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A major concern of chemogenomics is to associate drug activity with biological variables. Several reports
have clustered cell line drug activity profiles as well as drug activity-gene expression correlation profiles
and noted that the resulting groupings differ but still reflect mechanism of action. The present paper shows
that these discrepancies can be viewed as a weighting of drug-drug distances, the weights depending on
which cell lines the two drugs differ in.

1. INTRODUCTION

Chemogenomics is an emerging interdisciplinary field
described by Bredel and Jacoby as “the study of the genomic
and/or proteomic response of an intact biological systems
whether it be single cells or whole organismssto chemical
compounds, or the study of the ability of isolated molecular
targets to interact with such compounds”.1 This paper
addresses an issue which has been pointed out by several
authors yet never fully explored. Correlations between
compound activity and biological variables are used as
descriptors of the compounds. However, this method pro-
duces a different view of the relatedness between compounds
than using the activity of the compound by itself. The basis
for these differences is intriguing but has been difficult to
understand. Here we will first give an idea of the develop-
ment that led to the description of compounds in terms of
correlation coefficients; second we describe the issue in
greater detail.

The chemical space has been systematically explored
within the context of pharmacology for a long time. High
throughput screening of activity in chemical libraries has
revealed structure-activity relationships that provide infor-
mation about moieties important for activity. Compound
activity can be gauged in terms of e.g. binding affinity to a
protein of interest, but in pharmacological applications it is
natural to gauge it in terms of pharmacological effect.
Although whole organism models would be the most
informative assays, they are not always practical.

In cancer drug research a reasonable trade off between
biological complexity of the assay and ethical/economical
constraints is achieved by using appropriate cancer cell lines
established from patients. Such cell lines include a substantial
part of the pathophysiology associated with the disease and

may also include clinically relevant pharmacodynamic
phenomena such as cellular drug resistance. When cell lines
are used for probing activity, the effect of the compound is
usually measured by the fraction of cells surviving exposure
to the compound. Activities are reported as either the fraction
of cells surviving at some fixed concentration or the
estimated concentration for which half of the cells die (known
as the inhibitory concentration 50, IC50).

The molecular causes and mechanisms of cancer are
diverse, so screening for activity in a diverse cancer cell line
panel is preferable. A diverse panel allows the discovery of
broad spectrum compounds as well as the identification of
targeted treatments. This insight motivated the establishment
of the NCI-60 cell line panel at the National Cancer Institute,
U.S.A. The NCI-60 panel contains 60 cell lines from 9
different cancers, all established from human patients. In an
ongoing effort at NCI, chemical libraries are screened for
activity in the panel, generating in vitro drug sensitivity
profiles for each compound. This effort has shown that drugs
with similar sensitivity profiles often have similar mechanims
of action,2 something which was subsequently verified in
other cell line panels e.g. by Dahr and co-workers.3 Thus,
sensitivity profiles of novel drugs with unknown mechanism
of action can be compared to profiles of known drugs to
formulate hypotheses on their mechanisms of action as well
as be used to identify important structural characteristics by
computing whether drugs with similar activity also have
similar structural features.

In addition to classification of mechanisms of activity the
cell line panels are also used to uncover the biological
variation that accounts for variation in drug response.
Ultimately, this may provide target leads for drug optimiza-
tion by identifying the biological targets of a drug as well
as active chemoresistance mechanisms. Furthermore, targeted
therapies could be developed by identifying markers for drug
activity in particular tissues. In an effort to provide an
integrated view of the NCI-60 panel, various biological
features of the panel are being characterized. For example,
mRNA gene expression microarray technology4 allows
simultaneously assaying the expression level of thousands
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of genes. Since the drug sensitivity of a cell line depends on
its chemoresponse mechanisms, drug sensitivity can be used
to associate genes with chemoresponse by identifiying
concordance between gene expression and drug sensitivity
across cell lines. Such a combination of chemo- and
bioinformatic approaches is one of the core methodologies
in chemogenomics.

Weinstein et al.5 pioneered the study of drug sensitivity
and gene expression on a large scale. They noted that
clustering the cell lines by mRNA gene expression grouped
them by tissue of origin. However, when the cell lines were
instead clustered on drug response, some exceptions oc-
curred. This indicates that drug response data contain
information about the cell lines that is not related to tissue
of origin. Consequently, this indicates that chemoresponse
mechanisms are distributed across different tissues in the
panel and that it should be possible to link drug activity to
gene expesssion.

