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The need for rapid and accurate detection systems is expanding and the utilization of cross-reactive sensor
arrays to detect chemical warfare agents in conjunction with novel computational techniques may prove to
be a potential solution to this challenge. We have investigated the detection, prediction, and classification
of various organophosphate (OP) nerve agent simulants using sensor arrays with a novel learning scheme
known as support vector machines (SVMs). The OPs tested include parathion, malathion, dichlorvos,
trichlorfon, paraoxon, and diazinon. A new data reduction software program was written in MATLAB V.

6.1 to extract steady-state and kinetic data from the sensor arrays. The program also creates training sets by
mixing and randomly sorting any combination of data categories into both positive and negative cases. The
resulting signals were fed into SVM software for “pairwise” and “one” vs all classification. Experimental
results for this new paradigm show a significant increase in classification accuracy when compared to artificial
neural networks (ANNSs). Three kernels, the S2000, the polynomial, and the Gaussian radial basis function
(RBF), were tested and compared to the ANN. The following measures of performance were considered in
the pairwise classification: receiver operating curve (R@dhdices, specificities, and positive predictive
values (PPVs). The RO®, values, specifities, and PPVs increases ranged from 5% to 25%, 108% to
204%, and 13% to 54%, respectively, in all OP pairs studied when compared to the ANN baseline. Dichlorvos,
trichlorfon, and paraoxon were perfectly predicted. Positive prediction for malathion was 95%.

INTRODUCTION Gas, liquid, and thin-layer chromatography coupled with
The United States is coming under increasing threats of different detectors are the most commonly used methods for
chemical warfare agents (CWAs) of mass destruction by the detection of OP%:> However, these techniques, which
international terrorist organizations and the new Department are time-consuming and expensive and require highly trained
of Homeland Security is seeking new frontiers of technolo- personnel, are available only in sophisticated laboratories and
gies to combat these threats. Consequently, there is a grea@re not amenable to on-line and rapid monitoring. Biological
deal of interest in developing tools that can be used not only methods such as immunoassays, biosensors, and inhibition
to detect but also to effectively classify CWAs. At the 0f cholinesterase activity for OP determination have also been
molecular level, all chemical warfare agents are strong reported®™® Immunoassays require long analysis time and
electrophiles, containing either central phosphorus (e.g., extensive sample handling with multiple washing steps.
Soman, Sarin, and Tabun), sulfur, or nitrogen (VX or Monitoring chemical and biological warfare agents (CBAs),
mustards) atoms (Figure 1). The central atoms of the nerveresidue in soil, water, food, and air is possible by screening
agents (i.e., Sarin and Soman) attach to the ends ofor through diagnostic techniques that can provide only a
acetylcholinesterase enzyme and stay bound to it for manyqualitative “yes-or-no” answer, or semiquantitative/quantita-
hours. Organophosphates (OPs) are potential CWAs becauséve techniques, which can detect and quantify residues in
their action is very similar to nerve agents. OPs act by the sub-threshold levefdt is possible for these methods to
inhibiting the acetylcholinesterase enzyme, which is essentialgenerate false positives or false negatives if the sensitivities
for functioning of the nervous system in humans. The are insufficient for the threshold levels. Applying any
inhibition of acetylcholinesterase results in the accumulation detection principle to a potential agent depends on the
of acetylcholine that interferes with muscular responses thatcharacteristics of the detection technique, the nature of the
may be fatal-? Early detection of OPs may give an indication analytes, and the goal of the analysis system. Detectors that
of terrorist activity that may allow proper procedures to be are designed for gas or vapor plumes may not readily be

followed to mitigate dangers. applicable to the detection of low volatile liquid, semivolatile
* Corresponding author fax: (607) 777-4478; e-mail: osadik@ compoupds, bacteria, or viruses. Thus’ the ”ee,d for fast
binghamton.edu. responding and accurate CWA detection systems is expand-
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Figure 1. Structures of the organophosphates investigated: (a) paraoxon, (b) parathion, (c) trichlorfon, (d) dichlorvos, (e) malathion, and
(f) diazinon.

to be a potential solution to this challentje. recorded? 14 However, the scattering of the data obtained

