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Motivation: Virtual screening of molecular compound libraries is a potentially powerful and inexpensive
method for the discovery of novel lead compounds for drug development. The major weakness of virtual
screeningsthe inability to consistently identify true positives (leads)sis likely due to our incomplete
understanding of the chemistry involved in ligand binding and the subsequently imprecise scoring algorithms.
It has been demonstrated that combining multiple scoring functions (consensus scoring) improves the
enrichment of true positives. Previous efforts at consensus scoring have largely focused on empirical results,
but they have yet to provide a theoretical analysis that gives insight into real features of combinations and
data fusion for virtual screening.Results:We demonstrate that combining multiple scoring functions improves
the enrichment of true positives only if (a) each of the individual scoring functions has relatively high
performance and (b) the individual scoring functions are distinctive. Notably, these two prediction variables
are previously established criteria for the performance of data fusion approaches using either rank or score
combinations. This work, thus, establishes a potential theoretical basis for the probable success of data
fusion approaches to improve yields in in silico screening experiments. Furthermore, it is similarly established
that the second criterion (b) can, in at least some cases, be functionally defined as the area between the rank
versus score plots generated by the two (or more) algorithms. Because rank-score plots are independent of
the performance of the individual scoring function, this establishes a second theoretically defined approach
to determining the likely success of combining data from different predictive algorithms. This approach is,
thus, useful in practical settings in the virtual screening process when the performance of at least two individual
scoring functions (such as in criterion a) can be estimated as having a high likelihood of having high
performance, even if no training sets are available. We provide initial validation of this theoretical approach
using data from five scoring systems with two evolutionary docking algorithms on four targets, thymidine
kinase, human dihydrofolate reductase, and estrogen receptors of antagonists and agonists. Our procedure
is computationally efficient, able to adapt to different situations, and scalable to a large number of compounds
as well as to a greater number of combinations. Results of the experiment show a fairly significant
improvement (vs single algorithms) in several measures of scoring quality, specifically “goodness-of-hit”
scores, false positive rates, and “enrichment”. This approach (available online at http://gemdock.life.
nctu.edu.tw/dock/download.php) has practical utility for cases where the basic tools are known or believed
to be generally applicable, but where specific training sets are absent.

1. INTRODUCTION

The average cost and time of bringing a new drug to
market has been estimated to be $802 million in year 2000
U.S. dollars and 12 years1, respectively. Discovery of novel
lead compounds through virtual screening (VS) of chemical
databases against protein structures is an emerging and
promising step in computer-aided drug design.2-5 Given the

structure of a target protein active site and a potential small
ligand database, VS predicts the binding mode and the
binding affinity for each ligand and ranks a series of
candidate ligands. The VS computational method involves
two basic critical elements: one or more efficient molecular
docking algorithms and a means for interpreting the data
derived from this algorithm, termed a scoring method. A
molecular docking method for VS should be able to screen
a large number of potential ligands with reasonable accuracy
and speed, and scoring methods for VS should effectively
discriminate between correct binding states and nonnative
docked conformations during the molecular docking phase
and should distinguish a small number of active compounds
from hundreds of thousands of nonactive compounds during
the postdocking analysis. The scoring functions that calculate
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the binding free energy mainly include knowledge-based,6

physics-based,7 and empirical8 scoring functions.
In practice, the performance of a scoring function is limited

by our incomplete understanding of the complex issues
involved in chemical interactions. Not surprisingly, the
performance of these scoring functions is, therefore, often
inconsistent across different systems in a database search.9,10

The inaccuracy of the scoring methods, that is, inadequately
predicting the true binding affinity of a ligand for a receptor,
is probably the major weakness for VS. The likelihood that
different scoring methods might have different strengths and
weaknesses raises the possibility that the simultaneous use
of more than one method might increase the overall signal-
noise ratio of the calculated affinity. Consistent with this
concept, it has been reported that fusion among different
scoring methods in VS can perform better than the average
of the individual scoring functions.11 More recently, the same
phenomena has been reported in information retrieval (IR)
and molecular similarity measurements.12-17 Charifson et al.11

presented a computational study in which they used an
intersection-based consensus approach to combine scoring
functions. They showed an enrichment in the ability to
discriminate between active and inactive enzyme inhibitors
for three different enzymes (p38 MAP kinase, inosine
monophosphate dehydrogenase, and HIV protease) using two
different docking methods (DOCK18 and GAMBLER) and
13 scoring functions. Bissantz et al.10 used three docking
programs (DOCK, FlexX,19 and GOLD20) in combination
with seven scoring functions to assess the accuracy of VS
methods against two protein targets [thymidine kinase (TK)
and estrogen receptor (ER)]. Stahl and Rarey9 presented a
study of the performance of four scoring functions for library
docking using the program FlexX on seven target proteins.
The study in Verdonk et al.21 addressed a number of issues
on the use of VS protein-ligand docking on the basis of
VS experiments against four targets (neuraminidase, ptp1b,
cdk2, and ER) using the program GOLD and three scoring
functions. Wang and Wang22 presented an idealized computer
experiment to explore how consensus scoring (CS) works
based on the assumption that the error of a scoring function
is a random number in a normal distribution. They also
studied the relationship between the hit rates, the number of
scoring functions, and the use of several different approaches
to ranking the data (the rank-by-score, rank-by-rank, and
rank-by-vote strategies) for consensus scorings.

These reported results are significant and potentially robust
in that the performance results of these CS methods seem to
be independent of the target receptor and the docking
algorithm. The reported results seem to depend on the method
of combination (by rank, by score, by intersection, by min,
by max, and by voting) and the number and nature of
individual scoring functions involved in the combination.
Although researchers have come to realize the advantage and
benefit of method combination and consensus scorings, the
major issues of how and when these individual scoring
functions should be combined remain a challenging problem
not only for researchers but also, perhaps more importantly,
for practitioners in virtual screening.

Here, we address these issues for improving the enrichment
in VS using the concept of data fusion and exploring diversity
on scoring characteristics between individual scoring func-
tions. In particular, we use a function that relates the absolute

score from the docking algorithm to the ranking of this score
in the population of tested (potential) compounds (hereafter,
the “rank/score function”) as a scoring characteristic and the
differences in the rank/score graph between individual
scoring functions as a diversity measurement. Data fusion
approaches have been proposed, developed, and implemented
in information retrieval,12,13,16,17molecular similarity,15 and
microarray gene expression analysis,23 where the following
two general criteria have been identified for potential
improvement: (a) each of the individual scoring functions
has to have a relatively good performance, and (b) the scoring
characteristics of each of the scoring functions have to be
different. To enable us to approach CS as a problem of data
fusion, we initially defined two parameters: (1) the perfor-
mance ratioPl /Ph (Pl and Ph are the low and high
performance of a pairing combination, respectively), which
is used as the relative performance measurement, and (2)
the rank/score graph, which is used as a surrogate to
mathematically describe the characteristic results of a given
scoring algorithm on a given target. We will then investigate
these parameters and the overall resultant quality of a VS
experiment when data are combined using either rank-based
or score-based consensus scoring (RCS and SCS) approaches.
Our novel consensus scoring system in VS was developed
and evaluated by combining five scoring functions on the
four target proteins TK, human dihydrofolate reductase
(DHFR), ER-antagonist receptor (ER), and ER-agonist
receptor (ERA) using two docking algorithms GEMDOCK
24 and GOLD.20

