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Abstract. Ring information is a large part of the structural topology used to iden-
tify and characterize molecular structures. It is hence of crucial importance to obtain
this information for a variety of tasks in computational chemistry. Many different ap-
proaches for “ring perception”, i.e., the extraction of cycles from a molecular graph,
have been described. The chemistry literature on this topic, however, reports a sur-
prisingly large number of incorrect statements about the properties of chemically
relevant ring sets and, in particular, about the mutual relationships of different sets
of cycles in a graph. In part these problems seem to have arisen from a sometimes
rather idiosyncratic terminology for notions that are fairly standard in graph theory.
In this contribution we translate the definitions of concepts such as the Smallest Set
of Smallest Rings, Essential Set of Essential Rings, Extended Set of Smallest Rings,
Set of Smallest Cycles at Edges, Set of Elementary Rings, K-rings, and β-rings into
a more widely-used mathematical language. We then outline the basic properties
of different cycle sets and provide numerous counterexamples to incorrect claims in
the published literature. These counterexamples may have a serious practical impact
because at least some of them are molecular graphs of well-known molecules. As a
consequence, we propose a catalogue of desirable properties for chemically useful sets
of rings.
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1. Introduction

A critical step for many computer programs in chemistry is the search for molecular
structures within a large database of chemical compounds. For this purpose, the
molecular structure is conveniently represented as a graph. During the last years,
the size of many chemical databases has increased dramatically. Speed, efficiency,
and accuracy of the retrieval algorithms are thus essential. Retrieval, however, re-
quires the solution of the graph isomorphism problem, that is, to check whether a
bijective mapping exists between the vertices of an input graph and those of a graph
in the database such that the edge adjacency relations are preserved. Similarly, the
identification of a given substructure in a molecular graph requires the solution of
the subgraph isomorphism problem. Since it is not known whether the graph isomor-
phism problem can be solved efficiently [36], and since the subgraph isomorphism
problem is hard [25], it is important for practical purposes to have efficient methods
that exclude a large fraction of graphs in a database quickly. The more precisely
this preprocessing step works, the more efficiently a database search can be effected,
by solving the (sub)graph isomorphism problem only for a few remaining candidate
graphs. Methods to exclude candidates for the graph isomorphism problem include
fragment-based search and the comparison of graph descriptors [64].

Ring information is a large part of the structural topology used to identify and charac-
terize molecular structures. Cycles, on the other hand, belong to the most important
objects in graph theory [57]. It is not surprising therefore that a wealth of molecular
descriptors has been developed that are based on various sets of cycles. Examples are
the set Ω of all rings, the Smallest Set of Smallest Rings (SSSR), the Essential Set of
Essential Rings (ESER), the Extended Set of Smallest Rings (ESSR), the K-rings,
the β-rings, and many others. For a review see [16]. The different cycle sets arose
from the attempt to ensure that all “chemically meaningful rings” are included. Of
course, what is “chemically meaningful” depends on the application. A certain set of
long cycles, for example, may be an important substructure for synthesis planning,
while it is irrelevant for a search in patent databases.

Historically, the chemistry literature has to a certain extent developed an idiosyncratic
terminology for notions that are fairly standard in graph theory. This has unfortu-
nately lead to some confusion in the literature about the precise definitions of some
of the widely used cycle sets. Presumably as a consequence, the published literature
contains a surprisingly large number of incorrect statements about the properties of
chemically relevant ring sets and, in particular, regarding the mutual relationships of
different cycle sets.

This contribution is an attempt to compile the definitions of the chemically most
important cycle sets in a more standard graph-theoretical language, to discuss their
basic properties and, in particular, to provide counterexamples for many of the incor-
rect claims we found in the published literature. We show that these discrepancies
are of potential practical importance because in some cases the chemical graphs of
known molecules serve as counterexamples.
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2. Preliminaries

In this section we collect the definitions of the basic graph-theoretical objects that are
used throughout this contribution. Our language is largely based on the book [54] by
Thulasiraman and Swamy. We will consider simple undirected graphs G(V, E) with
vertex set V and edge set E. We regard an edge as an unordered pair of (distinct)
vertices, i.e., E ⊆ V × V . A subgraph H(V ′, E ′) of G(V, E) is a graph satisfying
V ′ ⊆ V and E ′ ⊆ E. A subgraph H is spanning if V ′ = V .

For a set H of subgraphs of G we write E[H] for the union of all their edges, i.e.,

E[H] :=
⋃

H∈H

⋃

e∈H

{e} . (1)

We say that H covers a subgraph F (V ′, E ′) of G if E ′ ⊆ E[H]. Let v ∈ V be a vertex.
The number of edges incident with v is called degree of v. A path P in G is a sequence
of edges (e1, e2, . . . , ek−1) with ei = {vi, vi+1}, i = 1, . . . , k − 1 such that the vertices
vi, i = 1, . . . , k are all different, except possibly v1 and vk. A graph G is connected if
for any two vertices v, w ∈ V , there is a path P such that v1 = v and vk = w. The
connected components of a graph G are its maximal connected subgraphs.