In recent years, a family of chemical sensors commonly can be close to 50%, which dramatically reduces the
referred to as the electronic nose (EN) has been widely precision of the measuremetit.Holberg proposed two
investigated. A typical EN system consists of an array of methods for countering drift in an electronic sensor atfay.
chemical sensing elements coupled to headspace samplingThe first is a self-organizing classifier that stores the patterns
pattern recognition modules, and appropriate transdéitcdfs.  of different gas responses. The second is to design the sensor
The system employs metal oxides, quartz crystal arrays,as a dynamic system. Other limitations with these systems
surface acoustic wave devices, electrochemical cells, andare mainly linked to difficulty in calibration, poisoning of
conducting polymers or a combination of these sensors tothe sensing elements, and changes in response time with
mimic the human sense of smell. When used in an array, concentration. Overcoming these limitations requires a
the sensitivity of an individual sensor is of fundamental greater understanding of the sensanalyte interactions at
importance. The sensor should exhibit high cross-reactivity the molecular level. Novel intelligent algorithms are urgently
for the maximum number of components being determined. needed to process signal patterns in sensor arrays.
This requirement is critical for better analytical performance.  Pattern recognition (PR) techniques utilize modern math-

Previous attempts to improve the sensitivity of EN systems ematical methods based on multivariate statistics and nu-
include the use of conventional pattern recognition tech- merical analysis to elucidate the relationships of multidi-
niquestt1214increasing the sensitivity of the sensing ele- mensional data sets. These techniques can improve analytical
mentst?14 increasing the amount of volatile compounds measurements by enhancing the extraction of chemical
reaching the sensét,generating diversity through combi- information from chemical data. They can also reduce the
natorial polymer synthesid;'34improving sampling meth-  effects of interference and improve selectivity of analytical
ods?® and controlling the effluent flow rate and inadequate measurements. Fundamental requirements of PR as applied
temperature control of the effluent-transfer liféEor some to sensors include the following: (i) an analyte can be
types of analytes, sensitivity in the sub-ppm range has beenrepresented as a set of sensor responses; (ii) relationships
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Figure 2. Support vector machines: (a) Hypothetical two-dimensional descriptor space for pairwise analytes/points. (b) Linear
separations: There are many hyperplanes that could separate the data. (c) Optimal separating hyperplane: The one that separates the dat:
with maximal margin.

that can be extrapolated to untested analytes from similarsupport vector machine is a linear classifier. By a linear
classes; and (iii) finding relationships between analytes and model we mean a hyperplane that divides the descriptor space
their responses that can be tested and verified to a set ofinto two parts. Consider a set of two different compounds
tested benchmark analytes. An exhaustive review of com-in a certain descriptor space (Figure 2a). With a separating
putational methods for the analysis of chemical sensor arrayhyperplane, one compound set (circular points) lies, for
data from 1994 to 1999 was recently publishedlhe instance, in one-half of the descriptor space and the other
electronic nose information is traditionally obtained by set (square points) in the other half. Poixtsn a hyperplane
feature extraction using principle component analysis (PCA). satisfy the equation

PCA, while useful, has several drawbacks because it (i)

realizes only inputoutput mappings and (ii) cannot usually wx+b=0

separate independent subsignals from their linear mixfure.

We hereby report the integration of a new strategy to
predict, and correctly classify, CWAs using sensor arrays
combined with linear support vector machines (SVMs).
SVMs are a new and radically different type of classifiers
or “learning machines” that use a hypothesis space of linear
functions in a high-dimensional feature/space. SVMs are
generally trained with learning algorithms originating from o, a given hyperplane, the score of a compound is the signed
optimization theory and that implement a learning bias yistance to the hyperplane, which is
derived from statistical learning theory. The use of SVMs
for computational intelligence is a recent development, and (wex + b)/([|w]],)
certainly unknown for analytical monitoring of CWAs.