2. MATERIALS AND METHODS

2.1. Preparations of Ligand Databases and Target
Proteins.We used the ligand data set from the comparative
studies of Bissantz et al.10 to evaluate the screening accuracy
of different CS on TK, DHFR, ER, and ERA. The receptors
for these screens cover different receptor types and, therefore,
provide a reasonable test of CS. For each target protein, the
ligand database included 10 known active compounds and
990 random compounds. According to our experiments, these
are some pharmaceutically relevant compounds for our test
receptors in this random ligand set. In total, the database
used for screening ligands against the target proteins
contained 1000 molecules; that is, 990 random compounds
were the same for each of these screens. For screening TK
and ER, the sets of 10 known active compounds were
identical to those reported earlier.10 For screening ERA, a
set of 10 known agonists was identical to that reported
earlier,25 and the 10 active compounds of DHFR were
selected from the Protein Data Bank (PDB).26

Four complexes of the target proteins were selected for
virtual screening from the PDB: TK complex (PDB code:
1kim), DHFR (PDB code: 1hfr), ER-antagonist complex
(PDB code: 3ert), and ER-agonist complex (PDB code:
1gwr). These complexes were reasonable choices because
their ligand-binding cavities are wide enough to accom-
modate a broad variety of ligands and, therefore, did not
require binding site modifications. The active compound set
of each target protein, target proteins, and 990 random
compounds are available on the Web at http://gemdock.
life.nctu.edu.tw/dock/download.php.

2.2. Docking Methods and Scoring Functions. GEM-
DOCK Docking. Our previous work24 showed that the
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docking accuracy of GEMDOCK was better than that of
comparative approaches, such as GOLD and FlexX, on a
diverse data set of 100 protein-ligand complexes proposed
by Jones et al.20 The screening accuracies of GEMDOCK
were also better than GOLD, FlexX, and DOCK on screening
the ligand database from Bissantz et al. for TK27 and ER.28

In this study, GEMDOCK parameters in the flexible docking
included the initial step sizes (σ ) 0.8 andψ ) 0.2), family
competition length (L ) 2), population size (N ) 200), and
recombination probability (pc ) 0.3). For each ligand
screened, GEMDOCK optimization stopped either when the
convergence was below a certain threshold value or when
the iterations exceeded the maximal preset value of 60.
Therefore, GEMDOCK generated 800 solutions in one
generation and terminated after it exhausted 48 000 solutions
for each docked ligand.

GEMDOCK could use either a purely empirical (GEM-
DOCK-Binding) or pharmacophore-based scoring function
(GEMDOCK-Pharma).28 The empirical binding energy
(Ebind) is given as

where Einter and Eintra are the intermolecular and intra-
molecular energies, respectively.24 The energy function,
GEMDOCK-Pharma, can be dissected into the following
terms:27

where EGEMDOCK-Binding is the empirical binding energy
defined in eq 1,Epharma is the energy of binding site
pharmacophores (hot spots), andEligpre is a penalty value if
a ligand does not satisfy the ligand preferences.28 Epharmaand
Eligpre are especially useful in selecting active compounds
from hundreds of thousands of nonactive compounds by
excluding ligands that violate the characteristics of known
active ligands, thereby improving the number of true
positives. When GEMDOCK uses a pharmacophore-based
scoring function, some known active ligands (more than two)
are required for evolving the pharmacological consensus
according to our previous results.28

GOLD 2.1 Docking.GOLD20 is a widely used and reliable
docking tool. Standard parameters of the GOLD program
were used in this study. For each of the 10 genetic algorithm
(GA) runs, a maximum number of 10 000 operations were
performed on a population of 50 individuals. Operator
weights for crossover, mutation, and migration were set to
95%, 95%, and 10%, respectively. The maximum distance
between hydrogen donors and fitting points was set to 2 Å,
and nonbonded van der Waals energy was cut off at 4.0 Å.
To further speed up the calculation, the GA docking was
stopped when the top three solutions were within 1.5 Å root
mean square distance of each other. These parameters are
chosen according to the standard default settings recom-
mended by the authors for virtual screening.

GOLD offered two scoring functions that were called the
GoldScore20 and the ChemScore functions.29 The GoldScore
function was made up of three components: protein-ligand
hydrogen-bond energy (EH_Bond_Energy), protein-ligand van
der Waals energy (EComplex_Energy), and ligand internal

van der Waals energy and ligand torsional strain energy
(EInternal_Energy). Here, the GoldScore function was divided into
two kinds of functions (GOLD-GoldScore and GOLD-
Goldinter), which were given as20

and

The ChemScore function was derived empirically from a
set of 82 protein-ligand complexes by regression against
measured affinity data. The ChemScore function was defined
as29

Each component of this equation is the product of a term
dependent on the magnitude of a particular physical contri-
bution to free energy and a scale factor determined by
regression.∆Ghbond was the hydrogen bond contribution,
∆Gmetaland∆Glipo were metal-ligand and lipophilic binding
contributions, respectively, and∆Grot was a term that
penalized flexibility.

Here, two docking methods (GEMDOCK and GOLD) and
five scoring functions (GEMDOCK-Binding, GEMDOCK-
Pharma, GOLD-GoldScore, GOLD-Goldinter, and GOLD-
ChemScore) were used to study the screening performance
of data fusion. To analyze the performance uniformly, the
fitness scores of these five scoring functions were taken as
the negative of the sum of the component energy terms, so
that larger fitness scores were better.

2.3. Performance Evaluation. It is important to have
objective criteria for evaluating the overall quality (and
performance) of a scoring method. Some common factors
used for this purpose are false positive (FP) rate, yield (the
percentage of active ligands in the hit list), enrichment, and
goodness-of-hit (GH score). Suppose thatAh is the number
of active ligands among theTh highest-ranking compounds
(i.e., the hit list),A is the total number of active ligands in
the database, andT is the total number of compounds in the
database. ThenAh/Th (%) is the hit rate and (Th - Ah)/
(T - A) (%) is the FP rate, respectively. The enrichment is
defined as (Ah/Th)/(A/T). The GH score is defined as30

The GH score contains a coefficient to penalize excessive
hit list size and, when evaluating hit lists, is calibrated by
weighting the score with respect to the yield and coverage.
The GH score ranges from 0.0 to 1.0, where 1.0 represents
a perfect hit list (i.e., containing all of, and only, the active
ligands). Here, we took the averages of FP rates, enrichments,
and GH scores. For example, the averages of the FP rate
and enrichment are defined as

and

EGEMDOCK-Binding ) Einter + Eintra (1)

EGEMDOCK-Pharma) EGEMDOCK-Binding + Epharma+ Eligpre

(2)

