1134 J. Chem. Inf. Model2005,45, 1134-1146

Consensus Scoring Criteria for Improving Enrichment in Virtual Screening

Jinn-Moon Yang,** Yen-Fu Cheri;* Tsai-Wei Sheri;* Bruce S. Kristaf' and D. Frank Hsu*#

Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050,
Taiwan, Institute of Bioinformatics, National Chiao Tung University, Hsinchu, 30050, Taiwan,
Dementia Research Service, Burke Medical Research Institute, 785 Mamaroneck Ave.,

White Plains, New York 10605, Department of Neuroscience, Weill Medical College of Cornell University,
1300 York Ave., New York, New York 10021, Department of Computer and Information Science,
Fordham University, 113 West 60th Street, LL 813, New York, New York 10023, and DIMACS Center,
Rutgers University, 96 Frelinghuysen Road, Piscataway, New Jersey 08854-8018

Received January 28, 2005

Motivation: Virtual screening of molecular compound libraries is a potentially powerful and inexpensive
method for the discovery of novel lead compounds for drug development. The major weakness of virtual
screening-the inability to consistently identify true positives (leat® likely due to our incomplete
understanding of the chemistry involved in ligand binding and the subsequently imprecise scoring algorithms.

It has been demonstrated that combining multiple scoring functions (consensus scoring) improves the
enrichment of true positives. Previous efforts at consensus scoring have largely focused on empirical results,
but they have yet to provide a theoretical analysis that gives insight into real features of combinations and
data fusion for virtual screeninesults: We demonstrate that combining multiple scoring functions improves

the enrichment of true positives only if (a) each of the individual scoring functions has relatively high
performance and (b) the individual scoring functions are distinctive. Notably, these two prediction variables
are previously established criteria for the performance of data fusion approaches using either rank or score
combinations. This work, thus, establishes a potential theoretical basis for the probable success of data
fusion approaches to improve yields in in silico screening experiments. Furthermore, it is similarly established
that the second criterion (b) can, in at least some cases, be functionally defined as the area between the rank
versus score plots generated by the two (or more) algorithms. Because rank-score plots are independent of
the performance of the individual scoring function, this establishes a second theoretically defined approach
to determining the likely success of combining data from different predictive algorithms. This approach is,
thus, useful in practical settings in the virtual screening process when the performance of at least two individual
scoring functions (such as in criterion a) can be estimated as having a high likelihood of having high
performance, even if no training sets are available. We provide initial validation of this theoretical approach
using data from five scoring systems with two evolutionary docking algorithms on four targets, thymidine
kinase, human dihydrofolate reductase, and estrogen receptors of antagonists and agonists. Our procedure
is computationally efficient, able to adapt to different situations, and scalable to a large number of compounds
as well as to a greater number of combinations. Results of the experiment show a fairly significant
improvement (vs single algorithms) in several measures of scoring quality, specifically “goodness-of-hit”
scores, false positive rates, and “enrichment”. This approach (available online at http://gemdock.life.
nctu.edu.tw/dock/download.php) has practical utility for cases where the basic tools are known or believed
to be generally applicable, but where specific training sets are absent.

1. INTRODUCTION structure of a target protein active site and a potential small
ligand database, VS predicts the binding mode and the
binding affinity for each ligand and ranks a series of
candidate ligands. The VS computational method involves
| two basic critical elements: one or more efficient molecular
&Iocking algorithms and a means for interpreting the data
derived from this algorithm, termed a scoring method. A
molecular docking method for VS should be able to screen
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the binding free energy mainly include knowledge-based, score from the docking algorithm to the ranking of this score
physics-base@land empiricaP scoring functions. in the population of tested (potential) compounds (hereatfter,
In practice, the performance of a scoring function is limited the “rank/score function”) as a scoring characteristic and the
by our incomplete understanding of the complex issues differences in the rank/score graph between individual
involved in chemical interactions. Not surprisingly, the scoring functions as a diversity measurement. Data fusion
performance of these scoring functions is, therefore, often approaches have been proposed, developed, and implemented
inconsistent across different systems in a database s€#rch. in information retrieval?1316-’molecular similarity® and
The inaccuracy of the scoring methods, that is, inadequatelymicroarray gene expression analySisyhere the following
predicting the true binding affinity of a ligand for a receptor, two general criteria have been identified for potential
is probably the major weakness for VS. The likelihood that improvement: (a) each of the individual scoring functions
different scoring methods might have different strengths and has to have a relatively good performance, and (b) the scoring
weaknesses raises the possibility that the simultaneous useharacteristics of each of the scoring functions have to be
of more than one method might increase the overall signal different. To enable us to approach CS as a problem of data
noise ratio of the calculated affinity. Consistent with this fusion, we initially defined two parameters: (1) the perfor-
concept, it has been reported that fusion among differentmance ratioP, /P, (P, and P, are the low and high
scoring methods in VS can perform better than the averageperformance of a pairing combination, respectively), which
of the individual scoring function.More recently, the same is used as the relative performance measurement, and (2)
phenomena has been reported in information retrieval (IR) the rank/score graph, which is used as a surrogate to
and molecular similarity measuremettst’ Charifson et at! mathematically describe the characteristic results of a given
presented a computational study in which they used anscoring algorithm on a given target. We will then investigate
intersection-based consensus approach to combine scoringhese parameters and the overall resultant quality of a VS
functions. They showed an enrichment in the ability to experiment when data are combined using either rank-based
discriminate between active and inactive enzyme inhibitors or score-based consensus scoring (RCS and SCS) approaches.
for three different enzymes (p38 MAP kinase, inosine Our novel consensus scoring system in VS was developed
monophosphate dehydrogenase, and HIV protease) using tw@nd evaluated by combining five scoring functions on the
different docking methods (DOCK and GAMBLER) and four target proteins TK, human dihydrofolate reductase
13 scoring functions. Bissantz et*8lused three docking (DHFR), ER-antagonist receptor (ER), and ER-agonist
programs (DOCK, FlexX? and GOLD?% in combination receptor (ERA) using two docking algorithms GEMDOCK
with seven scoring functions to assess the accuracy of VS?* and GOLD.?°
methods against two protein targets [thymidine kinase (TK)
and estrogen receptor (ER)]. Stahl and Ramesented a 2. MATERIALS AND METHODS
study of the performance of four scoring functions for library ~ 2.1. Preparations of Ligand Databases and Target
docking using the program FlexX on seven target proteins. Proteins. We used the ligand data set from the comparative
The study in Verdonk et & addressed a number of issues studies of Bissantz et #to evaluate the screening accuracy
on the use of VS proteirligand docking on the basis of  of different CS on TK, DHFR, ER, and ERA. The receptors
VS experiments against four targets (neuraminidase, ptplb.for these screens cover different receptor types and, therefore,
cdk2, and ER) using the program GOLD and three scoring provide a reasonable test of CS. For each target protein, the
functions. Wang and Wadgpresented an idealized computer ligand database included 10 known active compounds and
experiment to explore how consensus scoring (CS) works 990 random compounds. According to our experiments, these
based on the assumption that the error of a scoring functionare some pharmaceutically relevant compounds for our test
is a random number in a normal distribution. They also receptors in this random ligand set. In total, the database
studied the relationship between the hit rates, the number ofused for screening ligands against the target proteins
scoring functions, and the use of several different approachescontained 1000 molecules; that is, 990 random compounds
to ranking the data (the rank-by-score, rank-by-rank, and were the same for each of these screens. For screening TK
rank-by-vote strategies) for consensus scorings. and ER, the sets of 10 known active compounds were
These reported results are significant and potentially robustidentical to those reported earli®rFor screening ERA, a
in that the performance results of these CS methods seem t®et of 10 known agonists was identical to that reported
be independent of the target receptor and the dockingearlier?®> and the 10 active compounds of DHFR were
algorithm. The reported results seem to depend on the methodselected from the Protein Data Bank (PFB).
of combination (by rank, by score, by intersection, by min, ~ Four complexes of the target proteins were selected for
by max, and by voting) and the number and nature of virtual screening from the PDB: TK complex (PDB code:
individual scoring functions involved in the combination. 1kim), DHFR (PDB code: 1hfr), ER-antagonist complex
Although researchers have come to realize the advantage an@PDB code: 3ert), and ER-agonist complex (PDB code:
benefit of method combination and consensus scorings, thelgwr). These complexes were reasonable choices because
major issues of how and when these individual scoring their ligand-binding cavities are wide enough to accom-
functions should be combined remain a challenging problem modate a broad variety of ligands and, therefore, did not
not only for researchers but also, perhaps more importantly, require binding site modifications. The active compound set
for practitioners in virtual screening. of each target protein, target proteins, and 990 random
Here, we address these issues for improving the enrichmentcompounds are available on the Web at http://gemdock.
in VS using the concept of data fusion and exploring diversity life.nctu.edu.tw/dock/download.php.
on scoring characteristics between individual scoring func-  2.2. Docking Methods and Scoring Functions. GEM-
tions. In particular, we use a function that relates the absoluteDOCK Docking. Our previous work* showed that the
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docking accuracy of GEMDOCK was better than that of van der Waals energy and ligand torsional strain energy
comparative approaches, such as GOLD and FlexX, on a(Enemal_energ)- Here, the GoldScore function was divided into
diverse data set of 100 proteitigand complexes proposed two kinds of functions (GOLDB-GoldScore and GOLP