Support Vector Machines. Several texts provide exten-  and the distance is the absolute value of this quantity.
sive baCkgrOUndS to develop the mathematical foundation Therefore, the Compounds on the p|ane have score Zero, the
of support vector machiné$:? In the context of classifying  compounds in the negative space have a negative score, and
CWAs, specifically organophosphates, the objective of SVMs the rest have a positive score. In reality, many different
is to construct an “optimal hyperplane” as the decision hyperplanes may separate the compound correctly (Figure
surface such that the margin of separation between two2p). Support vector machines choose a particular separating
different chemical substances is maximized. SVMs are basedhyperp|ane referred to as the “maximum margin hyperplane”
on the fundamental ideas of (i) structural/empirical risk or the “optimal hyperplane” (Figure 2c). The margin of a
minimization (SRM/ERM), (i) the VapnikChervonenkis  separating hyperplane is the minimum distance of any labeled
(VC) dimension, (iii) the constrained optimization problem, data point to the hyperplane. The larger the margin, the
and (iv) the SVM decision rule. clearer the separation between the two sets of compounds.

The key concepts of SVMs will only be summarized here, For this reason, the optimal hyperplane is regarded as a robust
including linear support vector machines and the theoretical classifier. Usually only a small set of vectors called support
concept of why SVMs will provide a global minimum, vectors line up closest to the decision boundary; that is, the
whereas neural networks cannot. In the simplest form, the value of their distance to the boundary equals the margin.

for some weight vectow € R" and biasb € R.

Assume that the circular points lie in the positive half-
space and the square points in the negative half-space. It
follows that for the circular points

wXx+b>0



502 J. Chem. Inf. Comput. Sci., Vol. 44, No. 2, 2004 SADIK ET AL.

Reference
air

T+ £t

Reference

Sample Wash air

Y
'y

% dR/R

'S 'S = o Ay iy pas HHHHH
Absorption Time in seconds

Figure 3. Typical showing of the raw data acquisition process for diazinon. (5 ppm in acetonitrile): reference air was first sampled to
produce a baseline response for 15 s: analyte and solvent vapors were then exposed to the 32 sensors for 60 s: the changes in base
resistance (B/R) versus time were recorded for 32 sensor channels: the wash and reference followed for 60 and 15 s, respectively.

Properly designed SVMs should have a good performanceresistance before absorption)/dc resistance before absorption.
on untested data because of their ability to generalize andAlso recorded is the time since the start of the experiment,
scale up to more complex problems. The fact that the marginthe temperature of the humidity sensor, the in-line temper-
does not depend on input dimensionality means it is immune ature of the sample vapor, and the humidity of the sample
to the curse of dimensionality. SVMs have been successfully vapor. After the sample had been exposed to sensor arrays,
applied to a variety of classification problems including text the sensors were washed with a 2% 1-butanol solution for
categorizatiort? handwritten digit recognitio®: 2" gene another 60 s. Finally, the samples were exposed to reference
expression analys?$, and simple chemical and mixtures air for 15 s to reproduce the baseline response. The sensor
recognition?® In this paper, our aim is to investigate the use arrays were then exposed to another analyte run and the
of multiarray sensors coupled with support vector machines process is repeated. A total of 250 runs were recorded for
for the detection of organophosphate nerve agent simulantseach of the six organophosphates. A typical run, showing
This approach reduced the number of false negative errorsthe data acquisition process for diazinon, is shown in Figure
by 173%, while making no false positive errors when 3.

compared to the OsmeTech baseline performéhce. PreprocessingResistance values were digitized using an
analogue to digital converter and transferred to a PC for
EXPERIMENTAL SECTION analysis. The type of computer used was a Hewlett-Packard

Materials. Malathion, parathion, paraoxon, trichlorfon, HP Kayak PC Workstation x86 Family 6 Model 5 Stepping
diazinon, and dichlorvos were purchased from Accustandardl With 64884 KB RAM. The raw data file sent to the PC
Inc., New Haven, CT, and used as supplied. A 2% aqueousConsists of an air baseline, a drift-corrected air baseline, and
solution of 1-butanol solution was used as the wash solution @ Set of 35 digitized values for each hundredth of a second
for the sensor arrays. Gas sensing measurements weréhat the experiment was running. The 35 values include a
conducted using an AS32/8S Labstation and A32/50 seriesSeparate reading for each of the 32 conducting polymer films
from OsmeTech, CA (Serial Number 32-A11-00-72-058) shovylr_lg change in resistance from bas_ellne, temperature,
with accompanying software. The A32S instrument consists humidity, and temperature of the humidity sensor. Prepro-
of a sample conditioning station (A8S), a sample analyzer, C€Ssing of the raw time series data was performeq'before
and an A32S computer software package. The analyzer isS€nding values on to the neural network. In addition to
polymer sensors with changing electrical resistance when ahas to deal with, preprocessing compensates for sensor drift,
volatile chemical adheres to them. The change in the COMpresses the transient response of the sensor array, and
electrical resistance of each sensor is monitored and recordededuces sample-to-sample variations. However, the existing
to produce a characteristic pattern or fingerprint. data reduction program only allows one to gather data from