EGOLD-GoldScore) -(EH_Bond_Energy+ EComplex_Energy) -
EInternal_Energy (3)

EGOLD-Goldinter) - (EH_Bond_Energy+ EComplex_Energy) (4)

∆GGOLD-ChemScore) ∆G0 + ∆Ghbond+
∆Gmetal+ ∆Glipo+ ∆Grot (5)

GH ) [Ah(3A + Th)

4ThA ](1 -
Th - Ah

T - A )

∑i)1
A (Th

i - i)/(T - A) (6)
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respectively, whereTh
i is the number of compounds in a hit

list containingi active compounds.
2.4. Methods of Data Fusion.Our approach to combina-

tion methods and CS in VS is analogous to those used in
IR12,16,17and in microarray gene expression analysis.23 Here,
we explore the fundamental question, that is, when and how
two scoring functions should be combined in order to achieve
a performance higher than both individual scoring functions.
Because the number of compounds is in the thousands or
even tens of thousands, listing all mathematically possible
scoring functions would be a computationally intractable
problem. Therefore, we instead chose to take a combinatorial
approach to the problem that focuses on taking a group of
m scoring functions and evaluates the performance of all
possible combinations, which are∑k)1

m (Cm
k ) ) 2m - 1

(whenm is 5, this number is 31). In addition, when we track
the performance of all combinations, we investigate specif-
ically when and why any combinations outperform all
individual scoring functions in terms of the performance and
the scoring characteristics of each of the individual scoring
functions.

A scoring functionSA(x) of the scoring method A is a
function that assigns a real number to each compoundx in
the set of alln compoundsD ) {c1, c2, ..., cn}. Hence, the
scoring functionSA(x) is a function fromD f R (the set of
real numbers). When treatingSA(x) as an array of real
numbers, sorting the array and assigning a rank to each of
their compounds would transfer the scoring functionSA(x)
to a ranking functionRA(x) from D to N whereN ) {1, 2,
..., n}. In the following, we elaborate on the issues of
performance evaluation and methods of combination.

To fairly compare and correctly combine multiple scoring
functions, one has to normalize the scores obtained by
different methods. In our approach, we normalize all scoring
functionsSA(x): D f R to the range ofx, which is less
than or equal to 1 but greater than or equal to zero; that is,
S′A(x): D f [0, 1], as follows:

whereSmax is the maximum value andSmin is the minimum
value of SA(xj), respectively, where 1e j e n; n is the
number of compounds in the list. Here,Smax is the first rank
andSmin the last rank amongn compounds.

Methods of Combination. Given a list of m scoring
functions, there are several different methods of combination,
such as rank by voting, rank by rank, and rank by score.
Rank by voting has been reported to have a poor perfor-
mance.22 In this paper, we considered two combinations using
RCS and SCS. Because we distinguish the two functions
[ranking functionRA(x) and normalized scoring function
S′A(x)] for a scoring methodA, we calculate the scoring
function for RCS and SCS of them scoring methodsAk,
wherek ) 1, 2, ...,m, as follows:

and

When we sortSR(x) andSS(x) into ascending and descend-
ing order, respectively, the ranking functionsRR(x) and
RS(x) can be obtained for RCS and SCS, respectively. We
note that, in the two functions, we simply assign equal weight
to each scoring method. Combination methods that give
different weights to each individual scoring method have
been reported.31 The weighting method of scoring functions
is a part of our future work.

Rank/Score Graph. In the process of searching for
prediction variables or criteria for consensus scoring and
method combination, we have defined various performance
factors to evaluate scoring method A and various methods
of combination. In this paper, we explore the scoring
characteristics of scoring method A by calculating the rank/
score functionfA as follows:

where j is the rank of compoundx, which has the score
fA(j); that is, j is in N ) {1, 2, 3, ...,n}. We note thatN is
not the set of compounds (which isD) but is the set of all
positive integers less than or equal ton. In fact,N is used as
the index set for the ranking function value. The rank/score
function fA so defined signifies the scoring behavior of
scoring method A and is independent of the compounds. The
graph of the rank/score functiony ) fA(x) with respect to
scoring method A is the rank/score graph of A. Thex andy
axes of a rank/score graph are the rank and the normalized
score, respectively. The variation (R/Svar) of a rank/score
graph and the relative performance measurement (Pl /Ph) of
combining two scoring functions A and B are defined as

and

wheren is the number of compounds in the hit list andj is
the rank of the compound with scorefh(j), whereh ) A or
B; P(A) and P(B) are the performances (measured as GH
scores and false positive rates) of methods A and B,
respectively.

In IR, CS has been demonstrated to improve the perfor-
mance when the combinations of the scoring functions
involved have high performance (e.g., low FP rates or high
GH scores) and their variation of the rank/score graph was
large. Here, a new CS index (called CSindex), which is an
indicative criterion for combining two scoring functions A
and B fromm (m g2) scoring methods, was developed to
guide the combinations in VS and is defined as

where

SS(x) ) ∑
k)1

m

SAk
(x)/m (for SCS) (10)

fA(j) ) S′ARA
- 1(j) ) S′A[RA

-1(j)] (11)

R/Svar(fA,fB) ) {∑
j)1

n

[fA(j) - fB(j)]2/n}1/2 (12)

Pl/Ph ) min[P(A),P(B)]/max[P(A),P(B)] (13)

CSindex(A,B) ) g(R/Svar(fA,fB)) + g[P(A,B)]

g[P(A,B)] ) g[P(A) + P(B) - 2Pm) + g(Pl/Ph) (14)

[∑i)1
A (i/Th

i )/(A/T)]/A (7)

S′A(x) )
SA(x) - Smin

Smax - Smin
x ∈ D (8)

SR(x) ) ∑
k)1

m

RAk
(x)/m (for RCS) (9)
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g(V) is a normalization function (i.e.,g(V): V f [0, 1]), and
CSindex ranges between 0 and 2;Pm is the mean performance
of m primary scoring functions [i.e.,Pm ) ∑k)1

m P(Ak)/m].
Algorithm. We provided a CS procedure for both

RCS and SCS to improve the screening accuracy in VS.
The flowchart of the algorithm is given in Chart 1, and a
more detailed description of the algorithm is included in
Appendix A.

3. RESULTS AND DISCUSSION

Table 1 shows the overall accuracy of using two docking
programs (GEMDOCK and GOLD) and five scoring func-
tions to assess the accuracy of VS methods against four
protein targets (TK, DHFR, ER, and ERA). These scoring
methods, defined in eqs 1-5, were termed as GEMDOCK-
Binding (Method A), GEMDOCK-Pharma (Method B),
GOLD-GoldScore (Method C), GOLD-Goldinter (Method
D), and GOLD-ChemScore (Method E). For each method,
the first term denotes the docking tool and the second term
represents the scoring function used. For example, Method
A uses GEMDOCK as the docking tool and eq 1 as the
scoring function; Method E uses GOLD as the docking tool
and eq 5 as the scoring function. The average FP rate (eq 6)
and average GH score were used to evaluate the screening
accuracy. Among these five methods, the accuracy of
GEMDOCK-Pharma was the best for TK and both ER
receptors and GOLD-Goldinter outperformed other methods
for DHFR.

