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Statistical-learning methods have been developed for facilitating the prediction of pharmacokinetic and
toxicological properties of chemical agents. These methods employ a variety of molecular descriptors to
characterize structural and physicochemical properties of molecules. Some of these descriptors are specifically
designed for the study of a particular type of properties or agents, and their use for other properties or
agents might generate noise and affect the prediction accuracy of a statistical learning system. This work
examines to what extent the reduction of this noise can improve the prediction accuracy of a statistical
learning system. A feature selection method, recursive feature elimination (RFE), is used to automatically
select molecular descriptors for support vector machines (SVM) prediction of P-glycoprotein substrates
(P-gp), human intestinal absorption of molecules (HIA), and agents that cause torsades de pointes (TdP), a
rare but serious side effect. RFE significantly reduces the number of descriptors for each of these properties
thereby increasing the computational speed for their classification. The SVM prediction accuracies of P-gp
and HIA are substantially increased and that of TdP remains unchanged by RFE. These prediction accuracies
are comparable to those of earlier studies derived from a selective set of descriptors. Our study suggests
that molecular feature selection is useful for improving the speed and, in some cases, the accuracy of statistical
learning methods for the prediction of pharmacokinetic and toxicological properties of chemical agents.

INTRODUCTION biological activity likely generates noise in a statistical
learning system, which may affect the prediction accuracy
of that systen®? In some cases, it is difficult to manually
select descriptors useful for a particular property. Thus
methods capable of automatic selection of molecular descrip-
tors are desirable. The redundancy in molecular descriptors
can be partially reduced by means of feature selection
methods3?7 Feature selection methods have been found to
increase the prediction accuracy of statistical learning clas-
sification of some systems. Examples include the prediction
of drug activities?® cancer tissue sample classification using
" microarray dat&? gene selection for cancer classificatin,
and splice site predictioft:?” It is thus of interest to examine
whether feature selection methods can be explored for
automatic selection of molecular descriptors and for im-
provement of the prediction accuracy of pharmacodynamic,
ity.2021 pharmacokinetic, and toxicological properties of chemical

Some of these molecular descriptors are developed for theagents. by statlst|ca_l learning methods. ) ]
study of a particular type of properties of a group of In this work, a.W|der used feature selection m.ethod is
structurally related chemical agents. Thus these descriptorsUSed to automatically select the molecular descriptors for
may not be universally applicable for other agents or for the the prediction of three different pharmacokinetic and toxi-
prediction of other properties. For instance, descriptors for cological properties of chemical agents. One is the prediction
the QSAR of relatively small sets of related agents are not ©f P-glycoprotein (P-gp) substrates, which facilitates early
applicable for the analysis of chemical diversi#yThe use identification and elimination of drug candidates of low

of descriptors unrelated to a particular type of properties or &fficacy or high potential of multidrug resistane?! This
is a process that only involves active transport via binding

* Corresponding author phone: 65-6874-6877; fax: 65-6774-6756; t0 P-gp. The second is the prediction of human intestinal

In the study of pharmacodynamic, pharmacokinetic, and
toxicological properties of drugs and other chemical agents,
a variety of molecular descriptors has been developed and
routinely used for describing physicochemical and structural
properties of chemical agents’ These descriptors were
initially developed for the construction of quantitative
structure-activity relationship (QSAR) and quantitative
structure-property relationship (QSPR) of structurally related
compounds$. They have been extensively used for the
statistical-learning-based prediction of pharmacodynamic
pharmacokinetic, and toxicological properties of chemical
agents including drug-likene8s!! blood-brain barrier pen-
etration!?!® human intestinal absorptidn,drug-receptor
binding}*6 drug metabolism’ cellular membrane partition-
ing,'® chemical space navigatidhand antibacterial activ-