by Jones et &° The screening accuracies of GEMDOCK  Goldinter), which were given &%

were also better than GOLD, FlexX, and DOCK on screening

the ligand database from Bissantz et al. for’TKnd ER?® EcoLo-colascore™ ~(En_gond_gnergy™ Ecomplex_Energ) —

In this study, GEMDOCK parameters in the flexible docking Einternal_Energ (3)
included the initial step sizes & 0.8 andy = 0.2), family

competition lengthl{ = 2), population sizeN = 200), and and

recombination probability pz = 0.3). For each ligand

screened, GEMDOCK optimization stopped either when the EcoLp-coldinter = ~ (EH_Bond_Energy+ ECompIex_Energ)/ (4)
convergence was below a certain threshold value or when

the iterations exceeded the maximal preset value of 60. o ) .
set of 82 proteirligand complexes by regression against

Therefore, GEMDOCK generated 800 solutions in one - : .
generation and terminated after it exhausted 48 000 solutionsgggasured affinity data. The ChemScore function was defined

for each docked ligand.
GEMDOCK could use either a purely empirical (GEM- AGgop-chemscore= AGo + AGpona+

The ChemScore function was derived empirically from a

DOCK-—Binding) or pharmacophore-based scoring function _
(GEMDOCK—Pharmaf® The empirical binding energy AGetart AGipot AGror (5)
(Eving) is given as Each component of this equation is the product of a term
E —E 4E 1 dependent on the magnitude of a particular physical contri-
GEMDOCK-Binding — =inter intra 1) bution to free energy and a scale factor determined by

regression AGhyong Was the hydrogen bond contribution,
AGnermandAGip, were metat-ligand and lipophilic binding
contributions, respectively, andG,,; was a term that
penalized flexibility.

where Ejyer and Einga are the intermolecular and intra-
molecular energies, respectivély The energy function,
GEMDOCK—-Pharma, can be dissected into the following

terms?? Here, two docking methods (GEMDOCK and GOLD) and
E —E T E T E five scoring functions (GEMDOCKBinding, GEMDOCK-
GEMDOCK-Pharma™~ =GEMDOCK-Binding * =pharma " ™ligpre Pharma, GOLB-GoldScore, GOLB-Goldinter, and GOLB-
(2) ChemScore) were used to study the screening performance

) o o of data fusion. To analyze the performance uniformly, the
where Egevpock-sinding i the empirical binding energy  fitness scores of these five scoring functions were taken as
defined in eq 1,Ephama is the energy of binding site  the negative of the sum of the component energy terms, so
pharmacophores (hot spots), gy is a penalty value if  that |arger fitness scores were better.

a ligand does not satisfy the ligand preferertdgnamaand 2.3. Performance Evaluation. It is important to have
Eigore are especially useful in selecting active compounds gpjective criteria for evaluating the overall quality (and
from hundreds of thousands of nonactive compounds by performance) of a scoring method. Some common factors
equuding ligands that vio!ate th(_a characteristics of known sed for this purpose are false positive (FP) rate, yield (the
active ligands, thereby improving the number of true percentage of active ligands in the hit list), enrichment, and
pOSitiVeS. When GEMDOCK uses a pharmaCOphOre'basedgoodness_of-hit (GH Score)_ Suppose mﬁis the number
SCOI‘ing function, some known active |igandS (more than tWO) of active |igands among thE highest_ranking Compounds
are required for evolving the pharmacological consensus (je., the hit list),A is the total number of active ligands in
according to our previous resufs. the database, andis the total number of compounds in the

GOLD 2.1 Docking. GOLD?is a widely used and reliable  gatabase. Thed/T;, (%) is the hit rate and Ty — Ay)/

docking tool. Standard parameters of the GOLD program (T — A) (%) is the FP rate, respectively. The enrichment is

were used in this study. For each of the 10 genetic algorithm gefined as Ay/T:)/(A/T). The GH score is defined #s
(GA) runs, a maximum number of 10 000 operations were
A(BA+Ty) Th— Ah)

performed on a population of 50 individuals. Operator

weights for crossover, mutation, and migration were set to 4T, A TT-A

95%, 95%, and 10%, respectively. The maximum distance

between hydrogen donors and fitting points was set to 2 A, The GH score contains a coefficient to penalize excessive
and nonbonded van der Waals energy was cut off at 4.0 A. hjt Jist size and, when evaluating hit lists, is calibrated by
To further speed up the calculation, the GA docking was weighting the score with respect to the yield and coverage.
stopped when the top three solutions were within 1.5 A root The GH score ranges from 0.0 to 1.0, where 1.0 represents
mean square distance of each other. These parameters arg perfect hit list (i.e., containing all of, and only, the active

chosen according to the standard default settings recom-igands). Here, we took the averages of FP rates, enrichments,

mended by the authors for virtual screening. and GH scores. For example, the averages of the FP rate
GOLD offered two scoring functions that were called the gnd enrichment are defined as

GoldScore® and the ChemScore functioffsThe GoldScore _

function was made up of three components: protdigand ZiA:l('l*h - DT —A) (6)
hydrogen-bond energyE( sond_energ), Protein-ligand van

der Waals energy Bcomplex energ)s @nd ligand internal  and
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[ S(mIATVA (7) ~ and
m
respectively, wherd}, is the number of compounds in a hit S = ZSAK(X)/m (for SCS) (10)
list containingi active compounds. k=