Table 2 shows FP rates of GEMDOCK and four compa-
rable approaches (Surflex,32 DOCK,18 FlexX,19 and GOLD20)
for screening ER and TK. All of these methods were tested

using the same reference protein and screening database with
true positive rates ranging from 80 to 100%. GEMDOCK-
Pharma (GEMDOCK with pharmacological preferences)
was superior to the comparative approaches and GOLD-
GoldScore (GOLD using eq 3 as the scoring function) was
better than FlexX and DOCK, two widely used docking tools.
For example, the FP rates were 2.3% (GEMDOCK-
Binding), 0.4% (GEMDOCK-Pharma), 1.6% (Surflex),
17.4% (DOCK), 70.9% (FlexX), and 8.3% (GOLD-Gold-
Score) when the true positive rate was 90% for ER
antagonists. When known active ligands were not available,
GEMDOCK could use a purely empirical scoring function
(GEMDOCK-Binding, Method A), and Tables 1 and 2
show that the screening accuracy of GEMDOCK is some-
what influenced and is comparable to that of comparative
methods (e.g., DOCK, FlexX, and GOLD) on these ligand
data sets.

Our consensus scoring methods consist of rank combina-
tions and score combinations on five methods, including
Methods A, B, C, D, and E (Table 1). We initially used the
screening of TK inhibitors to provide a perspective of the
enrichment improvements that can be realized from the
particular consensus approach used. Table 3 shows the ranks
of 10 TK known active ligands and average accuracies using
five primary methods and four pairing rank combinations to
screen TK inhibitors from a data set of 1000 compounds.
On the basis of the ranks of these known inhibitors and eqs
6 and 7, we can calculate the FP rates, enrichments, and
GH scores of various primary methods and consensus
approaches.

A summary of the results of the VS studies with various
consensus methods for TK, DHFR, and ER, and ERA are
summarized in Figure 1 and Tables 4 and 5. Figure 1 plots
average GH scores of all 31 possible combinations including
the five individual scoring functions. They-axis values for
each combination (including the single case) are sorted in
ascending order in each group ofk combinations,k ) 1, 2,
3, 4, and 5, respectively. Ak combination method means
that it combinesk methods. For example, the number of
2-combination methods is 10 (i.e.,C5

2 ) 10) in this paper.
Method BD is the combination of Methods B and D, and
Method CDE is the combination of Methods C, D, and E.
Tables 4 (RCS) and 5 (SCS) give average FP rates and
average GH scores of five kinds ofk-combination methods
for screening four targets. According to these experimental
results, the behavior of RCS and SCS is similar. Therefore,
we focus on the analysis of RCS in the following.

The average accuracy improved with the increase of fused
methods (Figure 1, Table 4). Five individual methods for
screening TK found that the best GH score and best false
positive rate are 0.23 and 11.21%, respectively. When
method fusions with rank combinations were carried out by
combining a pair of methods one by one, the accuracies
improved from 0.23 to 0.29 for the average of the overall
GH score, and the average of false positive rates dropped
from 11.21 to 7.77%. Fusing three and four selected methods
maintained mean GH scores at 0.29 and 0.28 while decreas-
ing the false positive rates to mean values of 5.40 and 4.04%,
respectively.

The average accuracy level improves with the number of
fused methods (Table 4), but strikingly, the maximum
accuracy always occurs in the combination of a pair of

Chart 1. Flowchart of the RCS/SCS Algorithm
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methods (Figure 1 and Table 4). Thus, the unique contribu-
tion of data fusion is most clearly observed when one
individually considers the results obtained with each of the
possible combinations. In all of the screening sets in this
paper, the best composition consistently appeared with the
combination of Methods B and D. The ER antagonists
provide a clear example. For ER antagonists, the GH scores

of Method A and Method C were 0.39 and 0.34 and the
other three methods (Methods B, D, and E) had good GH
scores with 0.83, 0.70, and 0.64, respectively (Table 1). As
shown in Figure 1c, combinations with Method A or Method
C may reduce the performance of an individual method. For
example, Methods CD and BC performed worse than
Methods B and D. One possible reason is that these less

Table 1. Screening Accuracies of Five Methods for Screening TK, DHFR, ER-Antagonist Receptors, and ER-Agonist Receptorsa

target
proteinb measure factor

GEMDOCK-
Binding

(Method Ac)

GEMDOCK-
Pharma

(Method Bd)

GOLD-
GoldScore

(Method Ce)

GOLD-
Goldinter

(Method Df)

GOLD-
ChemScore
(Method Eg)

TK average enrichment 12.29 42.27 10.34 7.09 1.32
average FP rate (%) 4.11 0.82 5.04 7.61 38.48
average GH score 0.22 0.45 0.20 0.17 0.08

DHFR average enrichment 29.57 70.21 29.40 90.64 1.17
average FP rate (%) 3.24 0.32 15.49 1.48 50.04
average GH score 0.35 0.66 0.32 0.81 0.05

ER-antagonist average enrichment 34.88 92.19 34.07 75.14 67.14
average FP rate (%) 1.32 0.13 20.44 0.88 1.17
average GH score 0.39 0.83 0.34 0.70 0.64

ER-agonist average enrichment 6.94 45.66 3.50 15.21 25.09
average FP rate (%) 7.83 0.75 21.67 6.40 5.24
average GH score 0.17 0.48 0.12 0.23 0.31

a The bold case value is the best score. GEMDOCK-Pharma with the pharmacophore-based scoring function and GOLD with the Goldinter
score are superior to the others.b TK: HIV-1 thymidine kinase (PDB code: 1kim); DHFR: human dihydrofolate reductase (PDB code:1hfr);
ER-antagonist receptor: estrogen receptor of antagonists (PDB code: 3ert); and ER-agonist receptor: estrogen receptor of agonists (PDB code:
1gwr). c Method A uses GEMDOCK as the docking tool and eq 1 as the scoring function.d Method B uses GEMDOCK as the docking tool and
eq 2 as the scoring function.e Method C uses GOLD as the docking tool and eq 3 as the scoring function.f Method D uses GOLD as the docking
tool and eq 4 as the scoring function.g Method E uses GOLD as the docking tool and eq 5 as the scoring function.

Table 2. Comparison of GEMDOCK with Other Methods for Screening the ER Antagonists and TK Inhibitors by False Positive Rates (%)a

target
protein

true positive
(%)

GEMDOCK-
Bindingb

GEMDOCK-
Pharmab Surflexc DOCKc FlexXc GOLDc

ER-antagonists 80 1.5 (15/990)d 0.0 (0/990) 1.3 13.3 57.8 5.3
90 2.3 (23/990) 0.4 (4/990) 1.6 17.4 70.9 8.3

100 5.2 (51/990) 0.9 (9/990) 2.9 18.9 e 23.4
thymidine kinase 80 4.7 (47/990) 0.6 (6/990) 0.9 23.4 8.8 8.3

90 8.9 (88/990) 1.3 (13/990) 2.8 25.5 13.3 9.1
100 9.7 (96/990) 2.9 (29/990) 3.2 27.0 19.4 9.3

a Using the same data set proposed by Bissantz et al.10 The bold case value is the best score.b GEMDOCK uses eqs 1 and 2 as scoring functions
for GEMDOCK-Binding and GEMDOCK-Pharma, respectively.c Directly summarized from ref 32.d The false positive rate from 990 random
ligands.e FlexX could not calculate the docked solution for EST09.