E'Ti}gtigagﬁnn%gg-”Ugfesdig-sg-ore absorption (HIA) of chemical agents, an important indicator
 Singapore-MIT Afﬁance_ gapore. for drug absorptiod? 3> HIA primarily involves passive
8 Sichuan University. transport with a small portion of compounds being absorbed
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Table 1. Molecular Descriptors and Their Classes Used in This Work

no. of
descriptors
descriptor class in class descriptors

simple molecular properties 18 molecular weight, number of ring structures, number of rotatable bonds, number

of H-bond donors, number of H-bond acceptors, element counts
molecular connectivity and shape 28 molecular connectivity indices, valence molecular connectivity indices, molecular

shape kappa indices, kappa alpha indices, flexibility index
electrotopological state 84 electrotopological state indices and atom type electrotopological state indices
quantum chemical properties 13 atomic charge on the most positively charged H atom, largest negative charge on an

non-H atom, polarizability index, hydrogen bond acceptor basicity (covalent
HBAB), hydrogen bond donor acidity (covalent HBDA), molecular dipole moment,
absolute hardness, softness, ionization potential, electron affinity, chemical
potential, electronegativity index, electrophilicity index

geometrical properties 16 molecular size vectors (distance of the longest separated atom pairs, combined distance
of the longest separated three atoms, combined distance of the longest separated four
atoms), molecular van der Waals volume, solvent accessible surface area, molecular
surface area, van der Waals surface area, polar molecular surface area, sum of solvent
accessible surface areas of positively charged atoms, sum of solvent accessible surface
areas of negatively charged atoms, sum of charge weighted solvent accessible surface
areas of positively charged atoms, sum of charge weighted solvent accessible surface
areas of negatively charged atoms, sum of van der Waals surface areas of positively
charged atoms, sum of van der Waals surface areas of negatively charged atoms, sum
of charge weighted van der Waals surface areas of positively charged atoms, sum of
charge weighted van der Waals surface areas of negatively charged atoms

2 The total number of descriptors is 159.

by active transport through various transporters. The third are those specifically described as not transportable by P-gp.
is the prediction of compounds that induce torsades de A total of 116 substrates and 85 nonsubstrates of P-gp are
pointes (TdP), an uncommon adverse drug reaction respon-collected.
sible for the withdrawal of some marketed drd§s® A Chemical agents absorbable (HiA or nonabsorbable
substantial portion of TdP is due to channel blocking, but (HIA—) by human intestine are from those described in the
other unknown mechanisms are also involved. The different |iterature, in which the “measured absorption rate” of 70%
mechanisms of these three problems make them useful foris used as the criterion for dividing chemical agents into
testing feature selection methods. The computed results arg4|A + and HIA— classes334 A total of 131 HIA+ and 65
further compared to those of earlier studies to examine H|A— agents are collected. In general, a relatively smaller
whether our selected descriptors are capable of giving similar number of agents with low intestinal absorption is specifically
or better classification performance with respect to those reported in the literatur Thus, the number of known HIA
derived from a preselected set of descriptors. agents are expected to be significantly larger than those of
The feature selection method used in this work is the HIA— agents.

recursive fgature eIiminqtion (RFE)_method,. which has Eighty-five TdP inducing (TdP) agents are collected
recently gained popularity due to its effectiveness for fom ArizonaCERT*> Micromedex®® Drug Information
discovering informative features or attributes in drug activity andbookd” and Meyler's side effects of drugd.Those
analysis and cancer tlss%a sample classificiéhSupport  jolved in QT prolongation without information about their
vector machine (SVM}“° is used in this work as the  gffect on TdP are not included. Two hundred seventy-six
statistical learning method for the prediction of the three ., 1qp causing (TDP) agents are obtained from the
pharmacokinetic and toxicological properties of chemical ¢oarch of Micromedex, Drug Information Handbook, and

agents. SVM has been applied to a wide range of pharma-merican Hospital Formulary Service (AHFSJor agents
cological and biomedical problems including drug-likerfess, | ih o reported case of TdP.

drug blood-brain barrier penetration predictiBndrug-
receptor binding# and drug metabolisif. In many cases
SVM has been found to be consistently superior to other
supervised learning methdd4?4>44 and less sensitive to
overfitting?®> Thus SVM is an appropriate platform to
evaluate the effectiveness of feature selection methods in
improving the accuracy of statistical learning methods for
the prediction of pharmacodynamic, pharmacokinetic, and
toxicological properties of chemical agents.

