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Advances in protein crystallography and homology modeling techniques are producing vast amounts of
high resolution protein structure data at ever increasing rates. As such, the ability to quickly and easily
extract structural similarities is a key tool in discovering important functional relationships. We report on
an approach for creating and maintaining a database of pairwise structure alignments for a comprehensive
database comprising the PDB and homology models for the human and select pathogen genomes. Our
approach consists of a novel, multistage method for determining pairwise structural similarity coupled with
an efficient clustering protocol that approximates a full N×N assessment in a fraction of the time. Since
biologists are commonly interested in recently released structures, and the homology models built from
them, an automatically updating database of structural alignments has great value. Our approach yields a
querying system that allows scientists to retrieve databank-wide protein structure similarities as easily as
retrieving protein sequence similarities via BLAST or PSI-BLAST. Basic, noncommercial access to the
database can be requested at https://tip.eidogen-sertanty.com/.

1. INTRODUCTION

The Structural Genomics Initiative, and structural genom-
ics in general, continues to generate an increasingly large
number of experimentally and computationally derived
structures. It is well established that the three-dimensional
representations of proteins that these methods produce
provide key insights into the function of those proteins. One
of the challenges of having such a large number of structures
available is to be able to efficiently extract a protein of
interest and all candidate proteins that have a potentially
related function. It has been found that a reliable method
for assigning similar function is the topological similarity
two proteins share.1 Moreover, this structural similarity does
not need to encompass the entirety of both structures. Since
the putative binding sites of a protein largely determine its
function, merely aligning two binding regions of the protein
is enough to infer similar function. Often, primary sequence
similarity analysis will fail to detect functional conservation
that can be inferred from structural similarity. Thus, it is
increasingly important for biological scientists to have a
research tool that allows them to quickly extract structural
similarities on a proteome-wide scale.

Many different heuristic methods have been applied to
protein structure alignment since the problem is NP-
complete.2 Widely accepted methods include Gerstein &
Levitt’s,3 DALI, 4 VAST,5 SSAP,6 FAST,7 and CE8 (among
others9,10), which utilize various algorithms (dynamic pro-
gramming, vector alignment, combinatorial extension, etc.).
We have developed a multistage approach that employs
several of the key components of the methods listed above.
Our approach offers an excellent compromise between speed
and reliability. Newer methods such as FATCAT11 and

FlexProt12 attempt to improve on previous attempts by
allowing internal rearrangements of the proteins. For the
purpose of performance, our algorithm, like earlier work,
treats proteins as rigid bodies. Several of the methods
mentioned above, in particular DALI and VAST, are
employed to compute frequently updated structural alignment
databases. However, these approaches are limited to com-
pleting the exhaustive N-by-N comparisons and can require
extensive computational resources.

There are several major databases that provide a clustered
hierarchy of the Protein Data Bank13 (PDB). The first,
SCOP,14 is a manually curated classification. Thus, each new
entry requires human intervention to determine the structural
family in which the protein belongs. The alternatives,
CATH15 and the DALI database, require the N-by-N
structural alignments to be precomputed as this is what drives
the clustering. Since our clustering protocol drives our
structural alignments, we needed a clustering mechanism that
was automatic and could be done before any structural
alignments were computed. Since high sequence similarity,
for the vast majority of cases, leads to high structural
similarity, this information was leveraged to determine the
clustering. Additionally, common sequence alignment tools
such as BLAST16 are computationally inexpensive, so the
clustering adds negligible overhead to our process. By
utilizing this protocol to drive our structural alignments, we
both dramatically reduce the amount of time to compute all
of the necessary structural alignments for the database and
ensure that structural alignments will be consistent across
similar proteins.

The benefit of having an automatically maintained data-
base of structural alignments is 2-fold. First, as the number
of experimental structure submissions continues to grow, the
database must be able to easily scale to accommodate the
large number of new entries without unnecessary human* Corresponding author e-mail: bpalmer@eidogen-sertanty.com.
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intervention. Clearly, requiring exhaustive manpower and/
or computer time is not sustainable. Automating as much of
the process as possible ensures that updates will occur in a
timely fashion. Since users will often be most interested in
recently released experimental structures and homology
models potentially built from those structures, it is essential
that the database be as current as possible. Second, having
the precomputed database allows the user to efficiently search
for structural homologues that likely have similar function.
Having searches complete in a matter of seconds, as opposed
to the hours necessary to compute all of the structural
similarities, enables a user to try a multitude of permutations
in order to extract the most pertinent information and glean
new insights into the nature of the data.