Chemogenomic data sets typically contain thousands of
measurements, many of which are statistically dependent.
For example, genes often belong to a coregulated set of
genes, and as mentioned drug sensitivity tends to be similar
for drugs of the same mechanistic class. When exploring
these complex data sets a visual presentation of the informa-
tion is very useful. Associations betweensubsetsof drugs
and genes can be visualized by displaying the genome-wide
pattern of correlations for all pairs of drug sensitivity and
gene expression profiles in an array of colored blocks where
the correlation between drugs and genes is indicated by the
color of the blocks. Each row corresponds to a drug and
each column to a gene. The rows and columns are organized
such that drugs in adjacent rows and genes in adjacent
columns are similar according to some well defined measure
of similarity. This is usually accomplished by having the
order of rows and columns correspond to the order of the
leaves in dendrograms (family trees) obtained from hierar-
chical clustering of the drugs and genes, respectively. With
this presentation it is possible to visually identify groups of
similar genes and drugs with strong correlations between the
corresponding drug sensitivity and gene expression profiles.
NCI provides a public Web service, CIMminer,6 for visual-
izing data in this manner. Using this approach Weinstein et
al.5 found e.g. a set of compounds that were actively
transported out of the cells by Pgp/Mdr-1, a well-known
system for cellular detoxification. These compounds’ activi-
ties had negative correlation to activities of Pgp/Mdr-1 and
appeared as a coherent region in the map of correlations.
Furthermore, a significantly enriched fraction of all com-
pounds known to be Mdr-1 targets was present in the same
cluster. This example demonstrates that the chemogenomic
approach is able to associate drugs with mechanistically
relevant pathways.

As mentioned, the CIMminer approach utilizes hierarchi-
cal, also known as agglomorative, clustering for constructing
dendrograms. Hierarchical clustering sequentially clusters
objects together by choosing the closest pair of objects, where
objects may be either individual observations or clusters
formed in a previous step. Distance between pairs of
observations is determined by the metric in use. The distance
between two clusters is determined by another function, the
linkage function. For example, the average linkage function
calculates the distance between two clusters as the average

pairwise distance between observations in one of the clusters
to observations in the other cluster. It is well-known that
cluster structure (and consequently the arrangement of the
correlation map) is greatly affected by the choice of linkage
and metric function. There is a large literature available
debating the appropriateness of different settings, but, by and
large, the choice is arbitrary and left to the investigator.

The visualization requires the genes and drugs to be
arranged by dendrograms, but the choice of profiles from
which gene-gene and drug-drug distances are to be
calculated is somewhat arbitrary. The natural choice would
be to calculate the distance between measured mRNA gene
expression and drug sensitivity profiles, respectively. How-
ever, when CIMminer is used, drugs and genes are clustered
on their correlation coefficient profiles (CCPs). The CCP
for a drug consists of all the Pearson correlation coefficients
for its sensitivity profile computed for all gene expression
profiles. Similarly, the CCP for a gene consists of the
correlation coefficients for its activity profile computed for
all drug sensitivity profiles. As pointed out by e.g. Scherf et
al.7 and Dan et al.,8 drugs with similar mechanisms of action
tend to cluster together whether clustered based on CCPs or
directly based on drug sensitivity profiles, but the resulting
dendrograms are not identical. The quantitative understanding
of this difference has remained unclear, and it is important
to determine whether the novel organization obtained with
the more complex clustering of CCPs provides a more
informative picture of how drug and gene activities are
related.

In this work we reconsider clustering of drug and gene
profiles for visualization of their correlations. We show that
clustering of CCPs instead of clustering of the original drug
sensitivity and gene expression profiles can be viewed as
the result of using a novel dissimilarity measure that depends
strongly on the relationships between the cell lines employed.

2. METHODS

The biological data used in the present paper is described
in full in Rickardson et al.9 Briefly, a cell-line panel (Table
1) consisting of the parental cell lines RPMI 8226 (myeloma),
CCRF-CEM (leukemia), U937 GTB (lymphoma), and NCI-
H69 (small cell lung cancer); the drug-resistant sublines
8226/Dox40 8226/LR5, CEM/VM-1, U937 vcr, and H69AR;
and the primary resistant ACHN (renal adenocarcinoma) was
assayed. For each cell line 3903 gene activities were
measured successfully using our in-house cDNA microrrray
gene expression system. The in-house spotted microarrays
carried 7458 cDNA clones included in the Human Sequence
Verified Set (Research Genetics, Huntsville, AL). A complete
list of genes printed on the arrays is available online.10