Molecular Descriptors. The molecular descriptors used
in this work are selected from those commonly used in the
literature? These descriptors are first screened manually to
remove those that are apparently redundant or irrelevant to
the pharmacokinetic and toxicological properties. A total of
159 descriptors are selected, as given in Table 1, which can
be divided into five classes based on their properties. There
are 18 descriptors in the class of simple molecular properties,
28 descriptors in the class of molecular connectivity and
METHODS shape, 84 desc_riptors in the class of electroto_pological st.ate,
13 descriptors in the class of quantum chemical properties,
Selection of Data SetsP-gp substrates are collected from and 16 descriptors in the class of geometrical properties.
the literaturé®33 that are either described as being trans- These descriptors are computed from the 2D and 3D structure
ported by P-gp or reported to induce overexpression of P-gpof each agent using our own designed molecular descriptor
thereby directly contributing to MDR. Nonsubstrates of P-gp computing prograni®® The 3D structure of each agent is



1632 J. Chem. Inf. Comput. Sci., Vol. 44, No. 5, 2004 XUE ET AL.

generated from its 2D structure by using Concord v4.02 Gaussian kernel which has been extensively used in different

software. studies with good resultd:4359
Simple descriptors are counts of special atoms and
chemical bonds in the molecules. Examples of these descrip- K(x.x) = g —xiF120? (4)

tors include the number of ring structures, number of

rotatable bonds, number of hydrogen bond donors and Linear support vector machine is applied to this feature

acceptors, molecular weight, and element counts. Molecularspace and then the decision function is given by

connectivity chi indices and shape Kappa indices encode

information about molecular size, shape, branching, unsat- ) : 0

uration, heteroatom content, and cyclicity? The electro- f(x) = sign() o y;K(x,x;) + b) (5)

topological state indices are numerical values computed for =

each atom in a molecule, which encode information about

both the topological environment of that atom and the

electronic interactions due to all other atoms in the mol-

ecule®***Quantum chemical descriptors are used to describe | 101

electrostatic and electronic properties of a molecule. These o —— oL oYY K (X, X) (6)

descriptors are calculated using molecular orbital energies "' 2 ;J; B

and wave functions of electronic motion in a molecule, which

can be obtained by solving the Sctioger equation of  under the following conditions:

electronic motior?® The computed quantum chemical de- |

scriptors include partial atomic charges, the highest occupied

and lowest unoccupied molecular orbital energies, dipole 3=0 andZaiyi =0 ()

moment, polarizability, and other descriptors derived from =

them>%® Geometric descriptors encode the 3D-structural A positive or negative value from eq 3 or eq 5 indicates that

features of a molecule. These include van der Waals volume,ine vector x belongs to the positive or negative class,

solvent accessible surface area, molecular surface area, Vafespectively.

der Waals surface area, and the corresponding quantities ag in the case of all discriminative methots$? the

associated with partial charges and polarity €. performance of SVM classification can be measured by the
All the P-gp substrates and nonsubstrates, Hland quantity of true positivesTP, true negativesTN, false

HIA— agents, and TdP and TdP- agents used in this study  hosjtives FP, false negativesN, sensitivity SE = TP/

are available as Supporting Information. The 159 descrlptors(Tp+|:N) which is the prediction accuracy for positive

fpr each compound are also provided as Supporting '”forma'examples in this work, and specifici§P = TN/(TN+FP)

tion. _ which is the prediction accuracy for negative examples in
SVM Algorithm. The theory of SVM has been exten- s work. The overall prediction accurac@)and Matthews

sively described in the literatuf™® Thus only a brief  rrelation coefficient )2 are also used to measure the
description is given here. SVM is based on the structural prediction accuracies and can be given by