A cycle C in G is a subgraph in which every vertex has even degree. It will be
convenient to identify a cycle with its edge set C, and also with the binary vector
that describes the edge-incidence structure of C. These incidence vectors (and we can
hence say, the cycles in G) form a vector space over GF(2) where the vector addition
of two cycles C ′, C ′′ corresponds to their symmetric difference

C ′ ⊕ C ′′ = (C ′ ∪ C ′′) \ (C ′ ∩ C ′′) . (2)

This vector space is known as the cycle space C(G) and it has dimension dim C(G) =
µ(G) = |E| − |V | + c(G), where c(G) is the number of connected components of G.
The parameter µ(G) is called the cyclomatic number or first Betti number of the
graph G. A basis B of the cycle space C(G) is called a cycle basis. Given a cycle basis
B there is a one-to-one relation between the cycles C and subsets BC ⊆ B such that

C =
⊕

Z∈BC

Z . (3)

A cycle C is elementary if it is connected and each vertex has degree two. Elementary
cycles meet our expectation of rings in a molecular graphs. A graph G is 2-connected

if any two vertices are contained in a common elementary cycle. The cycle space of
G is the direct sum of the cycle spaces of the 2-connected components of G. Hence
we restrict our attention to 2-connected graphs from now on.

A chord of C is an edge e = {x, y} ∈ E such that e /∈ C, but both x and y are vertices
of C. (In the terminology of [16] x and y are “Nachbarpunkte”.) A cycle C is simple

or chord-less if it is elementary and has no chord. A cycle C is tied if it is elementary
and has exactly one chord.

A plane graph Ĝ consists of a set V of points in R
2 and a set E of line segments

in R
2 connecting exactly two points in V such that two lines intersect only in the

points that they connect. A graph G is planar if there is a plane graph Ĝ that is
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Figure 1. The set of relevant cycles of this graph contains 2|V |/4 cycles with 3|V |/4 vertices
and all |V |/4 quadrangles [56]. Each relevant cycle is a shortest cycle through one of its
edges, thus S(G) = R(G).

isomorphic to G. We say that Ĝ is an embedding of G in the plane. The connected
sets of R

2 \ Ĝ are the regions of Ĝ. There is exactly one unbounded region that will
be called the infinite region, all other regions are bounded. Plane embeddings are
equivalent to embeddings on the surface of a sphere S. Here all regions are of course
bounded. Each region of the spherical embedding can be made the infinite region of
the plane embedding by a suitable projection. If Ĝ is 2-connected then each region
is delimited by a unique elementary cycle in G which we call a face. Note that faces
are not necessarily simple.

Since each edge of Ĝ appears in exactly two faces the ⊕-sum of all faces is 0. The
set of all faces except one, on the other hand, forms a basis of the cycle space. In
particular, the faces belonging to the bounded regions of every plane embedding of
G define a cycle basis for G which will be called a planar cycle basis.

The length |C| of a cycle C is the number of its edges. The length of a cycle basis
B is the total length of its cycles, `(B) =

∑
C∈B |C|. A minimum cycle basis is a

cycle basis of minimal length. A cycle is relevant if it cannot be written as ⊕-sum
of shorter cycles. Equivalently, a cycle is relevant if it is contained in at least one
minimum cycle basis [45, 56]. We write R(G) for the set of relevant cycles. The
number of relevant cycles may grow exponentially with the number of vertices, see
Figure 1 for an example [56]. Each cycle in a minimum cycle basis, i.e., each cycle in
R(G), is simple [33].

For each edge e ∈ E we write S(e) for the set of shortest cycles that contain e. The
set of shortest cycles through the edges of G is S(G) =

⋃
e∈E S(e). For all graphs

holds S(G) ⊆ R(G) [49]. The set S(G) may also grow exponentially since in the
example in Fig. 1 we have S(G) = R(G).

A spanning tree T of a connected graph G is a spanning subgraph of G that does
not contain cycles. It is easy to see that a spanning tree always exists in a connected
graph. Kirchhoff [35] introduced the following construction for cycle bases of a graph
in 1847: Suppose T is a spanning tree of G. Then for each edge e /∈ T there is
a unique cycle in T ∪ {e} which is called a fundamental cycle w.r.t. T . The set
of fundamental cycles belonging to a given spanning tree forms a basis of the cycle
space which is called the fundamental basis w.r.t. T . For more details see e.g. [54].
A cycle basis B that is fundamental w.r.t. to some spanning tree T of G is called
Kirchhoff-fundamental.
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A collection B of µ(G) cycles in G is called fundamental [32, 62] if there exists an
ordering of these cycles such that

Cj \ (C1 ∪ C2 ∪ · · · ∪ Cj−1) 6= ∅ for 2 ≤ j ≤ µ(G) . (4)

Obviously, a fundamental collection B is a cycle basis. A cycle basis B is strictly

fundamental if equ.(4) is satisfied for every ordering of B. It is shown in [30, Prop.2.1]
that a cycle basis is strictly fundamental if and only if it is Kirchhoff-fundamental.