2.4. Methods of Data FusionOur approach to combina- . .
tion methods and CS in VS is analogous to those used in. When we sor(x) andSy(x) into ascending and descend-

PR : der, respectively, the ranking functiofz(x) and
IR'216.17and in microarray gene expression analysidere, Ing order, . ' .
we explore the fundamental question, that is, when and how ES(tX) tﬁatn i?]ethob;[\szednfct)ir r?cvsv anicrinSICS, rie snpectlvle\lkl/. ivﬁ
two scoring functions should be combined in order to achieve ote that, € Iwo Tunctions, we simply assigh equai weig

a performance higher than both individual scoring functions. fo each scoring method. Combination methods that give

Because the number of compounds is in the thousands Ordlfferent weights to each individual scoring method have

even tens of thousands, listing all mathematically possible ibsegn ;ifg;tiil'rmixeﬁg‘ing method of scoring functions
scoring functions would be a computationally intractable Rffnk/Score Graoh. In the rocess of searching for
problem. Therefore, we instead chose to take a combinatorial ph. P 9

approach to the problem that focuses on taking a group 0fprediction variables or criteria for consensus scoring and
m scoring functions and evaluates the performance of all method combination, we have defined various performance

possible combinations, which agl,(C<) = 2 — 1 factors to evaluate scoring method A and various methods

. ) . s of combination. In this paper, we explore the scoring
(whenmis 5, this number is 31)' .In add|t|o.n, whgn we tracI.< characteristics of scoring method A by calculating the rank/
the performance of all combinations, we investigate specif-

. . re functiorf, follows:
ically when and why any combinations outperform all score functiorta as Toflows

individual scoring functions in terms of the performance and f()=S.R. ) =S.[R. i 11
the scoring characteristics of each of the individual scoring A0) = SaRa 1) = SalRy 0] (11)
functions. wherej is the rank of compound, which has the score

A scoring functionSa(x) of the scoring method A is a fa(j); that is,j is in N = {1, 2, 3, ...,n}. We note thaN is
function that assigns a real number to each compouind  not the set of compounds (which B but is the set of all
the set of alln compound® = {cy, cz, ..., cn}. Hence, the  positive integers less than or equahtdn fact,N is used as
scoring functiorS(x) is a function fromD — &7 (the setof  the index set for the ranking function value. The rank/score
real numbers). When treatin§.(X) as an array of real  function fo so defined signifies the scoring behavior of
numbers, sorting the array and assigning a rank to each ofscoring method A and is independent of the compounds. The
their compounds would transfer the scoring functiu(x) graph of the rank/score function= fa(x) with respect to
to a ranking functiorRa(x) from D to N whereN = {1, 2, scoring method A is the rank/score graph of A. Tendy
.., N}. In the following, we elaborate on the issues of axes of a rank/score graph are the rank and the normalized
performance evaluation and methods of combination. score, respectively. The variatiof/Ga) of a rank/score

To fairly compare and correctly combine multiple scoring graph and the relative performance measurenfef) of

functions, one has to normalize the scores obtained by combining two scoring functions A and B are defined as
different methods. In our approach, we normalize all scoring

functionsSu(x): D — 92 to the range ok, which is less N ) 2r1 12
than or equal to 1 but greater than or equal to zero; that is, RIS a(farfe) = {Z[fA(J) — fg()]/n} (12)
Sa(X): D — [0, 1], as follows: =
and
_ SA(X) - Snin .
Sa() = S._S. € D ) P/P, = min[P(A),P(B)/max[P(A),P(B)]  (13)

_ _ ) o wheren is the number of compounds in the hit list ajnid
where Syax is the maximum value an8y,, is the minimum the rank of the compound with scofig), whereh = A or

value of Su(x), respectively, where & j < n; nis the B; P(A) and P(B) are the performances (measured as GH
number of compounds in the list. He®y,ax is the first rank scores and false positive rates) of methods A and B,
and Sy, the last rank among compounds. respectively.

Methods of Combination. Given a list of m scoring In IR, CS has been demonstrated to improve the perfor-
functions, there are several different methods of combination, jance when the combinations of the scoring functions
such as rank by voting, rank by rank, and rank by score. jnyolved have high performance (e.g., low FP rates or high
Rank by voting has been reported to have a poor perfor- GH scores) and their variation of the rank/score graph was
mance?? In this paper, we considered two combinations using large. Here, a new CS index (called &S), which is an
RCS and SCS. Because we distinguish the two functionsingicative criterion for combining two scoring functions A
[ranking functionRa(x) and normalized scoring function  5nd B fromm (m =2) scoring methods, was developed to

Sa(X)] for a scoring methodA, we calculate the scoring guide the combinations in VS and is defined as
function for RCS and SCS of the scoring methodg\,

wherek =1, 2, ...,m, as follows: CShgedA.B) = g(R/S,.(fa f5)) + 9[P(A,B)]
where

S00= R 0M - (OrRCS) O on By = glP(A) + P(B) — 2P,) + o(PYPy  (14)
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Chart 1. Flowchart of the RCS/SCS Algorithm

pound set D = {C;, where i=1,2,..5

scoring methods A, k= 1,2, ...,m,
t Receptor targets, and

performance evaluator P

Output its
scoring function
A,

For given targets
and P, do we know
hich 4, is best2

Calculate S, (x) and R ;; (x)
where k=1,2,....m
Calculate other 2" -m -1
combinations and CS functions

an the 2™ -1 scoring
methods be evaluated

Compute rank/score graph and Evaluate all 2" -1 scoring
for each of 2™-1 methods functions. Graph the curves

Find subset of g methods

{(Ags A wos Agg) L.
R/S, ,, i Laty) is maximized, i* j
i

Compute rank/score graph for
each of primary methods

l

Let A% = Comb (A, gy, ..., Agg Maximize P (4,®), 1<g < m,
where 4,&) = comb (Ay,4j,, .. Ayp)

g(v) is a normalization function (i.eg(v): »— [0, 1]), and
CShgex ranges between 0 and B;, is the mean performance
of m primary scoring functions [i.ePm = 3, P(A)/m].

Algorithm. We provided a CS procedure for both
RCS and SCS to improve the screening accuracy in VS.
The flowchart of the algorithm is given in Chart 1, and a
more detailed description of the algorithm is included in
Appendix A.

3. RESULTS AND DISCUSSION

Table 1 shows the overall accuracy of using two docking
programs (GEMDOCK and GOLD) and five scoring func-

YANG ET AL.

using the same reference protein and screening database with
true positive rates ranging from 80 to 100%. GEMDOEK
Pharma (GEMDOCK with pharmacological preferences)
was superior to the comparative approaches and GOLD
GoldScore (GOLD using eq 3 as the scoring function) was
better than FlexX and DOCK, two widely used docking tools.
For example, the FP rates were 2.3% (GEMDGEK
Binding), 0.4% (GEMDOCK-Pharma), 1.6% (Surflex),
17.4% (DOCK), 70.9% (FlexX), and 8.3% (GOLE5old-
Score) when the true positive rate was 90% for ER
antagonists. When known active ligands were not available,
GEMDOCK could use a purely empirical scoring function
(GEMDOCK-BInding, Method A), and Tables 1 and 2
show that the screening accuracy of GEMDOCK is some-
what influenced and is comparable to that of comparative
methods (e.g., DOCK, FlexX, and GOLD) on these ligand
data sets.