Procedure. Data Acquisition.100 microliters each of the ~ the equilibrium state. We believe that other additional
organophosphate (OP) pesticides (0.5 ppm in acetonitrile) features, such as the rate of absorption, could provide
was introduced into the OsmeTech sample bags (with significant clues to distinguishing bet_ween sets of com-
dimension 7.0x 6.5 in.). The reference air was introduced Pounds. Therefore, a new data reduction software program
into the bags for 75 s and the bags were equilibrated atWas written in MATLAB V. 6.1 with the aim to extract
ambient temperature for 30 min. Data were collected by additional information, specifically the rate of absorption of
passing a sample of the analyte over the sensor array. Théhe compounds by the sensors.
changes in resistance versus time for each sensor channel The MATLAB V. 6.1 preprocessing program is capable
were recorded for all 32 sensors. Reference air was sampledf (i) extracting raw and reduced data from the OsmeTech
first to produce a baseline response for 15 s. An analyte wasformat, (ii) extracting both steady-state and absorption data
then exposed to the conducting polymers sensor arrays forfrom each sample using least-squares regression, (iii) remov-
60 s. Every 1/100th of a second changes in dc resistance ofng outliers from the data set, (iv) normalizing the steady
the film is recorded for each sensor in the array. The intensity state (A32S) for each sensor, (v) creating a single file
was calculated as: (dc resistance after absorptionc containing raw time series data created from averaging all
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Figure 4. Schematic of the data acquisition, reduction, and processing.

raw time series data in the directory, (vi) assembling reduced training example) consists of a vectgrcontaining the input
data in each subdirectory into one comprehensive data filepattern and a corresponding known classificatipnThe
from which data can be extracted for experiments, and (vii) objective of the learning machine would be to formulate a
creating training sets for the SVM experiments by the mappingx; — yi. Now consider a set of functiori,o) with
following: (a) mixing any combination of categories into adjustable parametessthat define a set of possible mappings
both a positive and negative case, and randomly sort themx — f(x,a). Here,x is given ando is chosen. In the case of
creating an individual file for each reduced feature; (b) atraditional neural network of fixed architecture, thealues
normalizing any reduced feature file; (c) split normalizing would correspond to the weights and biases. The quantity
data into folds for use by the SVM. The data were then R(a), known as theexpectedor true) risk, associated with
processed by the SVM software for “pairwise” and “one learning machines is defined as
versus all” classification. Each SVM run took between 15
and 30 min. A schematic display of the data acquisition, R(a) = f(1/2)|y — f(x,00)| p(x,y) dx dy
reduction, and processing is shown in Figure 4.
wherep(x,y) is an unknown probability density function from

RESULTS AND DISCUSSION which the examples were drawn. This risk function is the
expected (or true) value of the test (or validation) error for
a trained learning machine. It may be shown that the best
possible generalization ability of a learning machine is
achieved by minimizingR(a), the expected (or true) risk.
This generalization bound, for binary classification, holds

K-fold cross-validation was used to evolve and evaluate
the SVMs. This is a statistical process whereby a data set of
limited size may be partitioned to simulate a larger data set.
This enables a more robust evaluation of the evolved neural

network’s generalization ability and expected performance. with the probability of at least - 7 (0 < # < 1) for all