Sensitivity profiles (IC50) were recorded for 66 anticancer
drugs (Table 2) that were obtained from commercial sources
or from NCI, dissolved according to the manufacturer’s

Table 1: Ten Cell Lines Used and Their Corresponding Tissue of
Origin

origin name of cell line

leukemia CCRF-CEM, CEM-VM1
renal adenomocarcinoma ACHN
small cell lung cancer NCI-H69, H69AR
myeloma RPMI8226-S, 8226/DOX40, 8226/LR5
lymphoma U937-GTB, U937 VCR
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instructions, and tested in five concentrations, obtained by
10-fold serial dilution. The investigational alkylating agents
J1 and P2 were kind gifts from Oncopeptides AB (Stock-
holm, Sweden). The Fluorometric Microculture Cytotoxicity
Assay (FMCA) used is based on measurement of fluores-
cence generated from hydrolysis of fluoroscein diacetate
(FDA) to fluorescein by cells with intact plasma membranes
(described in detail previously11). Hierarchical clustering and
all calculations were performed using stock functions in the
Matlab (Mathworks Inc.) environment.

3. RESULTS

To illustrate the difference between clustering genes and
drugs based on their CCPs and on their original drug
sensitivity and gene activity profiles we used drug sensitivity
and gene expression data from 10 different human cell lines

previously described.9 For ease of presentation we selected
only genes whose expression pattern had a standard deviation
greater than one, leaving 324 out of 3903 genes (including
all 3903 genes did not change the qualitative results). We
choose to study the difference between clustering CCPs and
original measurements for average linkage and the Euclidean
distance metric. It could be argued that the angular separation
similarity measure is more relevant in this setting; however,
the main conclusion is the same for angular separation, but
a formal investigation requires a little bit more algebra. The
corresponding results for angular separation is available as
Supporting Information.

In Figure 1 we show a map of correlation coefficients for
each pair of original in vitro drug sensitivity profiles of 66
drugs (rows) and the expression profiles of 324 genes
(columns) across 10 cell lines. Thus, the image in Figure 1

Figure 1. Map of correlation coefficients ordered by clustering of correlation coefficient profiles (CCPs) for both drugs and genes using
Matlab and the CIMminer default settings (average linkage, Euclidean metric). Each colored block in the map shows the corresponding
Pearson correlation coefficientF between a drug sensitivity profile and a gene expression profile, colors ranging from dark blue (F ) -1)
to dark red (F ) 1). Indicated by the black borders are groups of genes and drugs that show large positive correlations between their
profiles.

Table 2: 66 Drugs Used To Study Drug-Gene Interactions

mechanism of action name of drug

antimetabolites acivicin, aminopterin, aphidicolin, 5-azacytidine,L-alanosine, cladribine,
cyclocytidine, cytarabine, 3-deazauridine, 2-azacytidine,
diglycoaldehyde, fludarabine, 5-fluorouracil, ftorafur,
hydroxyurea, 6-mercaptopurine methotrexate, PALA,
pentostatin, 6-thioguanine, thymidine

alkylating agents busulfan, carboplatin, chlorambucil, cisplatin, 4-HC, J1, mechlorethamine,
melphalan, mitomycin C, P2, sarcolysine

topoisomerase I-inhibitors camptothecin, SN-38, topotecan
topoismerase II-inhibitors amsacrine, bisantrene, daunorubicin, doxorubicin, epirubicin,

etoposide, idarubicin, mitoxantrone, teniposide
proteasome inhibitors bortezomib, lactacystin, MG-132, MG-262
tubulin active agents colchicine, docetaxel, maytansine, paclitaxel, podophyllotoxin, vinblastine,

vincristine, vindesine, vinorelbine, estramustine
others aclarubicin, anguidine, cycloheximide, flavoneacetate, Hoechst 33342,

MBGB, MIBG, spirogermanium
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consists of 66× 324 blocks, each of which correspond to a
drug-gene pair. The color of each block indicates the
magnitude of the Pearson correlation coefficient between the
corresponding drug’s sensitivity profile and gene’s expression
profile. Rows and columns are organized by hierarchical
clustering using average linkage for merging of profiles/
clusters and Euclidean distance as a metric for individual
profiles. It is possible to identify locally connected regions
consisting of large correlation coefficients such as those
marked with a black border. This suggests that there are
relatively large groups of genes whose expression patterns
all have strong correlation with the sensitivity profiles of a
group of drugs. In view of previous studies, such groups of
drugs and genes would be highly interesting to pursue further
and possibly uncover a mechanistic model explaining the
activity of the group of drugs in terms of the biological
correlates.