Our consensus scoring methods consist of rank combina-
tions and score combinations on five methods, including
Methods A, B, C, D, and E (Table 1). We initially used the
screening of TK inhibitors to provide a perspective of the
enrichment improvements that can be realized from the
particular consensus approach used. Table 3 shows the ranks
of 10 TK known active ligands and average accuracies using
five primary methods and four pairing rank combinations to
screen TK inhibitors from a data set of 1000 compounds.
On the basis of the ranks of these known inhibitors and eqs
6 and 7, we can calculate the FP rates, enrichments, and
GH scores of various primary methods and consensus
approaches.

A summary of the results of the VS studies with various
consensus methods for TK, DHFR, and ER, and ERA are
summarized in Figure 1 and Tables 4 and 5. Figure 1 plots
average GH scores of all 31 possible combinations including
the five individual scoring functions. Thgaxis values for
each combination (including the single case) are sorted in
ascending order in each grouplotombinationsk = 1, 2,

3, 4, and 5, respectively. A combination method means
that it combinesk methods. For example, the number of
2-combination methods is 10 (i.€C5> = 10) in this paper.
Method BD is the combination of Methods B and D, and
Method CDE is the combination of Methods C, D, and E.
Tables 4 (RCS) and 5 (SCS) give average FP rates and

tions to assess the accuracy of VS methods against fouraverage GH scores of five kinds kfcombination methods

protein targets (TK, DHFR, ER, and ERA). These scoring
methods, defined in eqs-b, were termed as GEMDOCK
Binding (Method A), GEMDOCK-Pharma (Method B),
GOLD—GoldScore (Method C), GOLBGoldinter (Method
D), and GOLD-ChemScore (Method E). For each method,

for screening four targets. According to these experimental
results, the behavior of RCS and SCS is similar. Therefore,
we focus on the analysis of RCS in the following.

The average accuracy improved with the increase of fused
methods (Figure 1, Table 4). Five individual methods for

the first term denotes the docking tool and the second termscreening TK found that the best GH score and best false
represents the scoring function used. For example, Methodpositive rate are 0.23 and 11.21%, respectively. When
A uses GEMDOCK as the docking tool and eq 1 as the method fusions with rank combinations were carried out by
scoring function; Method E uses GOLD as the docking tool combining a pair of methods one by one, the accuracies
and eq 5 as the scoring function. The average FP rate (eq 6)mproved from 0.23 to 0.29 for the average of the overall
and average GH score were used to evaluate the screenin@H score, and the average of false positive rates dropped
accuracy. Among these five methods, the accuracy of from 11.21 to 7.77%. Fusing three and four selected methods
GEMDOCK-Pharma was the best for TK and both ER maintained mean GH scores at 0.29 and 0.28 while decreas-

receptors and GOLBGoldinter outperformed other methods
for DHFR.

Table 2 shows FP rates of GEMDOCK and four compa-
rable approaches (Surflé&kDOCK '8 FlexX,*® and GOLDB9)
for screening ER and TK. All of these methods were tested

ing the false positive rates to mean values of 5.40 and 4.04%,
respectively.

The average accuracy level improves with the number of
fused methods (Table 4), but strikingly, the maximum
accuracy always occurs in the combination of a pair of
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Table 1. Screening Accuracies of Five Methods for Screening TK, DHFR, ER-Antagonist Receptors, and ER-Agonist Receptors

GEMDOCK- GEMDOCK- GOLD— GOLD— GOLD—
target Binding Pharma GoldScore Goldinter ChemScore
proteir? measure factor (Method A) (Method B (Method C) (Method D) (Method B)

TK average enrichment 12.29 42.27 10.34 7.09 1.32
average FP rate (%) 4.11 0.82 5.04 7.61 38.48

average GH score 0.22 0.45 0.20 0.17 0.08

DHFR average enrichment 29.57 70.21 29.40 90.64 1.17
average FP rate (%) 3.24 0.32 15.49 1.48 50.04

average GH score 0.35 0.66 0.32 0.81 0.05
ER-antagonist average enrichment 34.88 92.19 34.07 75.14 67.14
average FP rate (%) 1.32 0.13 20.44 0.88 1.17
average GH score 0.39 0.83 0.34 0.70 0.64
ER-agonist average enrichment 6.94 45.66 3.50 15.21 25.09
average FP rate (%) 7.83 0.75 21.67 6.40 5.24

average GH score 0.17 0.48 0.12 0.23 0.31

a2The bold case value is the best score. GEMDG&Karma with the pharmacophore-based scoring function and GOLD with the Goldinter
score are superior to the othe?sTK: HIV-1 thymidine kinase (PDB code: 1kim); DHFR: human dihydrofolate reductase (PDB code:1hfr);
ER-antagonist receptor: estrogen receptor of antagonists (PDB code: 3ert); and ER-agonist receptor: estrogen receptor of agonists (PDB code:
1gwr). ¢ Method A uses GEMDOCK as the docking tool and eq 1 as the scoring funétidethod B uses GEMDOCK as the docking tool and
eq 2 as the scoring functiofAMethod C uses GOLD as the docking tool and eq 3 as the scoring funthtethod D uses GOLD as the docking
tool and eq 4 as the scoring functichiMethod E uses GOLD as the docking tool and eq 5 as the scoring function.

Table 2. Comparison of GEMDOCK with Other Methods for Screening the ER Antagonists and TK Inhibitors by False Positive Rates (%)

target true positive GEMDOCK— GEMDOCK-—

protein (%) Binding? Pharma Surflext DOCK® FlexXxc GOLD*
ER-antagonists 80 1.5 (15/990) 0.0 (0/990) 1.3 13.3 57.8 5.3
90 2.3 (23/990) 0.4 (4/990) 1.6 17.4 70.9 8.3

100 5.2 (51/990) 0.9 (9/990) 2.9 18.9 e 234
thymidine kinase 80 4.7 (47/990) 0.6 (6/990) 0.9 23.4 8.8 8.3
90 8.9 (88/990) 1.3 (13/990) 2.8 255 13.3 9.1
100 9.7 (96/990) 2.9 (29/990) 3.2 27.0 194 9.3

aUsing the same data set proposed by Bissantz8tTade bold case value is the best sScrf&EMDOCK uses egs 1 and 2 as scoring functions
for GEMDOCK-Binding and GEMDOCK-Pharma, respectively.Directly summarized from ref 32Z. The false positive rate from 990 random
ligands.® FlexX could not calculate the docked solution for EST09.