A sequence (Z1, Z2, . . . , Zk) of elementary cycles is cyclically well-arranged if each
partial sum

Qj =

j−1⊕

i=1

Zi, 1 ≤ j ≤ k (5)

is an elementary cycle. If (Z1, Z2, . . . , Zk) is cyclically well-arranged then the inter-
section Zj ∩ Qj−1 consists of a path Pj. A basis B consisting of elementary cycles
is cyclically robust if for every elementary cycle C the set BC can be cyclically well-
arranged [34].

3. SSSR: Smallest Set of Smallest Rings

Originally, the Smallest Set of Smallest Rings was defined as a minimum length
Kirchhoff-fundamental basis, see e.g. [16, p.173]. Deo et al. [10] showed in 1982 that
the problem of finding a Kirchhoff-fundamental cycle basis with minimum length is
NP-complete. In the more recent chemistry literature [13, 14, 16] the term SSSR is
also used as a synonym for minimum cycle basis. This tacit shift of definition reflects
the wide-spread misconception that every cycle basis or at least every minimum cycle
basis is strictly fundamental, i.e., derivable from a suitable spanning tree. In the
same context the literature often speaks of “smallest fundamental cycles”, see e.g.
[16, p.180]. Below we show that the above-mentioned change of definition is indeed
necessary to obtain a set of rings that deserves the designation SSSR in accordance

(a)

���
�
B

B B

B

B

B

B

B

B

B

(b)

Figure 2. (a) The minimum cycle basis of this planar graph consists of the four triangles
C1 through C4 and the central square C5. The ordering (C1, C2, C3, C4, C5) does not satisfy
equ.(4): in fact, C5 ⊆ C1 ∪ C2 ∪ C3 ∪ C4 = E. Alternatively one easily checks directly that
no spanning tree generates the minimum cycle basis. (b) A chemical realistic example of the
same type (extended by two “outer” quadrangles resp. triangles) is the decaborane molecule

[23].
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A D C B

A

B

D

C

Figure 3. Champetier’s graph [7]. The pairs of points labeled A, B, C, and D, resp.
are identified, hence the 4-cycle ABCD appears twice in the drawing. This graph is null-
homotopic (i.e., it has a cycle basis consisting exclusively of triangles) and all triangles are
part of the unique minimum cycle basis. Each edge is contained in two triangles with the
exception of the four edges of the 4-cycle ABCD which are contained in three triangles. Thus
there is no ordering of the triangles satisfying equ.(4).

with the chemical intuition. The reason is that a minimum Kirchhoff-fundamental
basis, besides being hard to compute, often does not contain all smallest cycles of the
graph.

Let us first clarify the concept of a “fundamental cycle” that is often used in the ring
perception literature. Every elementary cycle appears in some Kirchhoff-fundamental
cycle basis of G. To see this, observe that an elementary cycle C can be decomposed
into a path P and an edge e that completes the cycle. The path P can be extended
to a spanning tree T of G. By construction C is part of the Kirchhoff basis derived
from T . The term “fundamental cycle” therefore simply means “elementary cycle”,
when used without reference to a particular spanning tree T .

Not all cycle bases of a graph are fundamental [32]. It is shown in [39, Cor.13], how-
ever, that every minimum cycle basis of a planar graph is fundamental. Nevertheless,
there are planar graphs, such as the one in Figure 2, that do not have a strictly fun-
damental minimum cycle basis, i.e., for which no minimum cycle basis can be derived
from a spanning tree.

For non-planar graphs an even stronger negative result holds: There are graphs with
non-fundamental minimum cycle bases. A non-fundamental minimum cycle basis of
the complete graph K9 is described in [39]. The example in Figure 3, which is due
to Champetier [7], has a unique minimum cycle basis consisting entirely of triangles
that is non-fundamental.
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Table 1. Worst Case Behavior of Minimum Cycle Basis Algorithms.
The maximum vertex degree is denoted by D, the cyclomatic number is µ = |E| − |V | + 1.

Algorithm general planar
Horton 1987 [33, 28] O(|E|2.376|V |) O(|V |3.376)
Balducci & Pearlman# 1994 [1] O(Dµ|E|2|V |) O(|V |5)
Hartvigsen & Mardon (planar) 1994 [31] — O(|V |2 log |V |)
Vismara∗ 1997 [56] O(µ|E|3) O(|V |4)
Berger, Gritzmann, de Vries 2003 [3] O(|E|3) O(|V |3)

∗ Vismara’s algorithm computes “prototypes” for the set of all relevant cycles and produces
a minimum cycle basis as by-product.
# The estimate of the worst case complexity in [1] is incorrect. We give here the bound
derived in [55].

Consequently, to compute an SSSR correctly in all cases, an algorithm has to be used
that generates a minimum cycle basis. A number of polynomial-time algorithms for
this task have been published in recent years. Their worst-case complexity is rather
high. Nevertheless, the average performance on problems of practical interest seem to
be much more favorable. In Table 1 we summarize the performance bounds of some
of these approaches for general graphs and for planar graphs, where |E| ≤ 3|V | − 6.

