplication is still needed for @; to
obtain its rotation matrix. Therefore, the number of rotation matrix
updates equals the number of all bonds. This explains why the DH lo-
cal frames method is much slower than the simple rotations scheme. It
is also easy to see that by grouping atoms into atomgroups, the simple
rotations scheme does not improve its performance. We implemented
this idea and our results verified this observation.

In the DH local frames method, the value of each torsional angle #; has a
difference (by construction) from the value of 6; in the simple rotations
methods or the atomgroup local frames method. These differences
can be calculated and saved as the DH local frames are constructed;
they will be added later to report the correct torsional angles for the
rotatable bonds.

The simple rotations scheme can be modified to prevent the numerical
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errors from accumulating upon the rotations around the bonds. This
can be done by changing the meaning of the 6;: instead of record-
ing the torsional angle change each round, 6; records the sum of all
torsional angle changes of bond b;. There is a disadvantage for this
change: now the number of matrix updates equals the number of total
bonds instead of the number of rotatable bonds. That is, the compu-
tational complexity increases at the tradeoff of eliminating numerical
error accumulation.

The statistics for the method of atomgroup local frames in Table 1
do not include potential time savings that can result from lazy eval-
uations. In many applications such as ligand-receptor docking, the
ligand-receptor complex is represented by a mowing shell, including
atoms of the ligand, contact residues from the protein and perhaps wa-
ter molecules. This moving shell is surrounded by a frozen shell com-
prised of the rest of the protein structure and the outer shell comprised
of the solvent. The conformational changes affect only the moving shell
and the rest of the complex can be ignored to reduce the computational
burden tremendously. To further reduce the computational complexity,
we can focus on the final positions of a small set of key atoms (features).
The positions of other atoms in the moving shell are less important as
long as there is no collision. Therefore, it is not necessary to compute
the positions of the non-key atoms in the moving shell until the key
atoms are in target positions. The atomgroup local frames method
thus provides a lazy evaluation mechanism — the position of any atom
is not computed until it is needed. This mechanism can be exploited to
reduce computational time and is not available in the simple rotations
scheme since the positions of children atoms depend on the updated
positions of ancestor atoms.

The above observations reveal the superiority of the atomgroup local
frames method over the simple rotations scheme and the DH local frames
method, but further work is needed when bond angles, bond lengths as well
as the torsional angles change. The relational matrix R; [c.f. Equation
(14)] in the atomgroup local frames method is decomposed into two matrices
where the first one remains constant and the second is very simple and sparse
(many zero entries). This is because of the assumption that all conforma-
tional changes are due to the changes of the torsional angles. If the bond
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angles also change, then the second matrix in Equation (14) is no longer
simple or sparse. Therefore, the execution of the algorithm will be consid-
erably slower. A new method which has no bookkeeping, no numeric error
accumulation, and minimal local frames is still under investigation.

6 Conclusion

The atomgroup local frames method is superior to earlier approaches for rep-
resenting, deriving and updating molecular conformations as it eliminates
bookkeeping, error accumulation, and provides complete inheritance of ro-
tation matrices. The usage of this method in pharmacophore constrained
conformational search is currently under investigation by the authors. A
comparative evaluations of the three methods are summarized in Table 2.

bookkeeping | rot. mat. complete €rrors
needed inheritance accumulation
simple rotations yes yes yes
DH local frames not not no
atomgroup local frames not yes no

Table 2: Summary of three methods for deriving molecular conformations.

Acknowledgment Work on this paper by Ming Zhang and Lydia Kavraki is
supported in part by ATP 003604-0120-1999, NSF CISE SA1728-21122N, the
Whitaker Foundation, NSF EIA-0072743, and a Sloan Fellowship awarded to Ly-
dia Kavraki. The authors would like to thank Miguel Teodoro, Brian Chen and
Andrew Ladd for useful discussions. The authors also thank the referee for the
insightful comments and suggestions.

References

[1] Cox, D.; Little, J.; O’Shea, D. Using Algebraic Geometry. Springer-
Verlag New York, Inc., 1998.

[2] Craig, J. J. Introduction to Robotics. Addison-Wesley, Reading, MA,
1989.

18



3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

Crippen, G. M.; Havel, T. F. Distance Geometry and Molecular Confor-
mation. Research Studies Press Ltd., 1988.

Finn, P. W.; Kavraki, L. E. Computational Approaches to Drug Design.
Algorithmica, 1999, 25, 347-371.

Foley, J. D.; van Dam, A.; Feiner, S. K.; Hughes, J. F. Computer Graph-
ics: Principles and Practice. Addison-Wesley, Reading, MA, 1990.

Gardiner, E.J.; Willett, P.; Artymiuk, P. J. Graph-theoretic techniques
for macromolecular docking, Journal of Chemical Information and Com-
puter Sciences, 2000, 40, 273-279.

Henry, D. R.; Ozkabak, A. G. Conformational Flexibility in 3D Structure
Searching. Encyclopedia of Computational Chemistry. Schleyer, P. v. R.,
Ed., Wiley, New York, 1998.

Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Further
development of a genetic algorithm for ligand docking and its application
to screening combinatorial libraries. ACS Symposium Series (Rational
Drug Design: Novel Methodology and Practical Applications), 1999, 719,
271-291.

Lavalle, S. M.; Finn, P. W.; Kavraki, L. E.; Latombe, Jean-
Claude. A Randomized Kinematics-based Approach to Pharmacophore-
Constrained Conformational Search and Database Screening. Journal of
Computational Chemistry, 2000, Vol. 21, No. 9, 731-747.

Lipton, M.; Still, W. The Multiple Minimum Problem in Molecular
Modeling. Tree Searching Internal Coordinate Conformational Space.
Journal of Computational Chemistry, 1998, Vol. 9, 343-355.

Smellie, A.; Kahn, S. D.; Teig, S. L. Analysis of Conformational Cov-
erage. 1. Validation and Estimation of Coverage. Journal of Chemical
Information and Computer Sciences, 1995, Vol. 35, 285—294.

Song, G.; Amato, N. M. Using Motion Planning to Study Protein Fold-
ing Pathways. Proceedings of the Fifth Annual International Conference
on Computational Biology, 2001, 287-296.

19