In Figure 1, adjacent genes and drugs are related in the
sense that their CCPs are similar. One might also consider
ordering rows and columns of the correlation map by
clustering drugs and genes separately. We show the resulting
arrangement in Figure 2 where the map of correlations is
instead ordered by two dendrograms obtained by clustering
of the original drug sensitivity and gene expression profiles
using the same defaults settings as before (average linkage,
Eucidean distance). In this visualization, of the same cor-
relations as in Figure 1, it is difficult to identify any large
locally connected regions of gene-drug pairs with large
correlation coefficients. Thus, the subsets of genes associated
with subsets of drugs found when organizing according to
clustering based on the CCPs in Figure 1 find little support
in the original data.

To assess the difference in further detail, we focus on the
clustering of the drugs. In Figures 3 and 4 we show the
dendrograms associated with the drugs for CCP and IC50

profiles, respectively. The distances are different since the
Euclidean distances between CCPs are bounded (all values
lie in the interval [-1, 1]). It is obvious from inspection that
the compounds are differently grouped for the two data sets.
To facilitate a comparison, we argue that an ideal grouping
of the compounds would roughly group them by their
mechanism of action. We study the grouping by using the
dendrogram to divide the compounds into groups, cutting
the dendrogram from the root and outward. For instance,
cutting the dendrograms at the first bifurcation (from the root)
groups about 80% of the alkylating agents in one cluster
and 60 of the antimetabolites in the other for the independent
clustering. This shows that at least the alkylating agents
appear as a somewhat homogeneous group in the dendro-
gram. With the CCP data, the figures are reversed with about
60% of the alkylating agents and 70% of the antimetabolites
grouped together. Continuing, cutting the independent clus-
tering at the next bifurcation splits off compound MBGB,
but the clusters do not coalesce into mechanistic groups for
the next 5 splits. For the CCPs, dividing the tree into 5
clusters produces a cluster containing all four proteasome
inhibitors. However, other mechanistic classes are present
in the same cluster, and they are interspersed amoung the
proteasome inhibitors; among the proteasome inhibitors only
Bortezomib and MG-262 are clustered at the lowest level.
We believe this top-down comparison of the grouping does
not supply any preference to either of the dendrograms.

A bottom-up comparison was also performed, using the
number of pairs of cluster leaves that belong to the same

Figure 2. Alternative visualization of correlation coefficients. Here the dendrograms and the associated ordering of genes and drugs are
obtained from clustering original drug sensitivity profiles and gene expression profiles (average linkage, Euclidean metric). Apparently this
yields different dendrograms and visualization of the correlations from Figure 1. Each block in the correlation map shows the corresponding
Pearson correlation coefficient between a drug sensitivity profile and a gene expression profile, colors ranging from dark blue (F ) -1) to
dark red (F ) 1). There is much less structure in this correlation map in comparison to the one constructed based on clustering of correlation
coefficient profiles as in Figure 1.
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mechanistic group as a statistic. Using CCPs, 6 out of 20
(30%) of all cluster leaf pairs are annotated to the same
mechanism, in the IC50 clustering, 8 out of 15 (53%). Given
the small sample sizes, this does not provide any strong
evidence of any of the clusterings grouping more of the same
together. Overall, there are surprisingly many differences
between the two data sets, considering that if two drugs have
identical drug sensitivity (IC50) profiles they will also have
identical CCPs.

We conclude, as others have before, that clustering the
drugs on either IC50 profiles or correlation coefficient profiles
roughly groups compounds by known mechanisms of action.
However, to understand the nature of the differences, the
two different approaches must be put on equal footing. Next
we show how this is possible by demonstrating that distances
between CCPs may be written as functions of the corre-
sponding IC50 profiles. Consequently, it is possible to
interpret the change of features describing the drugs as a
change in metric used for calculating the distances. Through-
out the text we use bold lowercase letters (x) to denote
column vectors and bold uppercase letters to denote matrices
(X). A tilde will be used to indicate mean centered and
normalized vectors (x̃) and matrices (X̃), where for matrices
the mean centering and normalization have been applied to
the rows. We start by noting that the Pearson correlation
coefficient between observations of two random variables