It is well known that a minimum cycle basis of a graph is in general not unique.
Plotkin [45] therefore introduced the set of K-rings as the union of all minimum cycle
bases (SSSRs). This set is also known as the set of relevant cycles R(G) of the graph
G. It is shown in [56] that a cycle is relevant if and only if it cannot be represented
as a ⊕-sum of strictly shorter cycles. The set of relevant cycles is in a sense the
smallest set of short basis cycles that is uniquely defined for a graph, hence avoiding
the ambiguities of a minimum cycle basis. Vismara [56] describes an algorithm for
computing R(G), an efficient implementation of this algorithm in C++ [26] is available
at http://www.tbi.univie.ac.at/~pmg/cycdeco/.

Figueras’ algorithm [20] for computing an SSSR has been celebrated as significant
advance because of its computational speed. It is implemented e.g. in the Chemistry

Development Kit (CDK) [48]. The algorithm belongs to a class of methods whose idea
is to iteratively remove edges and/or vertices from the graph after forming shortest
cycles through them, until no more cycles remain. Champetiers graph in Figure 3
shows that this algorithmic scheme must fail in general.

Figueras’ method, however, may fail also for simple planar graphs:

(i) In the first step of the algorithm the set of vertices of degree two (the N2 nodes in
[20]) is investigated. For each vertex of this type, the algorithm generates a shortest
cycle (note that this cycle need not be unique) and adds it to a cycle set. Then all
vertices of degree two are simultaneously removed from the graph. This procedure is
repeated until no further N2 nodes remain. The simultaneous removal of all degree
two nodes was proposed as a remedy for the obviously erroneous strategy of removing
them iteratively. Figure 4(a) shows, however, that the problem is by no means solved,
even in graphs with a single vertex of degree two. Furthermore, the problem that the
same cycle may be produced for two different vertices of degree two during Breadth
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v

(a) (b)

Figure 4. Counterexamples to the correctness of Figueras’ algorithm:
(a) For the central vertex v, one cycle of length five is found. After v is removed, the
remaining cycles found during the second step of the algorithm must include a cycle of
length six. On the other hand, a minimum cycle basis consists of quadrangles and two five
cycles. (b) The algorithm stops after the first step because only vertices of degree four

remain.

First Search is not addressed in [20]; this is a serious issue because it could result in
a cycle set which is too small.

(ii) The algorithm assumes that after stage (i) there is always a vertex of degree 3
which is obviously not the case in general, see Figure 4(b).

Let us suppose, nevertheless, that there is such a vertex. In the second step, one of
the edges in a shortest cycle containing this vertex is removed from the graph. Here,
the edge is chosen that is incident with a longest shortest cycle through one of its
endpoints. However, in Figure 4(a), no such choice can lead to a minimum cycle
basis.

4. ESER: Essential Set of Essential Rings

The Essential Set of Essential Rings was introduced by Fujita [22, 21]. Depending on
atom types cycles are classified by the atoms that they contain as carbon, heteroatom

(N, O, S, P), and abnormal (all other atoms). The definitions below are a rephrasing
of those given in the review [16] and in Vismara’s dissertation [55], respectively. For
simplicity we assume here that all atoms are of the same type or at least comparable
in the sense of Fujita.

For each simple cycle C define T [C] as the set of all tied cycles C ′ (belonging to
the same atom-type class as C with at most the same number of heteroatoms and
abnormal atoms, respectively) as C, that satisfy (i) |C ′| ≤ |C| and (ii) C ′ ∩ C 6= ∅.
If (ii) is replaced by the stronger condition (iii) 2|C ′ ∩ C| ≥ |C ′|, i.e., at least half of
the edges of C ′ are in C, we write T ∗[C].

A simple cycle C is ESER-dependent if there is a subset T ′ ⊆ T ∗[C] such that
C ⊆ E[T ′]. The reviews [16, 13] give a slightly different definition: A simple cycle
C is DESER-dependent if there is a subset T ′ ⊆ T [C] such that (i) C ⊆ E[T ′], i.e.,
T ′ covers C, and (ii) 2|C| < |E[T ′]|. Finally, ESER(G) (DESER(G)) is the set of all
simple cycles in G that are not ESER-dependent (DESER-dependent).



Counterexamples in Chemical Ring Perception 9

(a) G′ (b) G′′

P

Figure 5. DESER and ESER are unrelated. The hexagonal outline H of the graph G′ is
ESER-dependent and DESER-independent. The situation is reversed in G′′. The outline
hexagon is contained in minimum cycle bases of both G′ and G′′, hence neither ESER nor
DESER is a superset of a minimum cycle basis in general. For details see text.

Consider the “outer” hexagon, H, of the graph G′ in Figure 5(a). This example is
taken from [55, p.78]. The set T [H] consists of the three squares. The only subset of
T [H] that covers H is T [H] itself. Furthermore T ∗[H] = T [H]. Each square has two
of its edges in common with H, hence H is ESER-dependent. On the other hand,
|E[T [H]]| = 3 × 4 = 12 6> 2|H| = 12, hence H ∈ DESER(G).

Now consider the outer hexagon, H, of the graph G′′ in Figure 5(b). The set T [H]
now consists of the two tied squares Q1 and Q2 and the tied pentagon P . We have
|E[T [H]]| = 2 × 4 + 5 = 13 > 2|H| = 12, thus H is DESER-dependent. However,
T ∗[H] = {Q1, Q2} does not cover H, hence H ∈ ESER(G).