Table 3. Ranks of 10 Known TK Inhibitors Using Five Primary Scoring Methods and Four Pairing Rank Combinations for Screening TK
Inhibitors

known Method Method Method Method Method Method Method Method Method
ligand ID? AP B C D E AB¢ CD BC BD
dt 27 6 28 28 314 5 24 4 1
idu 30 10 15 53 362 7 28 2 7
hpt 106 22 103 173 263 32 113 26 39
ahiu 26 13 13 25 252 6 14 3 2
dhbt 40 14 94 78 325 12 70 20 11
hmtt 97 39 35 59 518 37 38 10 14
mct 23 9 70 52 188 4 51 12 6
acv 55 11 80 155 494 15 99 16 28
gcv 42 7 79 134 618 10 91 13 21
pcv 16 5 37 51 531 1 35 6 5
average false positive 411 0.82 5.04 7.61 38.48 0.75 5.13 0.58 0.80
rate (%)
average GH score 0.22 0.45 0.20 0.17 0.08 0.56 0.20 0.54 0.58
average enrichment 12.29 42.27 10.34 7.09 1.32 57.48 9.93 54.56 59.85

aThe abbreviations are as follows: dt, deoxythymidine; idu, 5-iododeoxyuridine; hpt, 6-(3-hydrody-propyl-thymine); ahiu, 5-iodouracil
anhydrohexitol nucleoside; dhbt, 6-[3-hydroxy-2-(hydroxymethyl)propyl]-5-methyl-2,4(1h,3h)-pyrimidinedione [6-(dihydroxy-isdlwrtyire];
hmtt, 6-[6-hydroxymethy-5-methyl-2,4-dioxo-hexahydro-pyrimidin-5-yl-methyl]-5-methyl-1H-pyrimidin-2,4-dione; mct, (North)-mesnbaoc
thymidine; acv, aciclovir; gcv, ganciclovir; pcv, penciclovirThe primary scoring methods (A, B, C, D, and E) are defined in TabkThe
combining pair method is combined from five primary scoring methods (A, B, C, D, and E).

methods (Figure 1 and Table 4). Thus, the unique contribu- of Method A and Method C were 0.39 and 0.34 and the
tion of data fusion is most clearly observed when one other three methods (Methods B, D, and E) had good GH
individually considers the results obtained with each of the scores with 0.83, 0.70, and 0.64, respectively (Table 1). As
possible combinations. In all of the screening sets in this shown in Figure 1c, combinations with Method A or Method
paper, the best composition consistently appeared with theC may reduce the performance of an individual method. For
combination of Methods B and D. The ER antagonists example, Methods CD and BC performed worse than
provide a clear example. For ER antagonists, the GH scoresMethods B and D. One possible reason is that these less
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Figure 1. Average GH scores of 31 various rank combinations and scoring combinations of five methods for four virtual screening targets:
(@) TK, (b) DHFR, (c) ER, and (d) ERA. These five methods (i.e., A, B, C, D, and E) are defined in Table 1.

accurate methods are predominantly adding noise thatChemScore (Method E). Notably, the greatest difference
overwhelms the correction ability of fusion. On the other between the 10 possible pairs of rank/score graphs was that
hand, combinations with Method B or Method D performed between Methods B and D (Figures 1 and 2 and Table 6),
comparatively better than the other Method combinations. the best performing pair fusion, and Method BD also brought
Method BD had the highest value (0.86) in the GH score the best GH score for all test cases (Figure 1). In Figure 1b
and the lowest value in the false positive rate (0.04%). Other (DHFR), Methods B and D had the highest GH score (0.66
targets (i.e., TK, DHFR, and ERA) in Table 4 and Figure 1 and 0.81, respectively) among the primary methods (Table
show similar results. This phenomenon indicated data fusion 1), and the combination of these two methods had the best
could improve the quality of screening if each of the GH score (0.84) and the lowest false positive rate (0.14%)
combination methods has relatively high performance. among the combinations with two methods. A similar
Our data also indicate that the differences between methodgphenomenon occurred in the ER antagonist study (Figure
are also important. Figure 2 shows the rank/score graphs oflc). On the other hand, Methods A and B had the highest
five individual scoring methods, and Table 6 shows the GH score (0.22 and 0.45) among the primary methods for
variations of rank/score graphs of 10 compositions combining TK (Figure 1a), but the best combination was Method BD
two methods for four screening targets. The scoring value among the 10 pair combinations. The critical point is that
shown in Figure 2 was normalized through eq 8. The the rank/score variation between Methods B and D is larger
variation of the rank/score graph of Method AB, on average, than the rank/score variation of Methods A and B (Figure
is the smallest (i.e., the rank score graphs are the most2)—consistent with the use of different docking algorithms
similar) because Methods A and B used the same dockingbetween B and D but not between B and A.
tool and similar scoring functions. Method CD has a similar ~ These experimental results using the BD model implied
phenomenon. Method B consistently outperformed Method that the variation of the rank/score graph might be useful to
A (Table 1), and fusion methods involving Method B are improve the screening accuracy in both VS and IR. This
consistently better than those methods combining with concept is supported by observations of a similar phenom-
Method A in four test cases (Figure 1). For DHFR, ER, and enon occurring in ER agonists (Figures 1d and 2d). Specif-
ERA, Method D is better than Method C and the fusion ically, Methods B and E had the highest GH scores, but their
methods with Method D consistently outperformed the fusion rank/score variation is smaller than the variation of Methods
methods with Method C. According to these observations, B and D. The performance of Method BD was better than
we could divide these five methods into three groups. The that of Method BE for ER agonists.
first group consisted of Methods A and B, the second group  More importantly, we present evidence that, in general, a
included Methods C and D, and the final group is GOLD  pairing combination can be expected to improve the perfor-
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Table 4. Screening Accuracies of Different Rank Combinations of Five Methods for Screening Four Targets: TK, DHFR, ER, &hd ERA

measurement
factors
average false single (5% 2-com (10y 3-com (10%
positive rate (%) TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA

average 11.21 14.12 4.79 8.38 7.77 9.91 3.31 4.24 5.40 6.16 2.04 2.46
SD 15.44 20.98 8.76 7.89 7.34 9.80 4.09 3.76 3.63 4.73 1.72 2.07
max value 38.48 50.04 20.44 21.67 17.35 27.56 9.22 11.86 9.92 14.64 4.16 7.55
min value 0.82 0.32 0.13 0.75 0.58 0.14 0.04 0.99 0.53 0.07 0.04 0.72

average GH score TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA

average 0.23 0.44 0.58 0.26 0.29 0.47 0.68 0.41 0.29 0.47 0.69 0.46
SD 0.14 0.30 0.21 0.14 0.19 0.28 0.15 0.21 0.18 0.23 0.13 0.18
max value 0.45 0.81 0.83 0.48 0.58 0.84 0.86 0.74 0.56 0.85 0.86 0.72
min value 0.08 0.05 0.34 0.12 0.13 0.10 0.48 0.15 0.16 0.16 0.55 0.19
measurement
factors
average false 4-com (5§ 5-com (1}
positive rate (%) TK DHFR ER ERA TK DHFR ER ERA
average 4.04 4.11 1.39 1.52 g g g g
SD 1.90 2.44 0.74 0.61 g g g
max value 5.88 6.69 1.86 1.98 3.10 3.00 1.04 1.08
min value 0.83 1.07 0.08 0.55 3.10 3.00 1.04 1.08
average GH score TK DHFR ER ERA TK DHFR ER ERA
average 0.28 0.48 0.68 0.48 g g g g
SD 0.14 0.17 0.09 0.13 g g g g
max value 0.53 0.72 0.84 0.71 0.28 0.52 0.67 0.56
min value 0.21 0.27 0.63 0.39 0.28 0.52 0.67 0.56

aThe methods and targets are defined in Table 1, and the bold case value is the bes$tFeerimdividual methodst Combination of two
selected methods, 10 compositioh€ombination of three selected methods, 10 compositib@embination of four selected methods, five
compositionsf Combination of five selected methods and only one composifidwerage and standard deviation could not be calculated when
one value exists.