Initial experiments were performed using a 5-fold cross- o . o

validation process, where 200 samples were used in the@PProximating functions that minimize the expected (or true)
training set and 50 samples used in the validation set. The”Sk'
procedure allowed the network to be trained on the most
possible data, while reducing the likelihood that the partition- h(log(w) + 1) — |og(ﬂ)
ing of the data had introduced a bias into the results (as could R(e) < Rypda) + h 4
happen if the “difficult” cases were all in the training set
and the validation set contained all “easy” cases). Several

performance measures were used to evaluate the conventional The f.|rst'term on the ”9“‘“?‘?“ s.|de" of the apqve
artificial neural network (ANN) as well as new machine expression is known as the “empirical risk”. The empirical

learning techniques. risk Remf@) is defined as

Standard three layer artificial neural networks, trained by 1N
back-propagation, and using the sigmoid activation function, R, r(a) =S|y — f(x,a)|
are often criticized as “black boxes”, which are almost always m ZN; ! v
trained to a local minimum, with the resultant degradation
of performance. This fact may be theoretically demonstrated This function is a measure of the error rate for the training
by the following proof. Assume there existobservations  set for a fixed, finite number of observations. This value is
from an organophosphate data set. Each observation (orfixed for a particular choice oft and a given training set

N
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Figure 5. ROC (receiver operating curves) for parathion vs dichlorvos.

(xi,y))- The second term in the true risk expression is the perfomance, 0.7 is okay, 0.8 is good, and 0.9 or greater is
“Vapnik—Chervonenkis (VC) confidence interval.” This term  excellent. A typical ROC curve realized during the investiga-
is a function of the number of training samplég the tion is shown in Figure 5. Measures of performance (MOP)
probability valuen, and the VC dimensiorh. The VC parameters associated with ROC curve analysis are as
dimension is thenaximurmumber of training samples that  follows:

can be learned by a learning machine without erroraflbr (a) Sensitivity{ TP/(TP+ FN)}, which is defined as the
possible labeling of the classification functiof{g,o)) and likelihood that an event will be detected if that event is
is, therefore, a measure of the capacity of the learning present (where TP is a true positive and FN is a false negative
machine. In traditional neural-network implementations, the event). Sensitivities of 100%, 98%, and 95% represent false
confidence interval is fixed by choosing a network archi- negative errors of 0%, 2%, and 5%, respectively. The
tecture goriori. The risk function is typically minimized by  objective is to have the system operate at 100% sensitivity.
minimizing the empirical risk through adjustment of weights  (b) Specificity{ TN/(TN + FP}, which is the likelihood
and biases, resulting in a local minimum. Consequently, that the absence of an event will be detected, given that the
neural networks are trained based on the empirical risk event is absent (where TN is a true negative and FP is a
minimization (ERM) principle. In a SVM design and false positive event). In a like manner, specificities of 100%,
implementation, not only is the empirical risk minimized but 98%, and 95% represent false positive errors of 0%, 2%,
also the VC confidence interval by using the principles of and 5%. The objective, then, is to design the learning system
structural risk minimization (SRM). Therefore, SVM imple- so that we increase the specificity at 100% sensitivity
mentations simultaneously minimize the empirical risk as (making no false negative errors). By increasing the specific-
well as the risk associated with the VC confidence interval, ity, we reduce the number of false positive errors.

as defined in the true risk expression above. The true risk Another point should be made here. For SV learning
expression above also shows thath\as> «, the empirical machines trained to a global minimum, the index will

risk approaches the true risk because the VC confidencegenerally be in the region of 0.90.99, which is outstanding
interval risk approaches zero. The reader may recall thatperformance. When these MOP’s are achieved with “small”
obtaining larger and larger sets of valid training data would databases<{500 samples), little, if any, difference will be
sometimes produce (with a great deal of training experience)observed in the specificities and PPVs for sensitivities of
a better performing neural network (NN), which resulted 95%, 98%, and 100%. This situation exists because of
from classical training methods. This restriction is not computational “round off “error because of the small
incumbent on the SRM principle and is the fundamental differences in false positives and negatives at the threshold

difference between training NNs and training SVMs. settings corresponding to these specificities and sensitivities.
Several SVM kernels are utilized in this analysis. These (c) Positive predictive value (PPYYP/(TP+ FP), which
are the measures the likelihood that a signal of an event is associated
) ] with that event, given that such a signal occurred.
dot product kernelK(xi,x) = (xi-x) In addition to theA, index, which is the area under the
o R—X(21202 ROC curve, this work measures the ability of the SVMs to
GRBF kernel: K(%;,X) = ™™ increase the specificity and PPV at the relevant higher