risk minimization (SRM) principle from statistical learning

where the coefficients.’ and b are determined by maxi-
mizing the following Lagrangian expression

theory® In linearly separable cases, SVM constructs a TP+ TN

hyperplane which separates two different classes of vectors Q= TP+ TN+ FP + FN (8)
with a maximum margin. In this case, a vector corresponds

to a chemical agent, and this vector is representediby -~ — TP*TN — FN*FP 9
with structural and physicochemical descriptors of the «/(TP—i— FN)(TP + FP)(TN + FN)(TN+ FP)
chemical agent as its components. This is done by finding

another vectow and a parametdr that minimizesiwi? and Feature Selection Method Features refer to descriptors
satisfies the following conditions used by statistical learning methods for classification of

. specific problems. Feature selection methods have been

w-x;+ b=+ 1, fory, =+ 1class 1 (positive samples)  introduced for the improvement of classification performance
(1) of statistical learning methods and for the selection of features

meaningful in discriminating two data séf?’ One ap-
proach, the recursive feature elimination (RFE) method, has
(2) gained popularity due to its effectiveness for discovering
informative features or attributes in cancer classification and
drug activity analysig3?>Thus in this work, the RFE method
is used.

It has been suggested that the ranking criterion for feature
selection can be based on the change in the objective function
upon removing each featuféTo improve the efficiency of

sign(w-x) + b] (3) training, this objective function is represented by a cost
functionJ for theith feature computed by using training set

In nonlinearly separable cases, SVM maps the input only. When a given feature is removed or its weightis
variable into a high-dimensional feature space using a kernelreduced to zero, the change in the cost fundid() is given
function K¢, x;). An example of a kernel function is the by

w:x; + b =< — 1, fory, = — 1 class 2 (negative samples)

wherey; is the class indexy is a vector normal to the
hyperplane |b|/liwll is the perpendicular distance from the
hyperplane to the origin, ariivii? is the Euclidean norm of
w. After the determination ofv andb, a given vectokx; can
be classified by



SuPPORTVECTOR MACHINE CLASSIFICATION J. Chem. Inf. Comput. Sci., Vol. 44, No. 5, 20633

1 52 ) Table 2. SVM and SVM+RFE Prediction Accuracy of the
DJ(i) = 5 —(Dw) (20) Substrates and Nonsubstrates of P-Glycoprotein by Using 5-Fold
2 oW, Cross-Validation
substrates nonsubstrates

Cross-
The case oDw; = w; — O corresponds to the removal of method  validation TP FN SE (%) TN FP SP (%) Q (%) C

featurei.

SVM 1 14 10 583 9 7 563 575 014

Guyon et al. have used RFE to r_educe the number of 2 15 2 882 11 5 688 788 058
descriptors of a linear SVM classification system for cancer 3 24 14 632 10 4 714 654 031
detection from gene selection d&tan the corresponding 4 14 5 737 14 4 778 757 051
5 11 7 611 14 7 667 641 0.28

linear SVM classifier, the cost function ds= (1/2)||w||? — average 68.9 682 683 037

o |, wherel is anm dimensional identity vectomf is the SVM+RFE 1 17 7 708 12 4 750 725 0.45
number of compounds in the training set). Therefouki) 2 15 2 82 11 5 688 788 0.58
— 2 .2 ; i 3 30 8 789 13 1 929 827 065
= (1/2) wi? andw;? can be used as a feature ranking criterion.