Thus the definitions of ESER and DESER give unrelated cycle sets. Downs [13]
mentions that “the ESER is in general always a superset of an SSSR”. Similarly,
Fujita [21, Fig.2] claims that ESER(G) contains an SSSR. This is incorrect as the
graph G′ shows for ESER and the graph G′′ shows for DESER. The relevant cycles
of G′ are the 6 triangles (all of which are essential in the sense of they are contained
in very MCB) and all 23 = 8 interchangeable (in the sense of [27]) hexagons, of which
one is contained in every minimum cycle basis. The relevant cycles of G′′ are the 5
triangles and the square contained in P (each of these cycles is essential), and the
22 = 4 hexagons (one of which is contained in every minimum cycle basis). Thus,
neither ESER(G′) nor DESER(G′′) contain a minimum cycle basis. In fact, they even
do not contain any cycle basis.

5. Minimum Planar Cycle Bases

Some authors focus entirely on planar graphs in the context of chemical ring per-
ception, see e.g., [19, 17]. It should be noted, however, that there are non-planar
chemical graphs. Three spectacular examples are given in Figures 6 and 10, other
examples are described e.g. in [2, 37, 44, 47, 53].
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O

O

(a) (b)

Figure 6. Two non-planar chemical graphs: (a) Kuratowskiphane [8], containing a K3,3 as
minor, and (b) Centrohexaindane [38] containing a K5 as a minor. The two graphs K5 and
K3,3 are the forbidden minors for planarity in Wagner’s theorem [58].

Recall that a cycle basis of G is planar if it consists of the faces belonging to the
bounded regions of a plane embedding of G. A basis has minimal length among all
planar cycle bases if and only if the length of face F∞ belonging to the unbounded
region is maximal, because `(B) = 2|E| − |F∞| for any planar cycle basis. We will
call such a basis a minimal planar cycle basis.

Plane embeddings can be computed in O(|V |) time, see e.g. [9, 46]. Unfortunately,
the embedding of a planar graph on the sphere S is in general not unique, unless
G is 3-connected (that is, any subset S ⊆ V for which G \ S is not connected has
cardinality at least 3) [60]. Algorithms are available that can produce all embeddings
of G in the plane [4]. The computation of one or all minimum planar cycle bases can

1

2

3 4

5

6

78

(a) (b) (c)

Figure 7. Three examples of planar graphs for which all minimum cycle bases are non-
planar. (a) This graph is taken from [39]: No plane embedding has the face Q = (1, 2, 6, 5). A
minimum cycle basis contains Q and two of the cycles (2, 3, 4, 5, 6), (1, 2, 6, 7, 8), (1, 2, 3, 4, 5),
and (1, 5, 6, 7, 8) and hence has length ` = 14. The planar bases have length 15.
(b) The bold square Q in this graph, taken from [17, Fig.12], is the shortest cycle and hence
contained in every minimum cycle basis. It cannot appear as a face, however.
(c) The [1.1.1]propellane molecule (Tricyclo[1.1.1.01,3]pentane, see e.g. [63]). The relevant
cycles are the three triangles, while the faces of every planar embedding are two triangles
and one quadrangle.
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be achieved e.g. by the integer linear programming approach outlined in [41]. The
number of planar embeddings of a 2-connected graph may grow exponentially with
the number of vertices [43]. In the graph in Fig. 1, for instance, every relevant cycle
is a face in some embedding.

We denote by Faces(G) the set of all possible faces in G, i.e., the set of all cycles that
are faces in some embedding on S.

It is well known that Faces(G) in general does not contain a minimum cycle basis. In
Figure 7 we give three examples. Two are taken from the literature, the third one is
the graph of the molecule [1.1.1]propellane, see e.g. [63].

6. ESSR: Extended Set of Smallest Rings

The Extended Set of Smallest Rings was introduced by Downs et al. [17] as an
approach to design an optimal ring set for retrieval purposes. ESSR by definition
is limited to planar graphs. Paraphrasing the original definition, a cycle C is in
ESSR(G) provided it satisfies at least one of the following conditions:

(i) There is a planar embedding of G such that C is a chord-less face. (“Simple
faces”)

(ii) C is a shortest cycle through at least one of its edges. (“Class I cut face”)
(iii) There is a planar embedding of G such that |C| ≥ |C ′| for all faces C ′ adjacent

to C, and there is at least one adjacent face C ′′ for which |C| = |C ′′|. (“Class
II cut face”)

N

P1

P2

P3

P4

P5

P6

(a) G

C

(b) G′

Figure 8. (a) Not all relevant cycles are in ESSR.
Graph G has |E| = 24, |V | = 18, i.e., µ(G) = 7. The relevant cycles are the six pentagons
Pi, i = 1, . . . , 6, which form S(G), and the octagon O shown in bold. O is obviously linearly
independent from the pentagons and it is the next-shortest cycle in G. On the other hand,
there is no planar embedding in which O is a face and O does not have an adjacent octagon.
Thus O 6∈ ESSR(G).
(b) Cycles in ESSR(G′) need not be relevant.
The cycle C is not relevant because it is the sum of the (smaller) faces in its interior. One
easily verifies that there is no planar embedding that has C as a face. |C| = 8 while the
shortest cycle through each of its edges is contained in a quadrangle. On the other hand, C
fulfills (iii) as the upper left face adjacent to C also has length 8.
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An algorithm for computing the ESSR is described in [15]. Downs et al. [17, p.192]
claim that ESSR(G) = Faces(G) ∪R(G). The graph G in Figure 8(a), which is used
to give an example of a “class III cut face” (a set of cycles not contained in ESSR)
in [17, Fig.16] and [13, Fig.7], however, provides an example of a graph for which
R(G) 6⊆ ESSR(G).