mance (vs its constituent members) if and only if the addressed the use of rank combinations and score combina-
normalizedP/P, andR/S,, Of @ combining method both have tions on five scoring functions related to two docking
values> 0.5. Figures 3 and 4 and Table 6 are the results of algorithms. We found that some rank-based combinations
the algorithm (in Chart 1 and Appendix A) when= 2, outperformed (in terms of average false positive rates and
where pairing combinations were considered &/i8,a(fa, average GH scores) each individual component in the fusion;
fg) was used to calculate the bidiversity of methods A and that is, data fusion was beneficial. More importantly, this
B. Figure 3a shows the relationship between the GH-scorestudy of data fusion, which was based on VS results of 1000
improvement and the variatio®(S,a;, €q 12) of the rank/  test “compounds” and four receptor targets, suggests that a
score graphs of the 10 pairing combinations for each targetfusion method is able to improve the screening accuracy in
protein. Figure 3b indicates the relationship between the GH- VS only when (a) each of the individual scoring functions
score improvement and the relative performance measure-has a relatively good performanck, (P, was > 0.5) and
ment @/Py, eq 13). These results echo those in the field of (b) the scoring characteristics of each of the scoring functions
data fusion in IR**7in which studies have shown that CS are quite different RS, was > 0.5). The observations of
improves accuracy if the multiple scoring functions involved RCS and SCS are summarized as follows:
have high performance and their rank/score variation is large. (a) Combining multiple scoring functions improves en-
We further created an additional synthetic variable, thgs&S  richment of true positives only if botg(P, /P,) > 0.5 and
(eq 14), which can be used to integrate these two criteria g(R/S,a) > 0.5 (Figure 4). These two prediction indicators
(P /P, andR/ISa). Figure 5 shows the relationship between can be combined into a single indicator, specificallyinfe
GH-score improvement and the g4 of the 10 pairing > 1.5 (Figure 5). For example, in ER, the GH scores of
combinations for each target protein. A pairing combination Methods B (0.83) and D (0.70) (Table 1) are the best and
often improves screening accuracies when itgdods more Method BD (0.86) is the best among 31 combinations (Table
than 1.5. These data suggest that one can use the,.G& 4). The CSgex Of Method BD is 1.68 (Table 6).
estimate predicted benefits from fusion approaches. The (b) The accuracy of CS was improved by increasing the
overall accuracy of this approach should be readily extend- scoring methods for both RCS and SCS (Tables 4 and 5),
able by future research, which would also be expected to but the combination of all scoring methods did not display
increase the GQex itself by extending the reach to further the best possible performance observed. For RCS, the
distinct algorithms and other combination approaches beyondperformance of 2-combination or 3-combination methods
unweighted SCS and RCS. outperformed 4-combination or 5-combination methods.
DiscussionCS is a popular strategy for solving the scoring  (c) TheR/S criterion is particularly useful and important
inaccuracy problem in VS. In this study, our CS methods because VS is often used to screen for compounds that
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Table 5. Screening Accuracies of Different Score Combinations of Five Methods for Screening Four Targets: TK, DHFR, ER, &nd ERA

measuremen
factors
average false single (5% 2-com (10) 3-com (10¥

positive rate (%) TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA
average 11.21 14.12 4.79 8.38 7.46 7.67 2.57 3.13 4.07 3.02 112 1.28
SD 15.44 20.98 8.76 7.89 9.51 12.25 4.80 3.26 5.40 5.47 2.00 157
max value 38.48 50.04 20.44 21.67 26.16 34.31 13.74 9.91 18.18 18.00 6.54 5.42
min value 0.82 0.32 0.13 0.75 0.73 0.10 0.07 0.33 0.64 0.10 0.07 0.23

average GH score TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA

average 0.23 0.44 0.58 0.26 0.28 0.53 0.69 0.41 0.36 0.64 0.76 0.52
SD 0.14 0.30 0.21 0.14 0.15 0.27 0.16 0.17 0.14 0.22 0.09 0.13
max value 0.45 0.81 0.83 0.48 0.51 0.81 0.85 0.62 0.51 0.81 0.86 0.66
min value 0.08 0.05 0.34 0.12 0.10 0.08 0.50 0.17 0.12 0.16 0.58 0.20
measuremen
factors
average false 4-com (5§ 5-com (1}
positive rate (%) TK DHFR ER ERA TK DHFR ER ERA
average 2.01 1.15 0.44 0.50 g g g g
SD 1.92 1.45 0.41 0.27 g g g g
max value 5.40 291 1.08 0.92 1.14 0.09 0.22 0.34
min value 0.69 0.05 0.10 0.19 1.14 0.09 0.22 0.34
average GH score TK DHFR ER ERA TK DHFR ER ERA
average 0.41 0.75 0.79 0.60 g g g g
SD 0.11 0.13 0.03 0.07 g g g g
max value 0.52 0.84 0.84 0.72 0.46 0.82 0.78 0.61
min value 0.23 0.52 0.75 0.52 0.46 0.82 0.78 0.61

aThe methods and targets are defined in Table 1, and the bold case value is the bes$tFeerimdividual methodst Combination of two
selected methods, 10 compositioh€ombination of three selected methods, 10 compositib@embination of four selected methods, five
compositionsf Combination of five selected methods and only one composifidwerage and standard deviation could not be calculated when
one value exists.

interact with receptors that have few or no known binding  (e) The best average GH scores and best average FP rates
partners; that is, there is no adequate training set to establistof SCS are superior to those of RCS on all target proteins
an algorithm’s veracity/utility. Under these common cir- (Tables 4 and 5). For example, for TK, the best average GH
cumstances, the performance of a given individual scoring scores are 0.41 (SCS) and 0.29 (RCS) and the best average
function is generally unknown and cannot be evaluated at FP rates are 2.01% (SCS) and 4.04% (RCS). For ER
the point it must be used. As noted above, the variation, antagonists, the best average GH scores are 0.79 (SCS) and
RIS, of a pair of rank/score graphs is a useful index to 0.69 (RCS) and the best average FP rates are 0.44% (SCS)
improve the screening accuracy for combining two individual and 1.39% (RCS).

methods when the individual scoring functions are quite  (f) For RCS methods, the moderate number of scoring
different (or complementary, for example, normaliZ¥8, functions, two or three, are the best and sufficient for the

> 0.5). As this approach appears target-independent, ourpurpose of CS (Figure 1). In contrast, the number of
approach should be usable in different situations, whether it combining methods is three or four to achieve the best
is running a truly blind screen, a combination screen coupling performance for SCS methods. This phenomenon was also
a blinded set with partial analysis and subsequent use offound in data fusion in IR and was consistent with the
previous hits as a training set, or a screen with a true training previous findings for C$?