X andY such as gene expression and drug sensitivity across
nc cell lines can be expressed as∑n)1

nc x̃nỹn ) x̃Tỹ, wherex̃
and ỹ arenc-element column vectors of mean centered and
normalized observations ofX and Y. It follows that the
mapping of mean centered normalizednd × 1 drug sensitivity
profiles d̃i into ng × 1 drug-gene correlation profilesf i can
be expressed as

whereg̃ are mean centered and normalized gene expression
profiles and there areng genes under consideration. We
assume thatnc < nd andnc < ng. This is the case not only
for the data set used here (nc ) 10, nd ) 66, ng ) 324) but
also in general; generating or obtaining new cell lines or
patient samples will continue to be the limiting factor in data
acquisition in the forseeable future. Note that the normalized
and mean centered drug profilesd̃i can be written as a
function of the original profilesdi as

Figure 3. The compound dendrogram corresponding to Figure 1.
Mechanistic classes are indicated in parentheses: AA alkylating
agent, AM antimetabolite, TA tubulin active, TopI topoisomerase
I inhibitor, TopII topoisomerase II inhibitor, PI proteasome inhibitor,
Oth other.

Figure 4. The compound dendrogram corresponding to Figure 2.
Mechanistic classes indicated within parentheses as in Figure 3.

f i ) ( g̃1
T

g̃2
T

l
g̃ng

T)d̃i ) G̃d̃i (1)

d̃i )
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nc
11T)di

xdi
T(I - 1

nc
11T)di

T

(2)
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where1 is a column vector with all its elements equal to
one. We now investigate how the Euclidean distances
between the drugs are altered by transformating them into
CCPs. The Euclidean distance between two original drug
sensitivity profilesdi anddj is defined as

and it follows that after the transformation in eq 1, the
Euclidean distance between two correlation profilesf i andf j

can be written in terms of the mean centered and scaled
original profiles as

Equation 4 shows that when the mean centered and
normalized drug sensitivity profilesd̃i are transformed into
CCPs, the Euclidean distances between the resulting CCPs
may be interpreted as weighted distances in the space of
mean centered and normalized drug sensitivity profiles
defined by a matrix (metric tensor)WG ) G̃TG̃. Thus, from
the distance between correlation profilesd (fi,fj) we may write
down a new measured*(di,dj) ) d (f(di),f(dj)) as

The differences between the dendrograms seen in Figures
3 and 4 come from using eitherd or d* as the distance
measure. This puts the CCPs on equal footing with drug
sensitivity profiles as desired and enables us to make more
incisive statements about difference in clustering results.

We note that there are two contributions to changes in
distances: the normalization and mean centering as well as
the weighting by the matrixWG. The effect of the normal-
ization and mean centering operation represented by eq 2
can be interpreted as changing to the angular separation
similarity measure which is well described in the literature.
Here we therefore focus instead on the influence of the
weighting matrixWG by considering the distance between
two drug profiles which already have zero mean and unit
variance, i.e.,di ) d̃i as well asdj ) d̃j. For such profiles,

d*(di,dj) ) xδdTWGδd whereδd ) di - dj.
To gain some insights about this result we expressδd in

a coordinate system in which the eigenvectorswi of WG are
the basis vectors. This yieldsδd ) ∑iRiwi andd*(di,dj) )

x∑iRi
2λi whereλi is the eigenvalue ofWG that corresponds

to eigenvectorwi, i.e., WGwi ) λiwi. Thus the weighted
distance between the drugs depends on the direction of the
differenceδd, whereas a conventional Euclidean distance

(WG ) I) does not. More specifically, the largest distance is
obtained for vectors where the difference is parallel with the
eigenvector of the largest eigenvalue. Analogously, the
smallest nonzero distance is obtained for vectors with a
difference that is parallel to the eigenvector with the smallest
eigenvalue. In looser terms, this means that calculating
distances from the CCPs embeds a directionality into the
drug sensitivity profile space that is determined by the gene
expression profiles. Also, as may be concluded from above,
a changeδd that only affects mean value and scale will not
affect the distance between the CCPs since all such changes
will be lost in the normalization and mean centering.