It is also not true that ESSR(G) ⊆ Faces(G) ∪ R(G). Figure 8(b) shows a graph
containing a cycle C that satisfies condition (iii) but is neither relevant nor the face
of any planar embedding.

The problem with the definition in [17] is that there are cycles, such as C in Figure 8(b)
that are both “class II” and “class III cut faces” as defined in [17]. It appears that
ESSR’(G) = Faces(G) ∪ R(G) is indeed a useful definition for a chemically relevant
“extended set of smallest rings” that could be generated reasonably efficiently by
computing R(G) using Vismara’s algorithm [56] and Faces(G) e.g. with the aid of
SPQR-trees [41].

7. Set of Smallest Cycles at Edges: SSCE

Let G(V, E) be a 2-connected graph. Set G0 := G(V, E0) with E0 := E, and define
Gk(V, Ek) recursively as the graph with vertex set V and edge set

Ek = {e ∈ E|e is contained in exactly one cycle C ∈ S(Gk−1)} . (6)

In other words, in each step we remove all edges that are covered at least twice by
S(Gk−1). There is a smallest number k such that Ek = Ek+1 which we denote by
ξ(G). Clearly, ξ(G) = 0 if G is a cycle.

(a) G := G0 (b) G1 (c) [6.5]coronane

Figure 9. SSCE(G) does not contain a cycle basis in general. The shortest cycles S(G0)
of (a) are the eight triangles; removing their common edges erases the central square
(which is contained in the unique minimum cycle basis of G). The 4-cycles in G1 are
edge-disjoint, hence ξ(G) = 1 and SSCE(G) consists of the eight triangles and the four
4-cycles that are the ⊕-sum of adjacent triangles. Thus SSCE(G) contains only 8 lin-
early independent cycles, while µ(G) = 20 − 12 + 1 = 9. (c) The graph of 6.5.coronane
(Heptacyclo[19.3.0.01,5.05,9.09,13.013,17.017,21]tetracosan) [59] serves as a chemical counterex-
ample: here SSCE(G) consists only of the six pentagons.
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Figure 10. The set of relevant cycles of the toroidal molecule [5,6]Fullerene-C90-D6d-
8,10,12,14,16,18,79,81,83,85,87,89-dodecayl [24] consists of all 66 pentagons and the hexagon
in the center. There are 90 vertices and 150 edges and thus µ(G) = 61. A minimum cycle
basis consists of 60 pentagons and the hexagon and hence has length ` = 306 > 2|E|. Thus
there are edges that are covered by at least three cycles in every cycle basis. MacLane’s
theorem [40] thus implies that G is non-planar. The set S(G0) consists of all pentagons and
every edge is covered by at least two of them. Hence G1 = ∅ and ξ(G) = 1. Thus SSCE(G)
does not contain the essential hexagon and consequently no cycle basis.

Dury et al. [18] define the Set of Smallest Cycles at Edges (SSCE) as the union

SSCE(G) =

ξ(G)⋃

k=0

S(Gk) . (7)

In addition, [18] contains provisions to remove certain cycles from S(Gk) for k ≥ 1
which explicitly depend on finding planar embeddings with shortest exterior cycle.
The discussion in [18] in fact refers to planar graphs only. Here, we disregard this
complication, which feels unnatural from a mathematical point of view, and consider
SSCE(G) for arbitrary graphs.

The example in Figure 9 shows that SSCE(G) in general does not contain a cycle
basis of G. If SSCE(G) contains a cycle basis of G, it is not always minimal. To
see this consider the graph in Figure 8(a). We set G0 := G and obtain S(G0) =
{P1, P2, P3, P4, P5}. The graph G1 then consists of the 9-cycle N and the outline N ′,
which also has length 9. Of course S(G1) = {N, N ′}, and G2 = G1, i.e., ξ(G) = 1.
A minimum cycle basis of G, on the other hand, contains the octagon O. Figure 10
shows another, rather spectacular molecular example.

As a further remark, it is by no means clear how to compute S(G) efficiently for
a general graph because there may be exponentially many different shortest cycles
passing through a given edge.
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8. The Set of β-Rings

The set of β-rings [42] is one of the earliest attempts to extend the SSSR to include
the hexagon of norbornane, depicted in Figure 11(a), but without including much
larger “envelope” rings in other molecules such as naphtalene in Figure 11(b). A β-
set is obtained from the length-sorted list of all chord-less faces of a plane embedding
by a the same greedy procedure that is used to compute the relevant cycles R(G):
The algorithm processes the cycles by increasing length and includes all cycles of a
given length that are linearly independent from all shorter cycles already contained
in the set.