sensitivities. That is, at 100% sensitivity the SVM models
make no type Il errors (positive cases identified as negatives).
Consequently, increasing the specificity percentage at a
$2000 kernel:||X — YIIZ relevant 100% sensitivity is a direct measure of decreasing
the type | errors (negative cases identified as positives), while
Although this optimization initially focused on the ROC the system makes no type Il errors. In a like manner,
Az area achieved under 5-fold cross-validation, the authorsincreasing the specificity percentage at 98% sensitivity
were particularly interested in achieving and measuring the (missing 2% of the type Il errors) will then quantitatively
best possible performance at higher sensitivity. The ROC describe learning machine performance in decreasing the type
curve is a function of the false alarm rate (FAR | errors. Similarly, increasing the PPV at the higher sensitivi-
1-specificity), plotted along the abscissa, vs the sensitivity, ties provides a similar, but somewhat different, performance
which is plotted along the ordinate. The area under the curvemeasure. In the following sections we study the accuracy of
is called theA, index. The closer to unity, the better the the SVM classifiers in identifying structurally similar orga-
value. For example, aA, value of 0.5 represents chance nophosphate nerve agents such as paraoxon and parathion.

polynomial kernel:K(X%;,X) = (7<i-7<+1)d
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Table 1. Comparison of Measures of Performance of ANN and
S2000 Kernel for the Parathion vs Dichlorvos Pair
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Table 4. Comparison of Measures of Performance of the Three
Kernels for the Parathion vs Paraoxon Pair (% Improvements over

the ANN Are Shown in Brackets)

ANN S2000 % improvement
A, 0.8021 0.9853 23 RBF S2000 polynomial
specificity, 100% 0.3280. 0.8963 173 A 0.9270 (16%)  0.840 (5%) 0.9910 (24%)
PPV, 100% 0.6460 0.9027 40 100% specificity 0.7633 (133%) 0.8701 (165%) 0.8739 (166%)
specificity, 98% 0.3280 0.8963 173 100% PPV 0.7304 (13%) 0.8359 (29%) 0.8366 (30%)
PPV, 98% 0.6460 0.9027 40 98% specificity  0.7633 (133%) 0.8701 (165) 0.8739 (166%)
98% PPV 0.7304 (13%) 0.8359 (29%) 0.8366 (30%)

Table 2. Comparison of Measures of Performance of ANN and
RBF Kernel for the Parathion vs Dichlorvos Pair Table 5. Comparison of Measures of Performance of the Three

Kernels for the Dichlorvos vs Trichlorfon Pair (% Improvements

ANN RBF % improvement over the ANN Are Shown in Brackets)

A, 0.8021 0.944 18 -

specificity, 100%  0.3280.  0.683 108 RBF 52000 polynomial

PPV, 100% 0.6460 0.868 34 A, 0.0982 (24%) 0.9988 (25%)  0.9999 (25%)

specificity, 98% 0.3280 0.683 143 100% specificity 0.9934 (203%) 0.9922 (203%) 0.9965 (204%)

PPV, 98% 0.6460 0.868 37 100% PPV 0.9934 (54%)  0.9942 (54%)  0.9969 (54%)
989% specificity ~ 0.9934 (203%) 0.9965 (204%) 0.9965 (204%)
98% PPV 0.9933 (54%)  0.9968 (54%)  0.9968 (54%)

Table 3. Comparison of Measures of Performance of ANN and the
Polynomial Kernel for the Parathion vs Dichlorvos Pair

polynomial kernel was the best for this particular pair because

ANN polynomial % improvement f . - :
it exhibited the greatest improvement in all the three MOPs
A 0.8021 0.9759 22 :
specificity, 100%  0.3280. 0.7977 143 parameters measured whgr_1 _cpmpared to the ba_selme ANN
PPV, 100% 0.6460 0.8834 37 (Table 4). The RO@\, specificities, and PPV for this kernel
specificity, 98% 0.3280 0.7977 143 improved by 24%, 166%, and 30%, respectively. The
PPV, 98% 0.6460 0.8834 37

corresponding values for S2000 and RBF kernels were 5%,
165%, and 29% and 16%, 133%, and 13%, respectively.