Analogous to the conclusion above about how the drug
clustering is affected by the change from a Euclidean metric
to a generalized metric, essentially the same conclusions can
be made regarding the gene clustering. In the gene clustering,
the corresponding matrix of interest is thenc × nc dimen-
sional matrixW̃D ) D̃TD̃ constructed from thend × nc matrix

In summary, for the Euclidean distance measure used for
clustering, the matrixWG ) G̃TG̃ for the drugs and the
matrix WD ) D̃TD̃ for the genes must be considered when
changing from the original profiles to the CCPs. In the
Supporting Information, details about the corresponding
changes in the angular separation measure of similarity are
considered.

Based on the gene expression from the 10 cell lines and
the drug sensitivity profiles for the 66 drugs, in Figure 5,
the elements of the matrixWG are displayed. From Figure 5
we find that the matrix has a distinct diagonal block structure.
One example of a diagonal block consists of the relatively
large positive coefficients corresponding to cell lines 8226/
S, 8226/DOX40, and 8226/LR5 forming a 3× 3 block
matrix. Interestingly, cell line 8226/S is a myeloma parental
cell line, and cell lines 8226/DOX40 and 8226/LR5 are two

d(di,dj) ) x(di - dj)
T(di - dj) (3)

d (f i,f j) ) d (G̃d̃i, G̃d̃j)

) x(G̃d̃i - G̃d̃j)
T(G̃d̃i - G̃d̃j)

) x(d̃i - d̃j)
TG̃TG̃(d̃i - d̃j) (4)

d*(di,dj) )

x( di

xdi
T(I - 1

nc
11T)di

T

-
dj

xdj
T(I - 1

nc
11T)dj

T)
WG( di

xdi
T(I - 1

nc
11T)di

T

-
dj

xdj
T(I - 1

nc
11T)dj

T) (5)

Figure 5. Visualization of the elements in the matrixWG which
defines the weighted distance measure (metric) for drugs. The
numerical values ofWG are color coded according to the colorbar
to the right. Apparently this matrix contains information about the
origins of the cell lines.

D̃ ) ( d̃1
T

d̃2
T

l
d̃nd

T)
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drug-resistant sublines, selected for resistance against topo-
isomerase II inhibitor doxorubicin and the alkylating agent
melphalan, respectively. Another example of a diagonal block
matrix are the coefficients corresponding to the cell lines
U937/GTB and U937/Vcr which also involve a distinct group
of coefficents. These two cell lines are a pair of parental
and drug-resistant lymphoma cells, and U937/Vcr is selected
for vincristine resistance. We also see that the small cell lung
cancer cell line H69 and cell line H69AR, selected for
doxorubucin resistance, form a block with large coefficients.
Parental and selected cell lines CCRF-CEM and CEM/VM1
also form a block. Finally, cell line ACHN is not part of a

diagonal block matrix, and this is consistent with the fact
that the corresponding cell line ACHN has no closely related
cell lines in the panel. Thus, the matrixWG reflects the
different origins of the cell lines studied and shows that the
new distance measure implicitly introduced via the use of
CCPs is a consequence of these relationships.

We also computed the matrixWD associated with distances
between CCPs for the genes, see Figure 6. A slightly different
pattern appears here. Notably, the 3× 3 block of the 8226
cell lines now show higher coefficients for (8226/S, 8226/
LR5) than for (8226/S, 8226/DOX40). Another difference
is that ACHN is now included in a 3× 3 block with the
H69 cell lines. Nevertheless, the predominant pattern is that
of similar cross terms between closely related cell lines.

To see the effect of these tissue of origin effects we
eliminated the effects of the rescaling by clustering normal-
ized mean centered drug profiles using average linkage and
the Euclidean distance metric. Any difference between such
a clustering and clustering the CCPs comes from the
directionality. Next we studied the cluster leaf pairs formed
in this clustering as we did earlier before rescaling. The
majority of pairs were present in both clusterings, such as
e.g. the leaf pair consisting of the isomeres melphalan and
sarcolysin. However, e.g. the leaf pair podophyllotoxin and
4-HC, with roughly the same distance as melphalan and
sarcolysin, were grouped with SN-38 and doxorubicin,
respectively, in the CCP clustering. With the reasoning
outlined above, this could be explained by different directions
of the differences between their original sensitivity profiles.
In Figure 7 a so-called delta graph shows the differences in
IC50 in the respective cell lines. Apparently the main
difference between sarcolysin and melphalan is a large
difference in the 8226/LR5 cell line. The difference between

Figure 6. Visualization of the elements of the matrixWD which
defines the weighted distance measure (metric) for genes. The
numerical values of the elements are indicated by a color scaling
represented by the colorbar to the right. It is noticeable that this
matrix strongly reflects the relationships between the cell lines.