(a) (b)

Figure 11. (a) The graph of the norbornane molecule (b) Napthalene molecule

In case of the β-rings, this method contains two modifications: (i) all three and four-
cycles are in β irrespective of linear dependence, and (ii) instead of testing linear
independence from all shorter cycles one checks only that a cycle is linearly indepen-
dent from all subsets containing at most three shorter β-rings.

In general, the set of β-rings does not contain a minimum cycle basis because not
all planar graphs have a minimum cycle basis consisting of faces. Furthermore, the
definition is not unique since it depends on a particular planar embedding.

We propose to use a variation β∗ of the definition of β-rings that contains all chord-
less cycles instead of the faces of a particular plane embedding as the starting set.
Clearly, β∗ is uniquely defined given the graph G and one easily verifies R ⊆ β∗.

9. The Set of All Elementary Cycles

The generation of the set C∗(G) of all elementary cycles of G is an alternative to the
restricted sets of “short” cycles considered so far. So-called “cycle space algorithms”
attempt to construct C∗(G) from a basis B by iteratively combining two elementary
cycles using the ⊕ operation and retaining the result if and only if it is again an
elementary cycle. Let us denote the set of elementary cycles that can be obtained in
this way by 〈B〉. In this language, a basis is cyclically robust if and only if 〈B〉 =
C∗(G).

Dixon and Goodman [11] conjectured that every strictly fundamental cycle basis is
cyclically robust. A counterexample, however, was given in [50] consisting of a simple
cycle C =

⊕
i=1,...,µ Ci, with the property that for each i = 1, . . . , µ, C ⊕ Ci is the

union of edge-disjoint cycles, i.e., a non-elementary cycle. This example —slightly
modified— is drawn in Figure 12. Later it was shown that every planar cycle basis is
cyclically robust [12]. Iterative procedures thus have a chance to work correctly when
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Figure 12. The bold edges indicate a spanning tree T . The elementary cycle C =
⊕6

i=1 Ci

(highlighted) has the property that C⊕Ci is not elementary for every basis cycle i = 1, . . . , 6.
In this case the Kirchhoff-basis w.r.t. T is a minimum cycle basis since |Ci| = 8 for all
i = 1, . . . , 6 and there is no shorter cycle.

they start from a planar basis. Examples are given in [51] and in [12] where a parallel
implementation is described. Furthermore, complete graphs and complete bipartite
graphs have cyclically robust bases [34]. Whether all graphs have cyclically robust
bases is still unknown, however. The example in Figure 12 shows, furthermore, that
minimum cycle bases are not always robust.

Recently, a modification of the iterative procedure called cyclical conjunction was
proposed as “an efficient operator for the extraction of cycles from a graph” [6, 5].
We paraphrase here the original rather complicated definition. Let C and C ′ be
two elementary cycles (including the empty cycle) and let us denote their cyclical
conjunction1 by C♦C ′. Then C♦C ′ = ∅ if C ∩ C ′ = ∅. If C ∩ C ′ is a path then
C♦C ′ = C ⊕ C ′. In general, however, C ∩ C ′ is a collection of disjoint paths. In the
general case, the procedure outlined in [6] would produce one of the elementary cycles
which constitute C ⊕ C ′. Cyclical conjunction thus differs from the simpler iterative
procedure in that it retains one of the elementary components whenever the ⊕-sum
of two elementary cycles is non-elementary.

The claim is that, starting from a Kirchhoff basis B of G, repeated application of ♦
produces all elementary cycles of G. Sys lo’s counterexample in Figure 12, however,
is also applicable to cyclical conjunction. The cycle C would not be obtained, as a
non-elementary cycle is not kept in the set of cycles produced by the ♦ operation; by
choice of C, this occurs for any order in which the ♦ procedure is carried out. By the
uniqueness of basis representations, C cannot be obtained by a ♦-operation of two
other elementary cycles.

We remark that fast algorithms for extracting C∗(G) that are based on backtracking
rather than cycle space operations are known, see e.g. [29] and the references therein.

The Set of Elementary Rings (SER) defined by Takahashi [52] is, in our notation,
given by SER = 〈M〉, where M is a minimum cycle basis. The example above
shows that SER is in general only a subset of the set C∗(G) of elementary cycles.
Furthermore, it is not uniquely defined: If a different minimum cycle basis M than
B is chosen in Figure 12, for instance the one that consists out of the three cycles of

1The papers [6, 5] use ⊕.
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length eight indicated by the different shades in the background and the three cycles
obtained as their mirror images along the central vertical edge, then one readily
verifies C ∈ 〈M〉 whereas we have shown that C 6∈ 〈B〉.