Table 3. Ranks of 10 Known TK Inhibitors Using Five Primary Scoring Methods and Four Pairing Rank Combinations for Screening TK
Inhibitors

known
ligand IDa

Method
Ab

Method
B

Method
C

Method
D

Method
E

Method
ABc

Method
CD

Method
BC

Method
BD

dt 27 6 28 28 314 5 24 4 1
idu 30 10 15 53 362 7 28 2 7
hpt 106 22 103 173 263 32 113 26 39
ahiu 26 13 13 25 252 6 14 3 2
dhbt 40 14 94 78 325 12 70 20 11
hmtt 97 39 35 59 518 37 38 10 14
mct 23 9 70 52 188 4 51 12 6
acv 55 11 80 155 494 15 99 16 28
gcv 42 7 79 134 618 10 91 13 21
pcv 16 5 37 51 531 1 35 6 5
average false positive

rate (%)
4.11 0.82 5.04 7.61 38.48 0.75 5.13 0.58 0.80

average GH score 0.22 0.45 0.20 0.17 0.08 0.56 0.20 0.54 0.58
average enrichment 12.29 42.27 10.34 7.09 1.32 57.48 9.93 54.56 59.85

a The abbreviations are as follows: dt, deoxythymidine; idu, 5-iododeoxyuridine; hpt, 6-(3-hydrody-propyl-thymine); ahiu, 5-iodouracil
anhydrohexitol nucleoside; dhbt, 6-[3-hydroxy-2-(hydroxymethyl)propyl]-5-methyl-2,4(1h,3h)-pyrimidinedione [6-(dihydroxy-isobutyl)-thymine];
hmtt, 6-[6-hydroxymethy-5-methyl-2,4-dioxo-hexahydro-pyrimidin-5-yl-methyl]-5-methyl-1H-pyrimidin-2,4-dione; mct, (North)-methanocarba-
thymidine; acv, aciclovir; gcv, ganciclovir; pcv, penciclovir.b The primary scoring methods (A, B, C, D, and E) are defined in Table 1.c The
combining pair method is combined from five primary scoring methods (A, B, C, D, and E).
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accurate methods are predominantly adding noise that
overwhelms the correction ability of fusion. On the other
hand, combinations with Method B or Method D performed
comparatively better than the other Method combinations.
Method BD had the highest value (0.86) in the GH score
and the lowest value in the false positive rate (0.04%). Other
targets (i.e., TK, DHFR, and ERA) in Table 4 and Figure 1
show similar results. This phenomenon indicated data fusion
could improve the quality of screening if each of the
combination methods has relatively high performance.

Our data also indicate that the differences between methods
are also important. Figure 2 shows the rank/score graphs of
five individual scoring methods, and Table 6 shows the
variations of rank/score graphs of 10 compositions combining
two methods for four screening targets. The scoring value
shown in Figure 2 was normalized through eq 8. The
variation of the rank/score graph of Method AB, on average,
is the smallest (i.e., the rank score graphs are the most
similar) because Methods A and B used the same docking
tool and similar scoring functions. Method CD has a similar
phenomenon. Method B consistently outperformed Method
A (Table 1), and fusion methods involving Method B are
consistently better than those methods combining with
Method A in four test cases (Figure 1). For DHFR, ER, and
ERA, Method D is better than Method C and the fusion
methods with Method D consistently outperformed the fusion
methods with Method C. According to these observations,
we could divide these five methods into three groups. The
first group consisted of Methods A and B, the second group
included Methods C and D, and the final group is GOLD-

ChemScore (Method E). Notably, the greatest difference
between the 10 possible pairs of rank/score graphs was that
between Methods B and D (Figures 1 and 2 and Table 6),
the best performing pair fusion, and Method BD also brought
the best GH score for all test cases (Figure 1). In Figure 1b
(DHFR), Methods B and D had the highest GH score (0.66
and 0.81, respectively) among the primary methods (Table
1), and the combination of these two methods had the best
GH score (0.84) and the lowest false positive rate (0.14%)
among the combinations with two methods. A similar
phenomenon occurred in the ER antagonist study (Figure
1c). On the other hand, Methods A and B had the highest
GH score (0.22 and 0.45) among the primary methods for
TK (Figure 1a), but the best combination was Method BD
among the 10 pair combinations. The critical point is that
the rank/score variation between Methods B and D is larger
than the rank/score variation of Methods A and B (Figure
2)sconsistent with the use of different docking algorithms
between B and D but not between B and A.

These experimental results using the BD model implied
that the variation of the rank/score graph might be useful to
improve the screening accuracy in both VS and IR. This
concept is supported by observations of a similar phenom-
enon occurring in ER agonists (Figures 1d and 2d). Specif-
ically, Methods B and E had the highest GH scores, but their
rank/score variation is smaller than the variation of Methods
B and D. The performance of Method BD was better than
that of Method BE for ER agonists.

More importantly, we present evidence that, in general, a
pairing combination can be expected to improve the perfor-

Figure 1. Average GH scores of 31 various rank combinations and scoring combinations of five methods for four virtual screening targets:
(a) TK, (b) DHFR, (c) ER, and (d) ERA. These five methods (i.e., A, B, C, D, and E) are defined in Table 1.
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mance (vs its constituent members) if and only if the
normalizedPl/Ph andR/Svar of a combining method both have
values> 0.5. Figures 3 and 4 and Table 6 are the results of
the algorithm (in Chart 1 and Appendix A) wheng ) 2,
where pairing combinations were considered andR/Svar(fA,
fB) was used to calculate the bidiversity of methods A and
B. Figure 3a shows the relationship between the GH-score
improvement and the variation (R/Svar, eq 12) of the rank/
score graphs of the 10 pairing combinations for each target
protein. Figure 3b indicates the relationship between the GH-
score improvement and the relative performance measure-
ment (Pl/Ph, eq 13). These results echo those in the field of
data fusion in IR,16,17 in which studies have shown that CS
improves accuracy if the multiple scoring functions involved
have high performance and their rank/score variation is large.
We further created an additional synthetic variable, the CSindex

(eq 14), which can be used to integrate these two criteria
(Pl /Ph andR/Svar). Figure 5 shows the relationship between
GH-score improvement and the CSindex of the 10 pairing
combinations for each target protein. A pairing combination
often improves screening accuracies when its CSindex is more
than 1.5. These data suggest that one can use the CSindex to
estimate predicted benefits from fusion approaches. The
overall accuracy of this approach should be readily extend-
able by future research, which would also be expected to
increase the CSindex itself by extending the reach to further
distinct algorithms and other combination approaches beyond
unweighted SCS and RCS.