set. Our approach also reveals that approaches that yield the (4) when combining methods with highly differential
best average GH score/FP (i.e., SCS), which are relevantyerformance, Figure 1 shows that SCS works better than
for screens without training sets, are different from those Rcs. For example, the combinations of BE (for TK) and
approaches that optimize individual GH scores (i.e., RCS), ABg (for DHFR)are the best and the worst, respectively,
which are applicable when a training set is available. This 3mong five primary methods. For ER and ERA, the com-

is reflected in the next two points. . _binations of BC (ER) and BCE (ERA) have similar results.
(d) The best GH scores of RCS are consistently superior

to those of SCS for these four target proteins (Figure 1). 4. CONCLUSION

Table 4 shows the best RCS-derived individual GH scores: '

0.58 (Method BD for TK), 0.85 (Method ABD for DHFR), It has been previously shown that CS improves VS and

0.86 (Methods BD and ABD for ER), and 0.74 (Method BD that CS may be more robust than individual methods because
for ERA). Table 5 shows the best SCS-derived individual each individual scoring function has strengths and weak-
GH scores: 0.52 (Method ABCD for TK), 0.84 (Method nesses with respect to docking algorithms, receptor targets,
ABDE for DHFR), 0.86 (Methods BDE for ER), and 0.72 and the database sets. Furthermore, although consensus
(Method BCDE for ERA). scoring does perform better than the average performance
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Figure 2. Rank/score curves of five methods (defined in Table 1) for four virtual screening targets: (a) TK, (b) DHFR, (c) ER, and (d)
ERA.

Table 6. Relationships between the GH-Score Improvements with the Performance R&Ri), (CSndex and the VariationR/S,a) of Rank/
Score Graph of 10 Pairing Combinations of Five Methods for Four Virtual Screening Targets

target proteif ABP AC AD AE BC BD BE CD CE DE

TK g(P/Pr)¢ 0.41 1.00 0.82 0.26 0.36 0.27 0.00 0.91 0.30 0.39
g(R/Sa)¢ 0.34 0.64 0.62 0.39 1.00 0.97 0.74 0.00 0.19 0.17
CShdes 1.34 1.64 1.37 0.39 1.92 1.74 1.03 0.80 0.19 0.19
RCS 0.11 0.06 0.01 —0.09 0.09 0.13 —0.32 0.00 -—0.07 —0.05
scs 0.06 0.02 0.00 -—0.02 0.01 0.01 -0.11 —0.01 —0.09 —0.07

DHFR g(Pi/Pr)e 0.54 1.00 0.43 0.10 0.49 0.88 0.02 0.39 0.12 0.00
g(R/Sa)¢ 0.04 0.91 0.88 0.32 1.00 0.97 0.41 0.00 0.45 0.46
CShndex 0.61 1.56 1.46 0.32 1.52 1.97 0.53 0.54 0.45 0.65
RCS 0.02 0.23 -0.07 —0.19 0.01 0.03 -—0.36 -0.27 -0.22 —0.68
SCS 0.05 0.28 —0.09 —0.07 0.02 0.00 -—0.02 -0.17 -0.23 —-0.70

ER antagonists(ER)  g(P/Py)¢ 0.12 0.92 0.30 0.41 0.00 0.86 0.71 0.16 0.25 1.00
g(R/Sa)? 0.00 0.82 0.46 0.29 1.00 0.68 0.47 0.21 0.28 0.03
CShdex 0.15 111 0.62 0.47 1.01 1.68 1.30 0.21 0.30 0.96
RCS —0.03 0.13 0.06 0.14 -0.29 0.03 -0.01 —0.20 —0.15 0.08
SCS —0.01 0.11 -0.20 0.15 —0.03 0.02 0.01 -0.18 —-0.10 0.11

ER agonists(ERA) g(P/Pr)¢ 0.21 0.91 0.96 0.59 0.00 0.47 0.80 0.53 0.27 1.00
g(R/Sa)¢ 0.40 0.49 0.57 0.10 0.88 1.00 0.39 0.00 0.33 0.45
CShdex 0.70 0.77 1.07 0.43 0.93 1.61 1.39 0.08 0.33 1.22
RCS —0.10 0.00 0.03 0.20 -0.14 0.26 0.24 —0.08 —0.05 0.22
SCS —0.06 0.02 -0.04 0.20 0.07 0.09 0.14 -0.07 0.01 0.22

a Four target proteins (TK, DHFR, ER, and ERA) are defined in TableThere are 10 compositions of combining pair methods from five
primary scoring methods (A, B, C, D, and E) defined in Tablé The normalization performance ratio (eq 13) of a pair-combination metibe.
normalization variation (eq 12) of a rank/score graph of a pair-combination methogerformance indicator (eq 14) of a pair-combination
method.! The GH-score improvements of rank-based consensus scoring and score-based consensus scoring for RCS and SCS, respectively.

of the individual scoring methods, it does not consistently GOLD) have been shown to be very good. Although
perform better than the best individual scoring function. In performances (measured as GH score and false positive rate)
our experiment on the four receptors TK, DHFR, ER, and of each individual scoring function do vary within each of
ERA, the two docking algorithms we used (GEMDOCK and and among the receptor targets, interesting patterns do stand
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Figure 3. Relationships between the GH-score improvement with (a) a normalized value of varRiy) ©f the rank/score graph (the
correlation coefficients are 0.135 for RCS and 0.131 for SCS) and (b) a normalized vaRy®pbf 40 pairing combinations of five
methods for four virtual screening targets (the correlation coefficients are 0.661 for RCS and 0.531 for SCS).

in VS: CS that combines multiple scoring functions should

[l,:gg : o ° egm ° . only be used when (a) the scoring functions involved have
0.80 - ; ° high performance and (b) the scoring characteristic of each
070 T | ° of the individual scoring functions are quite different. These
a‘jﬁ 0.60 : o ° two CS criteria also work for different performances between
e 050 ;%= © SCS and RCS. It has been reported that, on average, score
Bo 040 PO Comx ° combination is more effective than rank combination.
g'zg < ° However, we have demonstrated that in a majority of cases
ot0 | * o under the two CS criteria, rank combination does perform
0.00 % v 2 v © better or as good as score combination. This is analogous to
000 020 040 060 080  1.00 the results reported in fR17 Our second criterion calcu-
2(P/Py) lates the rank/score function of each scoring function and

_ _ _ _ o then computes the differences between the rank/score func-
Figure 4. GH-score improvements with normalized variations of  tjons of the scoring methods involved. Our second criterion

rank/score graphsR(S,a) and a normalized relative performance : ; :
measuremen®/P;) of 40 RCS and SCS pairing combinations of does not involve a performance evaluation of the combined

five methods for four virtual screening targets. The positive and Methods. This criterion is useful because, very often, the
negative GH-score improvements are denoted with a circle and aperformance of individual scoring functions is not known
cross, respectively. For positive cases, the mean and variance ofor cannot be evaluated. We believe that our rank-based and
sum of g(Rhva) and g(P/Pp) are 1.30 and 0.399, respectively. In  gcore-based consensus scoring (RCS and SCS) procedures

contrast, these two values are 0.592 and 0.271 for negative cases . . : - .
The t-test result shows that the positive and negative cases areand consensus criteria for improving the enrichment in VS