2. METHODS

2.1. Pairwise StructSorter. Pairwise StructSorter is a
multistage approach utilizing the full range of information
available to quickly generate the structural alignment between
two protein chains. We use sequence alignment, secondary
structure alignment, and previously computed structural
alignments to seed an iterative dynamic programming
approach to compute structural alignments. The final dy-
namic programming score is assigned ap-value according
to its position on an extreme value distribution. Only
alignments with a suitablep-value are retained. Figure 1
provides a flowchart representation of our hierarchical
approach. The flowchart details the various methods we
employ for seeding the dynamic programming and the
requirements for proceeding from step to step.

In iterative dynamic programming, an initial configuration
of two structures is used to provide a starting point for the
dynamic programming. We use the same scoring scheme as
Gerstein and Levitt.3 The scoring function isS(i,j) ) M/(1
+ (d(i,j)/d)∧2) - shift whereM ) 20, d ) 2.24, and shift
) 2.5. This alignment is used to compute the overlay that
minimizes the interalpha carbon distances of the paired
residues. Dynamic programming is then run on that config-
uration, and the process is repeated until either the alignments
generated for two successive steps are identical, or we have

attempted 20 rounds of dynamic programming. A more
detailed description is provided in ref 3. The results of
iterative dynamic programming vary greatly depending on
the quality of the initial alignment used as the seed. As such,
we attempt the dynamic programming with seeds generated
by various methods. After each attempted seed, if the
alignment is deemed satisfactory, we will keep that alignment
and quit.

The first seed we try is either the sequence alignment if
the percent identity is greater than 40% or the identity
alignment if the structures are from the same sequence. This
acts as a quick, yet robust solution for all structures with
high sequence similarity. The next seed we check is a
geometric hashing of the secondary structure to produce an
overlay from which to infer an initial structural alignment.
Our method is identical to the secondary structure hashing
algorithm described by Holm and Sander17 except for the
manner in which we score hits between secondary structure
elements (SSEs). While we require the same criteria be met,
our score tracks the quality of the match between two SSEs
instead of just treating them as good or bad. We base the
quality of the match on the angle between the axes of the
SSEs and the distance between their midpoints and assess it
with the function (d0- d)/d0 + (a0 - a)/a0 where d0 and
a0 are the distance and angle cutoffs used by Holm and
Sander (4.0 Å and 30.0 degrees, respectively). With this
scoring protocol, it is possible to ascertain which secondary
structure alignments are actually producing the best overlays.
The elimination of false positives allows the algorithm to
attempt the best overlays first and avoid generating a
“suitable” alignment using a suboptimal overlay. The last
seeds we try are those described by Gerstein and Levitt,
which are simply aligning beginning, middle, or end of the
structures. These trivial seeds merely act as a safety net in
case the prior, more intelligent seeding methods fail to
produce an acceptable result.

2.2. Significance Assessment.We determine the quality
of an alignment by assessing its significance in a manner
very similar to that described by Gerstein and Levitt.18 We
first fit an extreme value distribution to the iterative dynamic
programming scores of a random sampling of structure pairs.
This distribution allows us to attach a statistical significance
to the score produced by a given alignment. Since the score
is length dependent, we fit a distribution for different length
combinations. We found that there were 4511 chains with
length less than 70, 13 425 with length between 70 and 140,
19 430 with length between 140 and 250, and 24 536 with
length greater than 250. Therefore, we derived parameters
for the 10 length combinations: 0-70:0-70, 0-70:70-140,
0-70:140-250, 0-70:>250, 70-140:70-140, 70-140:140-250,
70-140:>250, 140-250:140-250, 140-250:>250, and>250:
>250. By employing this scheme, smaller significant align-
ments will not be overlooked in lieu of larger, inferior
alignments.