Discussion.CS is a popular strategy for solving the scoring
inaccuracy problem in VS. In this study, our CS methods

addressed the use of rank combinations and score combina-
tions on five scoring functions related to two docking
algorithms. We found that some rank-based combinations
outperformed (in terms of average false positive rates and
average GH scores) each individual component in the fusion;
that is, data fusion was beneficial. More importantly, this
study of data fusion, which was based on VS results of 1000
test “compounds” and four receptor targets, suggests that a
fusion method is able to improve the screening accuracy in
VS only when (a) each of the individual scoring functions
has a relatively good performance (Pl /Ph was > 0.5) and
(b) the scoring characteristics of each of the scoring functions
are quite different (R/Svar was> 0.5). The observations of
RCS and SCS are summarized as follows:

(a) Combining multiple scoring functions improves en-
richment of true positives only if bothg(Pl /Ph) > 0.5 and
g(R/Svar) > 0.5 (Figure 4). These two prediction indicators
can be combined into a single indicator, specifically CSindex

> 1.5 (Figure 5). For example, in ER, the GH scores of
Methods B (0.83) and D (0.70) (Table 1) are the best and
Method BD (0.86) is the best among 31 combinations (Table
4). The CSindex of Method BD is 1.68 (Table 6).

(b) The accuracy of CS was improved by increasing the
scoring methods for both RCS and SCS (Tables 4 and 5),
but the combination of all scoring methods did not display
the best possible performance observed. For RCS, the
performance of 2-combination or 3-combination methods
outperformed 4-combination or 5-combination methods.

(c) TheR/Svar criterion is particularly useful and important
because VS is often used to screen for compounds that

Table 4. Screening Accuracies of Different Rank Combinations of Five Methods for Screening Four Targets: TK, DHFR, ER, and ERAa

measurement
factors

single (5)b 2-com (10)c 3-com (10)daverage false
positive rate (%) TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA

average 11.21 14.12 4.79 8.38 7.77 9.91 3.31 4.24 5.40 6.16 2.04 2.46
SD 15.44 20.98 8.76 7.89 7.34 9.80 4.09 3.76 3.63 4.73 1.72 2.07
max value 38.48 50.04 20.44 21.67 17.35 27.56 9.22 11.86 9.92 14.64 4.16 7.55
min value 0.82 0.32 0.13 0.75 0.58 0.14 0.04 0.99 0.53 0.07 0.04 0.72

average GH score TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA

average 0.23 0.44 0.58 0.26 0.29 0.47 0.68 0.41 0.29 0.47 0.69 0.46
SD 0.14 0.30 0.21 0.14 0.19 0.28 0.15 0.21 0.18 0.23 0.13 0.18
max value 0.45 0.81 0.83 0.48 0.58 0.84 0.86 0.74 0.56 0.85 0.86 0.72
min value 0.08 0.05 0.34 0.12 0.13 0.10 0.48 0.15 0.16 0.16 0.55 0.19

measurement
factors

4-com (5)e 5-com (1)faverage false
positive rate (%) TK DHFR ER ERA TK DHFR ER ERA

average 4.04 4.11 1.39 1.52 g g g g
SD 1.90 2.44 0.74 0.61 g g g g
max value 5.88 6.69 1.86 1.98 3.10 3.00 1.04 1.08
min value 0.83 1.07 0.08 0.55 3.10 3.00 1.04 1.08

average GH score TK DHFR ER ERA TK DHFR ER ERA

average 0.28 0.48 0.68 0.48 g g g g
SD 0.14 0.17 0.09 0.13 g g g g
max value 0.53 0.72 0.84 0.71 0.28 0.52 0.67 0.56
min value 0.21 0.27 0.63 0.39 0.28 0.52 0.67 0.56

a The methods and targets are defined in Table 1, and the bold case value is the best score.b Five individual methods.c Combination of two
selected methods, 10 compositions.d Combination of three selected methods, 10 compositions.e Combination of four selected methods, five
compositions.f Combination of five selected methods and only one composition.g Average and standard deviation could not be calculated when
one value exists.
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interact with receptors that have few or no known binding
partners; that is, there is no adequate training set to establish
an algorithm’s veracity/utility. Under these common cir-
cumstances, the performance of a given individual scoring
function is generally unknown and cannot be evaluated at
the point it must be used. As noted above, the variation,
R/Svar, of a pair of rank/score graphs is a useful index to
improve the screening accuracy for combining two individual
methods when the individual scoring functions are quite
different (or complementary, for example, normalizedR/Svar

> 0.5). As this approach appears target-independent, our
approach should be usable in different situations, whether it
is running a truly blind screen, a combination screen coupling
a blinded set with partial analysis and subsequent use of
previous hits as a training set, or a screen with a true training
set. Our approach also reveals that approaches that yield the
best average GH score/FP (i.e., SCS), which are relevant
for screens without training sets, are different from those
approaches that optimize individual GH scores (i.e., RCS),
which are applicable when a training set is available. This
is reflected in the next two points.

(d) The best GH scores of RCS are consistently superior
to those of SCS for these four target proteins (Figure 1).
Table 4 shows the best RCS-derived individual GH scores:
0.58 (Method BD for TK), 0.85 (Method ABD for DHFR),
0.86 (Methods BD and ABD for ER), and 0.74 (Method BD
for ERA). Table 5 shows the best SCS-derived individual
GH scores: 0.52 (Method ABCD for TK), 0.84 (Method
ABDE for DHFR), 0.86 (Methods BDE for ER), and 0.72
(Method BCDE for ERA).

(e) The best average GH scores and best average FP rates
of SCS are superior to those of RCS on all target proteins
(Tables 4 and 5). For example, for TK, the best average GH
scores are 0.41 (SCS) and 0.29 (RCS) and the best average
FP rates are 2.01% (SCS) and 4.04% (RCS). For ER
antagonists, the best average GH scores are 0.79 (SCS) and
0.69 (RCS) and the best average FP rates are 0.44% (SCS)
and 1.39% (RCS).

(f) For RCS methods, the moderate number of scoring
functions, two or three, are the best and sufficient for the
purpose of CS (Figure 1). In contrast, the number of
combining methods is three or four to achieve the best
performance for SCS methods. This phenomenon was also
found in data fusion in IR and was consistent with the
previous findings for CS.22

(g) When combining methods with highly differential
performance, Figure 1 shows that SCS works better than
RCS. For example, the combinations of BE (for TK) and
ABE (for DHFR)are the best and the worst, respectively,
among five primary methods. For ER and ERA, the com-
binations of BC (ER) and BCE (ERA) have similar results.