Figure 7. Difference in IC50 across the cell lines for between sarcolysin and melphalan as well as podophyllotoxin and 4-HC. Although
the distance between these pairs is roughly the same after normalization, podphyllotoxin and 4-HC are broken apart when CCPs are clustered.
This is due to the directionality of the difference coming into play with CCPs.
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podophyllotoxin and 4-HC, on the other hand, can be seen
to follow suite in the tissues, yielding a large projection to
the eigenvectors corresponding to the largest eigenvalues.
For details of the eigenvector analysis see the Supporting
Information.

4. DISCUSSION

It could be argued that clustering of drugs and genes based
on their original activity profiles arranges the map of all drug-
gene correlation coefficients in a way that is easier to
interpret than when the ordering of the coefficients is based
on clustering of the corresponding CCPs. Ordering based
on clustering of the original profiles using an appropriate
combination of linkage function and dissimilarity measure
results in maps with locally connected regions of large
correlation coefficients, each region consisting of a particular
subset of similar drug sensitivity profiles that are similar to
a corresponding subset of similar gene expression profiles.
This is not necessarily the case for a locally connected region
with large correlation coefficients that have been found in a
correlation map organized based on CCPs. In this case, all
one can expect is that each such a region consists of a subset
of drugs with similar CCPs and a subset of genes with similar
CCPs. This important difference was noted by Weinstein et
al.5 where correlation coefficients were organized and
visualized after clustering the drugs on their original profiles,
but the genes were nevertheless clustered based on their
CCPs, not on their original expression profiles. Moreover,
the current version of CIMminer tool6 at NCI does not offer
clustering of original drug and gene profiles as an option
for organization and visualization of the correlation coef-
ficients.

Comparison of drugs via clustering of CCPs instead of
original drug sensitivity profiles emphasizes and suppresses
similarities based on the evolutionary relationships between
the cell lines. In particular, the cross sensitivity of a drug in
related cell lines is emphasized. This effect ofWD andWG

is not very intuitive, and we offer a technical analysis in the
Supporting Information as well as the following example to
aid understanding. Suppose that only three cell lines were
available and that

This is similar to the patterns observed inWG calculated
for our real data, i.e., cell lines 1 and 2 in this example are
considered to be closely related and thus have large cross
terms. Cell line 3 does not have any nonzero cross terms. If
we denote the difference in sensitivity between two drugs
in cell line i by δi we may write out the Euclidean distance
between the CCPs of the drugs as

which should be compared to the distance between the
original measurements

Thus, in this example the Euclidean distance between CCPs

will differ from the distance between original measurements
when δ1δ2 * 0. We note that ifδ1δ2 < 0, the distance
calculated between CCPs will be smaller than the distance
between the original measurements. In effect this means that
two drugs are considered more similar if drug sensitivity
differences in related cell lines go in opposite directions. We
also note that differences which are approximately equal,
i.e.,δ1 ≈ δ2, will be given much greater weight. In this case,
the differences in a group of closely related cell lines will
be counted multiple times, whereas differences for a group
of distantly related cell lines are counted only once. The
effects identified in this toy example are also present in the
more complex matricesWG andWD for the data set used in
the present work. However, since the matrix elements are
no longer binary but instead real numbers with different signs
and magnitudes, the effects are more difficult to identify.
We believe that the identified effects are undesirable since
it is a priori expected for drugs to display cross sensitivity
in related cell lines. Therefore, two drugs should be
considered more similar if the differences in sensitivity are
due to cross sensitivity in related samples than if the drugs
differ in a set of samples that are not closely related. As
indicated here, the opposite may happen when using CCPs.

We expect these phenomena to be present in all databases
of mRNA expression and drug sensitivity based on cell line
panels containing related samples. In addition to the results
presented in this work based on our own cell lines and drug
libraries, we examined the NCI 60 Cancer Cell Line
database6 on gene expression and drug sensitivity and found
similar effects there. For instance, using CCPs for clustering
drugs involves an emphasis on cross sensitivity in the
leukemia samples, followed by an emphasis on cross
sensitivity in the melanoma samples (data not shown). See
the Supporting Information for some of the results obtained.