The performance of the three different kernels is evaluated These are excellent results considering only one-atom
(i.e., the RBF (radial basis function) kernel, the $2000 kernel, differences in these nerve agent simulants.
and the polynomial kernel). Trichlorfon vs Dichlorvos. The comparison between this
Parathion and Dichlorvos. The performance of the ANN  Pair undoubtedly gave the best results. The RQQalues
was compared to SVMs with the S2000, Gaussian, and©f 0.9982, 0.9988, and 0.9999 for the RBF, S2000, and
polynomial kernels. Tables 1, 2, and 3 show the performancePPlynomial kernels represent improvements of between 24
of the S2000, RBF, and polynomial kernels, respectively, in and 25% over the A_N_N baseline (Table 5). The _spe_cmcmes
comparison with the ANN data obtained for parathion and and PPVs also exhibited near perfect values with improve-
dichlovos pair. The tables show that there was a 23% ments of 54% and between 203 and 204%, respectively, over
improvement in the RO@, index by using S2000 (Table the ANN baseline. In summary, all three SVMs are es-
1), 18% improvement using the RBF kernel (Table 2), and sentially perfect classifiers for this chemical pair.
22% improvement using the polynomial kernel (Table 3). Detection and ClassificationWe tested our new database
The ROC curves for the parathion vs dichlorvos pair resulting 0 Positively identify unknown samples as one ah™
from the three kernels is shown in Figure 5. Our results also chemicals in their database. This is a multiclass problem in
show that there was a significant improvement (173%) of Which the output domain is changed frof= {—1,1} to Y
specifities at 100% and 98% sensitivities on using the $S2000= {1, 2, 3.m}. Although SVMs are mainly used for two-
kernel (Table 1). This means that the number of false class problems, they_can be extended to_handle multiclass
negative errors was reduced by 173%. Specificities at 100%Problems using a voting scheme to combine the outputs of
and 98% for the other kernels were also very impressive asseveral binary SVMs tramed on different pairs of chemlcal_s.
they registered an improvement of 108% and 143%, respec-1 "€ most successful voting scheme of those we have tried
tively, when compared to the ANN baseline (Tables 2 and yet was pairwise classification in WhIC'h the outputs from
3). PPV at 100% and 98% sensitivities recorded a 40% K(K — 1)/2 binary SVMs are used to fill a squake x K
improvement on using the S2000 (Table 1), 34% improve- {@ble. SVM @, b) and SVM 6, a) have reflectional symmetry
ment on using the RBF (Table 2), and 37% improvement N the zero plane, so ea_ch of thgK — 1)/2. classifiers _f|_||
on using the polynomial kernel (Table 3). On the basis of W0 entries (g.b], [b,a]) in the table. A binary classifier
these three MOPs, we can conclude that the three kernel€cides whether a point belongs to class or b. The
studied are significantly better than the ANN software in Probability thatxbelongs to clasa, given thaixis in either
the AromaScan for the parathion and dichlovos base pair. €l2ssa or b, can be written as
We can also conclude that, of the three kernels studies, the _
S2000 exhibited the best performance. Pab= P(xEaxxEab)
Parathion vs Paraoxon.The comparison between the With Pab we can calculate the estimd®e of the a posteriori
parathion and paraoxon pair should be very interesting probability P(xEgx) by using aK x K table of Pab (the
because of their very close structural similarities. As previ- chemical voted for) an®?ba= 1 — Pab (the chemical not
ously stated, the only difference in the structures of the two voted for) as
compounds is that the=FO bond in paraoxon is replaced
by a P=S bond in parathion. The performance of the

Pi=2/K(K — 1)* Pab )
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Table 6. S2000 Classification Results: True vs Predicted (Row vs Columns)

diazinon malathion parathion trichlorfon dichlorvos paraoxon
diazinon 20 0 0 0 0 0
malathion 0 19 0 0 1 0
parathion 0 0 20 0 0 0
trichlorfon 0 0 0 20 0 0
dichlorvos 0 0 0 0 20 0
paraoxon 0 0 0 0 0 20