significantly different. should be useful to researchers and practitioners in VS.
_ _ Our work, thus, provides a framework to study CS criteria
0.40 i * RCS and a procedure (the algorithm) for both rank-based and
£ 030 5”. - 868 score-based CS to improve the hit rates, FP rates, enrichment,
‘% 0.20 . .t and the GH score. The procedure is computationally efficient,
5 o0 * g 8 S, able to adapt to different situations, and scalable to a large
E 000 - : e . ;'_, b Po, s number of compounds and a greater number of comt.)ina.tions.
2 o0 ¢80 3 N s Moreover, we have shown the power of two combinations
3 020 % o . i (pairing combinations) and used the rank/score graph to
= _0'30 LI . assess the bidiversity between the two scoring methods used.
’ - * Our current work represents the first of a series of investiga-
040 ' ' ' tions to explore CS criteria for improving enrichment in VS.
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It also engenders a whole school of issues and directions
worthy of further study, which are summarized as follows:
Figure 5. Relationships between the GH-score improvement with (1) We will study the extension to three and higher number
the CSwex (€q 14) of 40 pairing combinations of five methods for  of combinations of scoring functions using the rank/score
I elalen Coeficents beteen graph variaion R'S) as a diversiy measturemen for the
(SCS). scoring m(—;-thods involved.
(2) In this paper, we used the rank/score functipras

out where we showed that combinations of two scoring the scoring characteristic for the scoring method A. Then,
functions leads to significant improvement on average GH we used the variation on the rank/score functiBfS¢,) to
score and average FP rate. characterize the scoring diversity between two scoring

We summarize and state the two CS criteria, which would methods A and B. Other parameters such as the difference
serve as two predictive variables for improving enrichment between the score functior& and S and the difference

cs el
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between the rank functioriRs andRs can also be used to  rates), (b)fa, andfa, are dissimilar and complementary for

distinguish the scoring diversity. The rank/score graphs anyi, j, andi # j in [1, g] [i.e., RiS.adfa; fa,) is large], and

(Figure 2) have provided a clear visualization for character- (c) p(Aﬁg)) is better than or as good &A,), whereA, are

izing the scoring diversity between individual scoring func- the single scoring functions ank = 1, 2, ..., m. The

tions. consensus scorings often improve the screening accuracy
(3) In our combination (RCS and SCS) of scoring when the value GQex (€q 13) is more than 1.2.

functions, we use averages to compute the scores for the Step 4.4.The combination method\ff’) is the desired

rank and score combinations. Combinations using different consensus scoring method that we seek for the receptor target
weighting schemes can also be used. Hsu and Palt#bo 514 the compound s&. Go to Step 6.
presented work on the combination of two scoring methods  gien, 5 The performance of the individual scoring function

using a weighted scheme with a steptef as a proportion. i ynknown (i.e., the active and inactive compounds are
(4) In the future, we will study a more diverse set of unknown).

docking tools, scoring functions (e.g., knowledge-based,
physics-based, and empirical scoring functions), and receptor,

targets with different binding-site characteristics (e.g., hy- Step 5.2.Search in the space of tha single scoring

drophobic, hydrophilic, missing loop, and highly hydrated) ¢, i Fi inal 10 functionA©
to systematically determine the limitations/advantages of our ;"};:jnza md :(Z}y %ﬁgfecgjgg Se r?]ca(\)rzglg Eu?f '%? <0

SCS and RCS procedures and consensus criteria for improv
ing the enrichment in VS.

Step 5.1.For each single scoring methdy obtain the
rank/score graph using eq 11.

thatfa, andfa, are dissimilar and complementary for ainy
j,andi = jin [1, g] [i.e., RISuay(fa,, fa,) is large].
Step 5.3. The combination method fg‘& of g single
APPENDIX A. THE RCS/SCS ALGORITHM scoring methods is the desired combination method for the
Given. A compound setD with n compounds in a receptor target and the compound Bet
compound database (or a hit list);e D; i =1, 2, ...,n; t Step 6. Output A, which is the desired combination
receptor targets; performance evalu®de.g., the GH score  ethod.
or FP rate); andn scoring method#y with scoring functions

S k=1,2,...m . o ACKNOWLEDGMENT
Output. The best consensus scoring and combination )
methods for the receptor targets and the compound Bet J.-M.Y. was supported, in part, by Grant NSC-93-2113-

Step 1.1f we know in advance which scoring function M-009-010 from the National Science Council of Taiwan
works better for a given target or targets, output this scoring agig%/agrsmv\égﬁyg;;gn?gfql'sal?/v gr?mBVSetlfr?snssug‘Sonﬁ[g
function directly. Otherwise, execute the following steps to . i .
sljaleclt thelbestyCS w xecu wing step by NIH/NIA AG024232, the Hereditary Disease Foundation,

Step 2. For each receptor target, calculate the scoring and the State of New York. D.F.H. is supported, in part, by

. ) ; the Fordham University Faculty Fellowship, the DIMACS
functionsS, () using them scoring methodsy, wherek = e e Eeey, A VI JerseF))/ Commission.
1, 2, ...,m. Obtain each ranking functioR (x) from each '

S (X) by ranking the scores 8, (X) in descending order.
(Note: there are then single scoring methods.)
Step 3.Calculate the other2— m — 1 combinations and (1) DiMasi, J. A.; Hansen, R. W.; Grabowski, H. G. The price of

cs using eqs 9 and 10. (Note: these are U‘Eé k i;gé)é/aétizonisrﬁvilsesstimatesofdrug development caktilealth Econ.

combinations, wherk= 2, 3, ..., m,and the scoring functions (2) Doman, T. N.: McGovern, S. L.; Witherbee, B. J.; Kasten, T. P.;
are all normalized.) If the™— 1 scoring methods can be Kurumbail, R.; Stallings, W. C.; Connolly, D. T.; Schoichet, B. K.

; ; At Molecular docking and high-throughput screening for novel inhibitors
evaluated (including both rank and score combinations), then & protein tyrosine phosphatase-1B.Med. Chem2002 45, 2213-

go to Step 4. Otherwise, go to Step 5. 2221.
Step 4.The performance of the individual scoring function  (3) Lyne, P. D. Structure-based virtual screening: an overviemg

: ; ; ; Discavery Today2002 7, 1047-1055.
can be evaluated (i.e., the active and inactive compounds (4) Shoichet, B. K.: McGovern, S. L.: Wei, B. Iwin, J. Lead discovery

are known). using molecular dockingCurr. Opin. Chem. Biol2002 6, 439-446.
Step 4.1.Evaluate the performance of all of the single (5) Shoichet, B. K. Virtual screening of chemical libraridature2004

; ; ; ; ; GRC( 432, 862-865.
and combination scoring functions using evaluatde.g., (6) Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-based scoring function

GH score or FP rate).' Note th_at these are the ranking to predict proteir-ligand interactionsJ. Mol. Biol. 200Q 295, 337—
functionsRa (X) and scoring function$y, (X), wherek = 1, 356.

_ i (7) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C;
2,0 2 1: Gr‘.""ph the p_erforma_mce curve for all of the smgle Alagona, G.; Profeta, S., Jr.; Weiner, P. A new force field for molecular
and combination functions using rank and score combina-  mechanical simulation of nucleic acids and proteiisAm. Chem.
tions. Order the performance within each of timegroups Soc.1984 106, 765-784.

. ; ; — (8) Gehlhaar, D. K.; Verkhivker, G. M.; Rejto, P.; Sherman, C. J.; Fogel,
with ( Ln) combinations, wheré = 1, 2, ...,m. D. B.; Fogel, L. J.; Freer, S. T. Molecular recognition of the inhibitor
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