- 4 15 4 789 15 3 833 8Ll 062
Yu et al. have used RFE to reduce the descriptors of a 5 16 2 89 16 5 762 821 065
nonlinear SVM classification system of polynomial kernels average 81.2 79.2  79.4 0.59

for prediction of drug activity®> However, because of the
diversity and complexity of chemical agents, the use of linear Table 3. SVM and SVM+-RFE Prediction Accuracy of the Human
and polynomial kernels may not always be sufficient for Intestinal Absorption (HIA-) and Nonabsorption (HIA) of
accurate prediction of various pharmaceutical and biological Chemical Agents by Using 5-Fold Cross-Validation

properties. Thus, in this work, SVM classification systems cross- HIA+ HIA—
of Gaussian kernels are used. In this case, the cost function method validation TP FN SE (%) TN FP SP (%) Q (%) C
to be minimized (under the constraintsOo k < C and} SVM 1 22 5 815 7 5 583 744 0.40
ayk = 0) is 2 18 3 8.7 8 3 727 813 058
3 37 3 925 7 5 583 846 054
3= (120 Ha — a1 (1) 5 18 5 783 12 3 800 790 067

average 83.4 63.2 77.0 0.48

whereH is the matrix with elementg y; exp(—||x — %% SVM+RFE 1 22 5 815 10 2 833 821 061
(26%), and1 is anm dimensional identity vectom{ is the 2 20 1 952 11 0 1000 96.9 0.93
number of compounds in training set) 3 8 5 85 8 4 667 827 053
P 1ng . ) 4 18 2 900 10 5 66.7 80.0 0.59
To compute the change in cost function caused by 5 22 1 0957 13 2 86.7 921 0.83
removing input componerit the parameters’s are kept average 90.0 80.7 86.7 0.70
unchanged and the matrkt is recomputed. The resulting
ranking coefficient is Table 4. SVM and SVM+RFE Prediction Accuracy of TdP

Inqucing (TdPr) Agents'anq Non-TdP Causing (Tep Agents
DJ(i) — (1/2)(1THQ _ (1/2)0LTH (_ i)(l (12) Using 5-Fold Cross-Validation

o . . Cross- TdP+ TdP-

where H(-i) is the matrix computed by using the same  method validation TP FN SE (%) TN FP SP (%) Q (%) C
method as that of matrit but with its ith component  gym 1 6 11 353 45 4 918 773 033
removed. One or more of features with the small@3(i) 2 10 6 625 42 6 875 813 050
can thus be eliminated. 3 12 7 632 63 4 94.0 87.2 0.61

Computation Procedure.The computation procedure in g 1?) 1% %’% ‘éi g 983;'3 ?7711 %‘53%
this work is outlined as the following: The SVM classifica- average 545 006 820 0.48
tion system for this study was trained by using a Gaussian SVM+RFE 1 8 9 471 45 4 918 803 044
kernel function. The training was conducted by sequential % ig i %:g ‘5‘(3 ; gg:‘l‘ ggj 8:2%
variation of the parameter in the special region against 4 10 3 769 46 3 939 903 071
the whole training data set. The prediction accuracy of this 5 10 10 500 55 8 87.3 783 0.39
SVM system during the training process was evaluated by average 66.8 89.3 839 0.56
means of 5-fold cross-validation. In the first step, for a fixed
o, the SVM classifier is trained by using the complete set of RESULTS AND DISCUSSION

features (molecular descriptors) described in the previous

section. The second step is to compute the ranking criterion Effect of Feature Selection on Classification Accuracy.
scoreDJ(i) for each feature in the current set by using eq The prediction accuracy of SVM classification systems using
12. All of the computedDJ(i) is subsequently ranked in the RFE method (termed as SVARFE) and those without
descending order. The third step is to removentfeatures ~ using RFE (termed as SVM) is evaluated by means of 5-fold
with smallest criterion scores. In this wonky was chosen cross-validation method. The computed accuracies for each
to be 5 as that used in earlier studfésn the fourth step,  fold and the average accuracies of P-gp substrates and
the SVM classification system is retrained by using the nonsubstrates are given in Table 2, those of Hl&nd HIA—
remaining set of features, and the corresponding predictionagents are given in Table 3, and those of Fdénd TdP-
accuracy is computed by means of 5-fold cross-validation. agents are given in Table 4, respectively. The corresponding
The first to fourth steps are then repeated for other valuesoverall prediction accuracyQ) and Matthews correlation

of 0. After the completion of these procedures, the set of coefficient C) are also given in Tables-24.