Table 7. ANN Classification Results: True vs Predicted (Row vs Columns)

diazinon malathion parathion trichlorfon dichlorvos paraoxon unknown
diazinon 7 0 11 0 0 0 2
malathion 0 17 0 0 0 3 0
parathion 0 0 20 0 0 0 0
trichlorfon 16 0 2 0 0 1 1
dichlorvos 0 0 3 0 17 0 0
paraoxon 1 0 0 14 5 0 0

The SVM decision outputab(x) is not a probability value,  paraoxon were totally mispredicted. The prediction successes
so we have to of both malathion and dichlovos was 85% while that of
1. NormalizeFab(x) such that the output ig1. diazinon was 35%. Our future study will attempt to train
2. Map the SVM output tdPab = Fab(x) + 0.5. In a the SVM kernels using different concentrations of one
binary classifier, a vote of 100% certainty for a chemical is analyte so as to enable the quantification of concentrations.
either “—=1" (100% a, 0% b) or “+1” (0% a, 100%b). A

vote of O would indicate absolutely no inclination toward CONCLUSION
one chemical or the other (5086 50%Db). h . i ith
TheK x K table is thus filled with values dPab, which We have integrated multiarray sensors with support vector

can in turn be input into a class decision function. The machine_:s to predict and c_orrectly classify organophosphate
classifying decision is made by adding tHé ¢ 1) votes agent simulants. We designed and evaluated a new SVM
for each chemical together (add up the rows) and Choosingprotocol for more accurate classification software. Analytical
the chemical with the highest vote. In this scheme the S€NSOr signals generated were fed into the SVM software
strength of a classification for one chemical automatically and these vlvere usedl to gehnergte a da]lctaba}se of over 500
weakens the chances for the other chemical to win. If there PrOVen analyte samples. The best performing SVM was
is no strong winner (no vote is higher than a given threshold), designated as having the most accurate specificity. The results
it indicates that no chemical was favored by all SVMs trained of this research have demonstrated that all the three kernels
on it. Previously, we had created a pairwise classifier to stud!ed showed significant improvements in. all the MOPs
detect one of the four organophosphates: dichlovos, trichlo- studied when compz_;\req 0 the ANN baseline for all the
rfon, paraoxon, and malathion. Six binary support vector organophosphate pairs investigated. Our results showed that
machines were trained including the following: (1) dichlo- in all the three MOP's the three kernels recorded significant
rvos vs trichlorfon; (2) dichlorvos vs paraoxon; (3) dichlorvos improvements when compared with ANN. In all the pairs
vs malathion; (4) trichlorfon vs paraoxon; (5) trichlorfon vs !nvestlga(;etc)i, Lhe RO(Z\ZOvaIueds, SE eC'f'C't(:eS' ?jnd P(I)D Vs d
malathion, and (6) paraoxon vs malathion. The training file |nc0reased yo etween 5./°Ian hZS %, 108% %n 2?]4@ an
for each classifier contained the following features for each 13% an >4%, respectively, when compare to t. e ANN
sample: baseline measures of performance. Despite having close
(1) The steady-state feature of 32 sensors (Figure 3). structural similarity, the MOP values for the parathion and
(2) The absorption rate feature of 32 polypropylene sensorsParaoxon pair showed significant impravement when com-

(Figure 3). pared to the ANN baseline. Using the S2000 kernel,
(3) Two temperature values (steady state and absorptiondicmorvos’ trichlorfon, and paraoxon were perfectly pre-
rate). dicted. Only 1 run out of 20 runs for malathion was

(4) Two humidity values (steady state and absorption rate). TiSPredicted. Further experiments are going on to investigate
(5) Two temperature and humidity sensor values (steadythe possibility of training the SVM kernels for quantitation

state and absorption rate) of structurally similar analytes at different concentrations.
The results of this classifier were nearly perfect (Table 6)
Dichlovos, trichlorfon, and paraoxon were perfectly pre- ACKNOWLEDGMENT

dicted. Only 1 run out of 20 runs for malathion was  The authors thank the National Science Foundation for
misclassified and was classified as dichlorvos. These resultsfinancial support of this work (CHE-0210968 and 1IS-
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