The fundamental problem here is that drug sensitivities
in closely related cell lines are highly correlated. In Figure
8a a fictional set of four drug sensitivity profiles (1-4)
accross two closely related cell lines are indicated. Each axis
in the graph represents the drug sensitivity in one of the two
cell line considered. Indicated by the solid lines are the
contours of the underlying frequency distribution of drug
activities upon repeated sampling in the chemical space of
the drugs (i.e. we are not considering technical variation).
Thus, drug profiles 1-4 all have equal probability of being
observed. Apparently the Euclidean distance between profiles
2 and 4 is larger than between profiles 1 and 3. The effects
of comparing these particular profiles in terms of their
corresponding CCPs (eq 1) are shown in Figure 6b; the
distance between profiles 1 and 3 is decreased, whereas that
between drugs 2 and 4 is increased. This we believe to be
undesirable because the effects of using the CCPs will
suppress the fact that drugs 2 and 4 seem to be subject to
the same chemoresponse mechanisms and that drugs 1 and
3 seem to be subject to different mechanisms. Clearly, drugs
2 and 4 differ in sensitivity by the same amount in both cell
lines, whereas drug 1 has a higher sensitivity than drug 3 in
one cell line, lower in the other. Thus drugs 1 and 3 appear
to be more different than drugs 2 and 4, but in Figure 6b
drugs 1 and 3 are instead moved closer and 2 and 4 farther
away.

Moreover, we know that the elliptic contours in Figure
6a reflect the fact that the related cell lines have overlapping

WG ) (1 1 0
1 1 0
0 0 1)

xδ1
2 + 2δ1δ2 + δ2

2 + δ3
2

xδ1
2 + δ2

2 + δ3
2
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chemoresponse mechanisms. According to Figure 6a, if one
of the cell lines is sensitive (insensitive) to a particular drug,
it is quite likely that the other cell line also is sensitive
(insensitive) to the same drug. This is the case because some
of the drug mechanisms are overlapping; if the two cell lines
would have been completely different, the contours would
have been circular as in Figure 6c. Thus, if one would be
interested in the natural goal to compare how different drugs
are in terms of to which extent they activate completely
different chemoresponse mechanisms, a transformation that
results in de-emphasized correlations and relative distances
as in Figure 6c is more much more appropriate than what is
obtained in Figure 6b. The situation in Figure 6c is obtained
by employing the classical Mahalanobis distance measure13

which compensates for variances (contours) being different
in different directions. Thus this use of the Mahalanobis
distance may be interpreted as creating an ideal nonredundant
cell-line panel which consists only of two cell lines with
statistically uncorrelated chemoresponse mechanisms. With
such a panel differential drug sensitivity could be read off
directly as differential efficacy of chemoresponse mecha-
nisms, and the Euclidean distance would be natural. How-
ever, in real data there will always be a technical variation
in addition to the variation due to chemoresponse mecha-
nisms, and further research is needed before such alternative
measures as the Mahalanobis distance can be recommended.

It is perhaps somewhat surprising that also the dissimilarity
betweengeneprofiles calculated from the CCPs is strongly
influenced by the origin of the cell lines in which they differ
since such an influence comes from the drug sensitivity data.
It has been noted in other studies that clustering of cell lines
based on drug responses does not group cell lines as strongly
on tissue of origin as when clustering on gene expression.7,8

However, we note that the cell lines selected for resistance
to a specific drug will behave in exactly the same manner

as the parental cell line vis-a`-vis all drugs which are not
effected by the evolved resistance. This explains why
biological variation due to origin seem to dominate the
variation in drug sensitivity profiles as well (see also the
eigenvector analysis in the Supporting Information). The
strength of these effects ultimately depends on the drug
library under consideration.

The biased distance measure which is used implicitly when
clustering CCPs instead of the original profiles does not seem
to optimize any well defined performance criterion, and it
does not seem to reflect any valuable prior knowledge.
However, if well-founded and meaningful prior information
exists, it could be used to define a weighted distance measure
that could be used to emphasize relative importance between
the differences observed across the cell lines employed. For
the time being we would recommend organization of the
correlation coefficients based on clustering of the original
drug and gene activity profiles. Identification of locally
connected regions of high magnitude correlation coefficents
in the resulting map provides the investigator with an easily
interpretable pattern. We also note that this demonstrates that
one should be careful in general when using correlation
coefficents as feature vectors.

5. CONCLUSION

This work shows that the common practice to display drug-
gene correlation coefficients based on hierarchical clustering
of in vitro drug sensitivity and gene expression profiles using
the corresponding CCPs does not offer any obvious advan-
tages in comparison with clustering directly on the original
drug sensitivity and gene expression profiles.
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