features and parameter that give the best prediction The average accuracy for the SVM prediction of P-gp
accuracy are selected. substrate and P-gp nonsubstrates is 68.9% and 68.2%, that
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Table 5. Distribution of the Molecular Descriptors in the Reduced Set Selected by the RFE Method

total number number of
of descriptors descriptors in percentage in
system in the reduced set descriptor class each class (%) descriptor class
P-gp 11 50.0 electrotopological state
4 18.2 quantum chemical
22 3 13.6 connectivity and shape
2 9.1 geometric
2 9.1 simple molecular properties
HIA 13 48.1 electrotopological state
7 25.9 connectivity and shape
27 3 111 quantum chemical
3 111 geometric
1 3.7 simple molecular properties
TdP 17 54.8 electrotopological state
6 194 quantum chemical
31 5 16.1 connectivity and shape
3 9.7 geometric
0 0.0 simple molecular properties

aThe total number of descriptors in the original data set is 159.

for the prediction of HIA- and HIA— agents is 83.4% and  bond descriptor: The reported accuracies of H#Apredic-
63.2%, and that for the prediction of Té¢tRand TdP- agents tions are 77%87% by using partitioned total surface
is 54.5% and 90.6%, respectively. By using RFE, the total models$*80% by using neural network method together with
number of descriptors is significantly reduced from 159 to 2D topological descriptor®,and 97% by using SAR models
22 for P-gp, to 27 for HIA, and to 31 for TdP. The average together with physicochemical and structural descrigtors.
accuracies for the prediction of P-gp and HIA are substan- The reported accuracy for HIA prediction is 85% by using
tially improved by using each of these reduced set of SAR models® Our prediction accuracy of 90.0% for HHA
descriptors, respectively. These are 81.2% and 79.2% forand 80.7% for HIA- by using SVM+RFE is thus compa-
P-gp substrate and P-gp nonsubstrates and 90.0% and 80.7%able to the results from these methods that use selective
for HIA+ and HIA— agents, respectively. On the other hand, sets of descriptors.
the average accuracy for the prediction of TdP remains at There has been no other reported study of direct compu-
the same level as that without using RFE, which is 66.8% tational prediction of TdP-causing risk. Thus our results are
for and 89.3% for the prediction of TdPand TdP- agents, tentatively compared to those of the prediction of QT
respectively. One possible reason for the insensitivity of the prolongation, which frequently but not necessarily lead to
prediction accuracy with respect to feature selection is that TdP$” Agents that induce QT prolongation usually cause
TdP involves multiple mechanisn&3 which is likely a disruption of the outward potassium currents by blocking
more dominant factor for affecting prediction accuracy than potassium ion channels, particularly the HER& khannel,
descriptor redundancy. Our study seems to suggest that RFEvhich might then induce Tdf. There is however no
is useful for removing redundant descriptors, which helps definitive correlation between QT prolongation and Taf.
to increase the computational efficiency of statistical learning For instance, verapamil causes QT prolongation but does not
system. In some cases, the feature selection method RFE isnduce TdP, whereas procainamide and disopyramide cause
capable of improving the accuracy of SVM classification of TdP but are not potent inhibitors of the HERGH¢hannef?®
pharmacokinetic behavior of chemical agents. Our prediction accuracies of 66.8% for T#Pand 89.3%
Comparison with Other Classification Studies. The for TdP— are comparable to the values of 71% for QT
effect of feature selection on classification performance can prolongation and 93% for non-QT prolongation derived by
be further evaluated by comparison with other classification the use of Ghose and Crippen descriptérs.
studies of the same systems that use preselected descriptors. RFE Selected Molecular DescriptorsTable 5 gives the
Direct comparison between our results and those from otherdistribution of the RFE-method-selected descriptors for each
studies may not be appropriate because of differences in theof the three classification problems along with their descriptor
use of data set, descriptors, evaluation, and classificationclasses. These descriptors are listed in Table 6. Descriptors
methods. For instance, our study of SVM classification of from all of the classes are selected by the RFE method. Those
P-gp substrates shows that evaluation based on 5-fold crossfrom the class of electrotopological state constitute the largest
validation can be different from that based on the use of a percentage of the descriptors selected, which is consistent
more evenly represented training set and an independentith a linear discriminant analysis of structure-based descrip-
evaluation set. Nonetheless, a tentative comparison maytors for multidrug resistant (MDR) agents that showed that
provide some crude estimate regarding the approximate levels0% of the molecular descriptors important for MDR are
of accuracy of our method with respect to those obtained by topological in naturé! A large variety of descriptors in this
other studies that used more selective descriptors. class, such as those of different functional groups and
The P-gp substrate prediction accuracy of 81.2% by using hydrophobic properties, are important for characterization
SVM+RFE is substantially improved with respect to the of pharmacodynamic, pharmacokinetic, and toxicological
value of 63% derived from the ensemble pharmacophore properties’>’> There are also a substantial number of
model that uses a selective set of hydrophobe and hydrogerdescriptors from the quantum chemical, connectivity, and
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Table 6. Molecular Descriptors Selected by the RFE Method for the Classification of Three Pharmacokinetic and Toxicological Properties:
P-Glycoprotein Substrates (P-gp), Human Intestine Absorption (HIA), and a Rare Side-Effect Torsades de Poirites (TdP)