10. Discussion

A common problem of at least some of the chemically motivated ring sets is a lack
of abstract mathematical foundation since they arose from intuitions about a limited
set of rather special examples. The definitions, therefore, besides feeling artificial and
unnecessarily complicated, often do not transfer to more general molecular graphs.
Consequently, many proposed algorithms bear heuristic features and their results
have to be carefully examined before attempting further deductions. Based on this
observation we propose here that the definition of a good chemical ring set should
possess four fundamental properties:

(1) Uniqueness. The cycle set X should be mathematically well-defined in the
sense that different implementations of the algorithms invariably produce the
same set of cycles, independent of permutations of the edge and vertex labels.
This guarantees that molecular descriptors for comparison and substructure
search derived from the cycle set are uniquely defined.

(2) Completeness of description. X must be sufficient to describe the complete
ring structure, i.e., X can generate all cycles by means of one or more well-
defined operations. This way, it is guaranteed that all further cycles can be
computed from X if desired.

(3) Discrimination. There should be only very few graphs/molecules with the
same set of cycles. This is a prerequisite for efficient databases searches. On
the other hand, cycle sets should not be too large, for although all cycles of a
graph of course yield complete information, an interpretation becomes more
difficult in addition to the computational issues.

Table 2. Summary of the properties of the ring sets considered in this contribution.
MCB is used as abbreviation for “minimum cycle basis”. Ring sets of type G are defined
for general graphs, those of type P for planar graphs only. A worst case size that increases
exponentially with the number of vertices is indicated by “exp”.

Ring set Type Unique Contains Contains Contains Size
basis MCB R(G)

SSSR G No Yes MCB No O(m)
ESER/DESER G Yes No No No exp
Faces(G) P Yes Yes No No exp
ESSR P Yes Yes No No exp
SSCE G Yes No No No exp
β-rings P No Yes No No O(m + n4)
SER G No Yes Yes No exp
Elementary cycles G Yes Yes Yes Yes exp
K-rings
Relevant Cycles G Yes Yes Yes Yes exp
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Table 3. Properties of three “well-behaved” ring sets.

Ring set Type Unique Contains Size
basis MCB R(G)

ESSR’ = Faces(G) ∪ R(G) P Yes Yes Yes Yes exp
β∗-rings G Yes Yes Yes Yes exp
R(G) G Yes Yes Yes R(G) exp

(4) Efficiently computable. This does not necessarily mean polynomial time algo-
rithms for general graphs, because chemical graphs are (relatively) small and
close to planar.

We submit that it is much less important that the cycle set is

(∗) Chemically relevant.

The reason is that “chemical relevance” is not a well-defined and context independent
property. As we have seen above, attemps to create sets of “short cycles” purely based
on chemical intuition, which is naturally inspired by “normal” organic molecules,
leads to undesired artifacts and ad hoc modifications of ring sets. Furthermore, the
“typical” examples may be different from a substantial fraction of molecules that are
known today and that are stored in databases. This is shown by the fact that at least
some of our counterexamples are real molecular graphs.

In Table 2 we summarize the properties of the cycle sets studied in the previous sec-
tions with respect to the desirable characteristics listed above. To ensure point (2),
it is important that a cycle basis is contained in the set, further, from a chemically
inspired point of view and with respect to the second part of (3), a minimum cycle
basis would be best. Of course, cycle sets only describe two-connected components
of molecular graphs, and graph descriptors derived from them cannot distinguish be-
tween isomers or tautomers of a molecule. On the other hand, by Whitney’s theorem
[61], if the cycle bases of two-connected graphs can be mapped to each other, the
graphs are already isomorphic up to small modifications. For this reason, graph de-
scriptors derived from a cycle set containing a cycle basis fulfill (3) as well as it is
possible, short of actually solving the graph isomorphism problem. Among the stud-
ied cycle sets, only the set of elementary cycles fulfills all requirements. Its drawback
is that it is generally very large.

Hence, we propose the three sets of Table 3 as more convenient alternatives. Among
them, the set of relevant cycles R(G), is of particular interest because it can be readily
computed using Vismara’s algorithm [56]. While all good cycle sets have exponential
size in the worst case, they nevertheless seem to be well within computational reach
for molecular graphs.

Acknowledgments. This work is supported by the Austrian Fonds zur Förderung

der Wissenschaftlichen Forschung, Project Nos. P-13565 (P.M.G) and P14094 (P.M.G,
J.L), by the Schwerpunktprogramm Nr. 1126 of the Deutsche Forschungsgemeinschaft
(F.B), and the DFG Bioinformatics Initiative (P.F.S).



Counterexamples in Chemical Ring Perception 18

References

[1] R. Balducci and R. S. Pearlman. Efficient exact solution of the ring perception problem. J.
Chem. Inf. Comput. Sci., 34:822–831, 1994.

[2] S. A. Benner, J. E. Maggio, and H. E. Simmons III. Rearrangement of a geometrically restricted
triepoxide to the first topologically nonplanar molecule. A reaction path elucidated by using
oxygen isotope effects on carbon-13 chemical shifts. J. Am. Chem. Soc., 103:1581–1582, 1981.

[3] F. Berger, P. Gritzmann, and S. de Vries. Minimum cycle bases for network graphs. Submitted
to Algorithmica, 2003.

[4] J. Cai. Counting embeddings of planar graphs using DFS trees. SIAM J. Discrete Math., 6:335–
352, 1993.
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