4. CONCLUSION

It has been previously shown that CS improves VS and
that CS may be more robust than individual methods because
each individual scoring function has strengths and weak-
nesses with respect to docking algorithms, receptor targets,
and the database sets. Furthermore, although consensus
scoring does perform better than the average performance

Table 5. Screening Accuracies of Different Score Combinations of Five Methods for Screening Four Targets: TK, DHFR, ER, and ERAa

measuremen
factors

single (5)b 2-com (10)c 3-com (10)daverage false
positive rate (%) TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA

average 11.21 14.12 4.79 8.38 7.46 7.67 2.57 3.13 4.07 3.02 1.12 1.28
SD 15.44 20.98 8.76 7.89 9.51 12.25 4.80 3.26 5.40 5.47 2.00 1.57
max value 38.48 50.04 20.44 21.67 26.16 34.31 13.74 9.91 18.18 18.00 6.54 5.42
min value 0.82 0.32 0.13 0.75 0.73 0.10 0.07 0.33 0.64 0.10 0.07 0.23

average GH score TK DHFR ER ERA TK DHFR ER ERA TK DHFR ER ERA

average 0.23 0.44 0.58 0.26 0.28 0.53 0.69 0.41 0.36 0.64 0.76 0.52
SD 0.14 0.30 0.21 0.14 0.15 0.27 0.16 0.17 0.14 0.22 0.09 0.13
max value 0.45 0.81 0.83 0.48 0.51 0.81 0.85 0.62 0.51 0.81 0.86 0.66
min value 0.08 0.05 0.34 0.12 0.10 0.08 0.50 0.17 0.12 0.16 0.58 0.20

measuremen
factors

4-com (5)e 5-com (1)faverage false
positive rate (%) TK DHFR ER ERA TK DHFR ER ERA

average 2.01 1.15 0.44 0.50 g g g g
SD 1.92 1.45 0.41 0.27 g g g g
max value 5.40 2.91 1.08 0.92 1.14 0.09 0.22 0.34
min value 0.69 0.05 0.10 0.19 1.14 0.09 0.22 0.34

average GH score TK DHFR ER ERA TK DHFR ER ERA

average 0.41 0.75 0.79 0.60 g g g g
SD 0.11 0.13 0.03 0.07 g g g g
max value 0.52 0.84 0.84 0.72 0.46 0.82 0.78 0.61
min value 0.23 0.52 0.75 0.52 0.46 0.82 0.78 0.61

a The methods and targets are defined in Table 1, and the bold case value is the best score.b Five individual methods.c Combination of two
selected methods, 10 compositions.d Combination of three selected methods, 10 compositions.e Combination of four selected methods, five
compositions.f Combination of five selected methods and only one composition.g Average and standard deviation could not be calculated when
one value exists.
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of the individual scoring methods, it does not consistently
perform better than the best individual scoring function. In
our experiment on the four receptors TK, DHFR, ER, and
ERA, the two docking algorithms we used (GEMDOCK and

GOLD) have been shown to be very good. Although
performances (measured as GH score and false positive rate)
of each individual scoring function do vary within each of
and among the receptor targets, interesting patterns do stand

Figure 2. Rank/score curves of five methods (defined in Table 1) for four virtual screening targets: (a) TK, (b) DHFR, (c) ER, and (d)
ERA.

Table 6. Relationships between the GH-Score Improvements with the Performance Ratio (Pl/Ph), CSindex, and the Variation (R/Svar) of Rank/
Score Graph of 10 Pairing Combinations of Five Methods for Four Virtual Screening Targets

target proteina ABb AC AD AE BC BD BE CD CE DE

TK g(Pl/Ph)c 0.41 1.00 0.82 0.26 0.36 0.27 0.00 0.91 0.30 0.39
g(R/Svar)d 0.34 0.64 0.62 0.39 1.00 0.97 0.74 0.00 0.19 0.17
CSindex

e 1.34 1.64 1.37 0.39 1.92 1.74 1.03 0.80 0.19 0.19
RCSf 0.11 0.06 0.01 -0.09 0.09 0.13 -0.32 0.00 -0.07 -0.05
SCSf 0.06 0.02 0.00 -0.02 0.01 0.01 -0.11 -0.01 -0.09 -0.07

DHFR g(Pl/Ph)c 0.54 1.00 0.43 0.10 0.49 0.88 0.02 0.39 0.12 0.00
g(R/Svar)d 0.04 0.91 0.88 0.32 1.00 0.97 0.41 0.00 0.45 0.46
CSindex 0.61 1.56 1.46 0.32 1.52 1.97 0.53 0.54 0.45 0.65
RCS 0.02 0.23 -0.07 -0.19 0.01 0.03 -0.36 -0.27 -0.22 -0.68
SCS 0.05 0.28 -0.09 -0.07 0.02 0.00 -0.02 -0.17 -0.23 -0.70

ER antagonists(ER) g(Pl/Ph)c 0.12 0.92 0.30 0.41 0.00 0.86 0.71 0.16 0.25 1.00
g(R/Svar)d 0.00 0.82 0.46 0.29 1.00 0.68 0.47 0.21 0.28 0.03
CSindex 0.15 1.11 0.62 0.47 1.01 1.68 1.30 0.21 0.30 0.96
RCS -0.03 0.13 0.06 0.14 -0.29 0.03 -0.01 -0.20 -0.15 0.08
SCS -0.01 0.11 -0.20 0.15 -0.03 0.02 0.01 -0.18 -0.10 0.11

ER agonists(ERA) g(Pl/Ph)c 0.21 0.91 0.96 0.59 0.00 0.47 0.80 0.53 0.27 1.00
g(R/Svar)d 0.40 0.49 0.57 0.10 0.88 1.00 0.39 0.00 0.33 0.45
CSindex 0.70 0.77 1.07 0.43 0.93 1.61 1.39 0.08 0.33 1.22
RCS -0.10 0.00 0.03 0.20 -0.14 0.26 0.24 -0.08 -0.05 0.22
SCS -0.06 0.02 -0.04 0.20 0.07 0.09 0.14 -0.07 0.01 0.22

a Four target proteins (TK, DHFR, ER, and ERA) are defined in Table 1.b There are 10 compositions of combining pair methods from five
primary scoring methods (A, B, C, D, and E) defined in Table 1.c The normalization performance ratio (eq 13) of a pair-combination method.d The
normalization variation (eq 12) of a rank/score graph of a pair-combination method.e A performance indicator (eq 14) of a pair-combination
method.f The GH-score improvements of rank-based consensus scoring and score-based consensus scoring for RCS and SCS, respectively.

CONSENSUSSCORING CRITERIA J. Chem. Inf. Model., Vol. 45, No. 4, 20051143



out where we showed that combinations of two scoring
functions leads to significant improvement on average GH
score and average FP rate.

We summarize and state the two CS criteria, which would
serve as two predictive variables for improving enrichment

in VS: CS that combines multiple scoring functions should
only be used when (a) the scoring functions involved have
high performance and (b) the scoring characteristic of each
of the individual scoring functions are quite different. These
two CS criteria also work for different performances between
SCS and RCS. It has been reported that, on average, score
combination is more effective than rank combination.
However, we have demonstrated that in a majority of cases
under the two CS criteria, rank combination does perform
better or as good as score combination. This is analogous to
the results reported in IR12,16,17. Our second criterion calcu-
lates the rank/score function of each scoring function and
then computes the differences between the rank/score func-
tions of the scoring methods involved. Our second criterion
does not involve a performance evaluation of the combined
methods. This criterion is useful because, very often, the
performance of individual scoring functions is not known
or cannot be evaluated. We believe that our rank-based and
score-based consensus scoring (RCS and SCS) procedures
and consensus criteria for improving the enrichment in VS
should be useful to researchers and practitioners in VS.