system (primary mechanism)

P-gp HIA TdP descriptors
(AT) (PT) (CB) selected description class
v V4 Vv Syen simple molecular connectivity chi indices for cycle of 5 atoms  connectivity
v Vv v SyVen valence molecular connectivity chi indices for cycle of 5 atoms  connectivity
v v v S(13) atom-type H estate sum for Gfinsaturated) electrotopological state
v Vv v S(16) atom-type estate sum felCHs electrotopological state
v V4 v S(25) atom-type estate sum fetC< electrotopological state
v v v T polarizability index quantum chemical properties
Vv v Ndonr number of H-bond donors simple molecular properties
Vv Vv S(1) atom-type H Estate sum fetOH electrotopological state
Vv Vv S(20) atom-type Estate sum fetCH- electrotopological state
Vv v S(18) atom-type Estate sum faiCH, electrotopological state
Vv v S(21) atom-type Estate sum for: CH: (aromatic) electrotopological state
v v S(36) atom-type Estate sum foiN- electrotopological state
v v qt atomic charge on the most positively charged H atom guantum chemical properties
Vv v m molecular dipole moment quantum chemical properties
Vv v w electrophilicity index quantum chemical properties
v v dis2 length vector (longest third atom) geometrical properties
Vv v 3’c valence molecular connectivity chi indices for cluster connectivity
v v Sych simple molecular connectivity chi indices for cycle of 6 atoms  connectivity
Vv v S(5) atom-type H Estate sum fer NH electrotopological state
v v S(10) atom-type H Estate sum for :CH: {spromatic) electrotopological state
Vv v S(26) atom-type Estate sum for: C:- electrotopological state
N v S(31) atom-type Estate sum feilNH electrotopological state
Vv v S(35) atom-type Estate sum for :N: electrotopological state
v v Sanc sum of solvent accessible surface areas of negatively geometrical properties
charged atoms
Vv v Sancw sum of charge weighted solvent accessible surface geometrical properties
areas of negatively charged atoms
v ’p valence molecular connectivity chi indices for path order 3 connectivity
Vv ncocl count of Cl atoms simple molecular properties
Vv Sear sum of Estate indices of carbon atoms electrotopological state
Vv S(9) atom-type H Estate sum fetCH— (sp?) electrotopological state
v S(12) atom-type H Estate sum for Gt$aturated) electrotopological state
Vv Sapcw sum of charge weighted solvent accessible surface areas geometrical properties
of positively charged atoms
v dis3 length vectors (longest distance of fourth atom) geometrical properties
v 2y simple molecular connectivity chi index for path order 2 connectivity
v Syc simple molecular connectivity chi indices for cluster connectivity
v Sy’ch valence molecular connectivity chi indices for cycle of 6 atoms  connectivity
v S(34) atom-type Estate sum feiN- electrotopological state
v S(39) atom-type Estate sum feiOH electrotopological state
v S(40) atom-type Estate sum f&O electrotopological state
Vv €a hydrogen bond donor acidity (covalent HBDA) quantum chemical properties
v A electron affinity guantum chemical properties
v AT valence molecular connectivity chi indices for path/cluster connectivity
v Shal sum of Estate indices of halogen atoms electrotopological state
v S(2) atom-type H Estate sum feiNH electrotopological state
Vv S(4) atom-type H Estate sum feiNH, electrotopological state
v S(29) atom-type Estate sum feiNH, electrotopological state
Vv S(37) atom-type Estate sum feiN< (NOy) electrotopological state
v S(41) atom-type Estate sum feiO- electrotopological state
v q largest negative charge on an non-H atom guantum chemical properties
v i absolute hardness quantum chemical properties

2 The primary mechanism for each of these properties is given in terms of AT (active transport), PT (passive transport), and CB (channel
blocking).

geometric classes. These descriptors are important fora conclusion is consistent with descriptors used in the earlier
describing electrostatic, structural-framework, and geometric studies of P-gf and HIA7?
properties of chemical compountfs’ There are 7 additional electrotopological and quantum
A number of descriptors selected by the RFE method are chemical descriptors jointly selected by the RFE method for
for more than one of the classification problems. Six of the the P-gp and TdP systems. A substantial portion of the TdP
descriptors are selected in all of the three classification agents are channel blockéfsThus, the agents for both
systems. These describe molecular connectivity of ring systems are binders of membrane-bound transporter or
structures, topological property of hydrophobic groups, and channel, and it is not surprising that they share several
polarizability index. Thus these quantities appear to be additional descriptors known to be important for protein
important for describing the pharmacokinetic and toxicologi- binding. Only 3 additional descriptors are jointly selected
cal properties of chemical agents studied in this work. Such by the RFE method for the P-gp and HIA systems. These
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describe the broad features of hydrogen bon@H and improvement of the efficiency and speed of feature selection
CH— groups. Unlike P-gp, which solely involves active methods’ which can further help to optimally select
transport, only a very small portion of HIA agents are molecular descriptors and enable the development of more
actively transported. Thus the number of shared descriptorsaccurate and efficient computational tools for the prediction
is expected to be less than that of the P-gp and TdP system®f pharmacodynamic, pharmacokinetic, and toxicological
because of the limited diversity of actively transported HIA properties of chemical agents.
agents. In this work, a feature selection method is incorporated
Many of the HIA agents are passively transportednd into SVM classification systems for dividing molecules into
some of the TdP agents are not channel block&i%Thus two classes according to specific pharmacokinetic or toxi-
these systems are expected to be descried by descriptors natological property. This method can also be applied to the
selected for P-gp. One finds that there are 8 descriptors jointly prediction of pharmacokinetic and toxicological properties
selected by the RFE method for the HIA and TdP systems. in a continuous fashion, i.e., the prediction of structure
In addition to connectivity properties of clusters, the majority property relationship. For instance, feature selection method
of these descriptors measure polar properties. This suggestsan be combined with regression SViVand regression
that certain electrotopological and polar features are sharedneural network metho8s¢ "8 for providing nonlinear QSPR
in the description of passive transport and the unknown of specific pharmacokinetic or toxicological property.

mechanisms of TdP.
: ; Supporting Information Available: P-gp substrates and
There are also a number of descriptors exclusively selectednonsubstratesl HIA+ and HIA— agents, and TdP-+ and TdP—

for each of the problems. For instance, 6 descriptors areagents and the 159 descriptors for each compound. This
selected for P-gp, which describe carbon-based electrotopo-material is available free of charge via the Internet at http:/
logical properties, solvent accessible surface area for posi-pubs.acs.org.
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