Our work, thus, provides a framework to study CS criteria
and a procedure (the algorithm) for both rank-based and
score-based CS to improve the hit rates, FP rates, enrichment,
and the GH score. The procedure is computationally efficient,
able to adapt to different situations, and scalable to a large
number of compounds and a greater number of combinations.
Moreover, we have shown the power of two combinations
(pairing combinations) and used the rank/score graph to
assess the bidiversity between the two scoring methods used.
Our current work represents the first of a series of investiga-
tions to explore CS criteria for improving enrichment in VS.
It also engenders a whole school of issues and directions
worthy of further study, which are summarized as follows:

(1) We will study the extension to three and higher number
of combinations of scoring functions using the rank/score
graph variation (R/Svar) as a diversity measurement for the
scoring methods involved.

(2) In this paper, we used the rank/score functionfA as
the scoring characteristic for the scoring method A. Then,
we used the variation on the rank/score function (R/Svar) to
characterize the scoring diversity between two scoring
methods A and B. Other parameters such as the difference
between the score functionsSA and SB and the difference

Figure 3. Relationships between the GH-score improvement with (a) a normalized value of variation (R/Svar) of the rank/score graph (the
correlation coefficients are 0.135 for RCS and 0.131 for SCS) and (b) a normalized value ofPl/Ph of 40 pairing combinations of five
methods for four virtual screening targets (the correlation coefficients are 0.661 for RCS and 0.531 for SCS).

Figure 4. GH-score improvements with normalized variations of
rank/score graphs (R/Svar) and a normalized relative performance
measurement (Pl/Ph) of 40 RCS and SCS pairing combinations of
five methods for four virtual screening targets. The positive and
negative GH-score improvements are denoted with a circle and a
cross, respectively. For positive cases, the mean and variance of
sum of g(R/var) and g(Pl/Ph) are 1.30 and 0.399, respectively. In
contrast, these two values are 0.592 and 0.271 for negative cases.
The t-test result shows that the positive and negative cases are
significantly different.

Figure 5. Relationships between the GH-score improvement with
the CSindex (eq 14) of 40 pairing combinations of five methods for
four virtual screening targets. The correlation coefficients between
the GH-score improvement and CSindex are 0.433 (RCS) and 0.331
(SCS).
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between the rank functionsRA andRB can also be used to
distinguish the scoring diversity. The rank/score graphs
(Figure 2) have provided a clear visualization for character-
izing the scoring diversity between individual scoring func-
tions.

(3) In our combination (RCS and SCS) of scoring
functions, we use averages to compute the scores for the
rank and score combinations. Combinations using different
weighting schemes can also be used. Hsu and Palumbo31

presented work on the combination of two scoring methods
using a weighted scheme with a step of1/10 as a proportion.

(4) In the future, we will study a more diverse set of
docking tools, scoring functions (e.g., knowledge-based,
physics-based, and empirical scoring functions), and receptor
targets with different binding-site characteristics (e.g., hy-
drophobic, hydrophilic, missing loop, and highly hydrated)
to systematically determine the limitations/advantages of our
SCS and RCS procedures and consensus criteria for improv-
ing the enrichment in VS.

APPENDIX A. THE RCS/SCS ALGORITHM

Given. A compound setD with n compounds in a
compound database (or a hit list);ci ∈ D; i ) 1, 2, ...,n; t
receptor targets; performance evaluatorP (e.g., the GH score
or FP rate); andmscoring methodsAk with scoring functions
SAk(x); k ) 1, 2, ...,m.

Output. The best consensus scoring and combination
methods for thet receptor targets and the compound setD.

Step 1. If we know in advance which scoring function
works better for a given target or targets, output this scoring
function directly. Otherwise, execute the following steps to
select the best CS.

Step 2. For each receptor target, calculate the scoring
functionsSAk(x) using them scoring methodsAk, wherek )
1, 2, ...,m. Obtain each ranking functionRAk(x) from each
SAk(x) by ranking the scores inSAk(x) in descending order.
(Note: there are them single scoring methods.)

Step 3.Calculate the other 2m - m - 1 combinations and
CS using eqs 9 and 10. (Note: these are the (k

m) k
combinations, wherek ) 2, 3, ...,m,and the scoring functions
are all normalized.) If the 2m - 1 scoring methods can be
evaluated (including both rank and score combinations), then
go to Step 4. Otherwise, go to Step 5.

Step 4.The performance of the individual scoring function
can be evaluated (i.e., the active and inactive compounds
are known).

Step 4.1.Evaluate the performance of all of the single
and combination scoring functions using evaluatorP (e.g.,
GH score or FP rate). Note that these are the ranking
functionsRAk(x) and scoring functionsSAk(x), wherek ) 1,
2, ..., 2m-1. Graph the performance curve for all of the single
and combination functions using rank and score combina-
tions. Order the performance within each of them groups
with ( k

m) combinations, wherek ) 1, 2, ...,m.
Step 4.2.For each single scoring methodA, obtain a rank/

score graph using eq 11.
Step 4.3.Search in the space of 2m - m - 1 consensus

scorings and find any combination methodAk
(g) that is the

combination of theg single scoring methods{Ak1, Ak2, ...,
Akg}, where 2e g e m andkj ∈ [1, m], so that (a)P(Akj)
have high performance (e.g., high GH scores or lower FP

rates), (b)fAkj and fAki are dissimilar and complementary for
any i, j, andi * j in [1, g] [i.e., R/Svar(fAkj, fAki) is large], and
(c) P(Ak

(g)) is better than or as good asP(Ak), whereAk are
the single scoring functions andk ) 1, 2, ..., m. The
consensus scorings often improve the screening accuracy
when the value CSindex (eq 13) is more than 1.2.

Step 4.4. The combination methodAk
(g) is the desired

consensus scoring method that we seek for the receptor target
and the compound setD. Go to Step 6.

Step 5.The performance of the individual scoring function
is unknown (i.e., the active and inactive compounds are
unknown).

Step 5.1.For each single scoring methodA, obtain the
rank/score graph using eq 11.

Step 5.2.Search in the space of them single scoring
functions. Find any group ofg single scoring functionsA(g)

) {Ak1, Ak2, ..., Akg}, where 2e g e m andkj ∈ [1, m], so
that fAkj andfAki are dissimilar and complementary for anyi,
j, and i * j in [1, g] [i.e., R/S{var}(fAkj, fAki) is large].

Step 5.3. The combination method Ak
(g) of g single

scoring methods is the desired combination method for the
receptor target and the compound setD.

Step 6. Output Ak
(g), which is the desired combination

method.
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