2.3. Clustering Scheme and Hierarchical Protocol.To
completely process a comprehensive database of structures
in a timely fashion and ensure alignment consistency, a
clustering scheme was utilized. We first clustered all PDB
structures with a single-linkage clustering of their representa-
tive sequences. This is suitable since very high sequence
similarity necessarily leads to high structural similarity. We
use the BLAST algorithm to compute all sequence align-

Figure 1. Flowchart of pairwise StructSorter. Various dynamic
programming seeding methods are used in order to utilize as much
information as is available. We take the first alignment where the
dynamic programming step yields an acceptablep-value.
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ments for the entire database. Then, the criteria for linkage
were greater than 90% identity and greater than 95%
coverage. Here, we define coverage as the number of residues
involved in the sequence alignment divided by the number
of residues in the larger sequence. From each cluster, we
selected a representative cluster head. First, we chose
nonalpha carbon traces over structures with only alpha
carbons. Second, X-ray structures were chosen over NMR.
The structure with the highest X-ray resolution was chosen.
Then, if two structures have equal resolutions, we chose
based on the effective length of the structure. We define
effective length as the span of the structure minus any
residues that are included in this span of the primary
sequence yet remain unresolved in the tertiary structure.

When we add a new PDB structure to the database or build
a homology model, it is either added to an existing cluster,
depending on whether it meets the identity and coverage
criteria, or a new cluster is formed. Clusters can also merge
if a new structure belongs to more than one. Once any
changes are made to a cluster, the head of the cluster is
recalculated. This approach avoids the time-consuming
calculation of having to recompute the clustering from the
beginning every time a new structure is added to the database.

Once the entire set of PDB structures was clustered, we
applied the pairwise structure alignment algorithm in a
hierarchical fashion. As shown in Table 1, there are three
types of cases: cluster heads, noncluster heads, and models.
For each case, we first compare the protein to an initial set
of cluster heads and then to a second set of proteins derived
from the significant matches found in the first set. The second
set of proteins comprises the members of all clusters whose
head was found to be a significant match from the first set.
For cluster heads, the initial set is all other cluster heads.
The initial set for noncluster heads is the set of all cluster
heads to which its cluster head made a suitable alignment.
It is the same for models except that we use the structure
used as the model’s template instead of a cluster head. For
alignments made in the second stage of alignment attempts,
we use the alignment with the cluster head to seed the
alignment attempt to the noncluster head. If this fails to
produce an acceptable result, we default to the pairwise
algorithm as defined above. This method of “bootstrapping”
alignments ensures consistency of alignments within a PDB
cluster and often bypasses the more time-consuming second-
ary structure alignment process.

3. RESULTS

3.1. Comparison to DALI. To test the accuracy and
robustness of StructSorter, for every DALI alignment
publicly available, we computed an alignment and compared
the results. This test set is biased against our method since
this is a set of alignments for which DALI is guaranteed to
generate significant alignment. Hence, no cases exist in this

set where we would have the chance to succeed where DALI
might fail. To compare the two alignments, we computed
the dynamic programming score using the Gerstein and Levitt
scoring function for each alignment. This is necessary so
that we are comparing the alignments by the same metric.
We computed a comparison score by subtracting the DALI
score from ours and dividing by the larger score. The results
are summarized in the histogram presented in Figure 2. The
histogram indicates that while the overall correctness of the
two methods is comparable, our method tends to significantly
outperform DALI on a noticeable number of cases where
DALI fails to generate a reasonable alignment.

While the use of the Gerstein and Levitt scoring function
may bias the comparison toward our implementation, we
have found that it is a better indicator of alignment
correctness since it was designed to balance the alignment
accuracy, CRMS, with the alignment length. We have found
that the DALI scoring function can be biased toward
alignment length over alignment CRMS and, as such, can
in some cases be a poor indicator of the overall quality of
the alignment. For example, Figure 3 displays the overlay
based on our alignment and the DALI alignment of PDB
1a02N and PDB 1a3qA. As can be seen, the DALI
alignment, which has a DALI score Z-score of 17.6 and an
alignment length of 241, in fact has a CRMS of 10.7 and
scores poorly with our scoring function. Our alignment scores
well with our scoring function with a z-score of 16.9 and
has a much lower CRMS of 2.29 and a shorter alignment
length of 191.

3.2. Comparison to SCOP.Furthermore, we developed
a validation set based on the SCOP classification in order to
assess the performance of our significance determination.
For every family in the standard classes, we chose two
representatives from that set that are also in the 90% PDB

Table 1: Sets of Structures Used during Different Stages of Clustered StructSorter

case first set second set

cluster head all cluster heads all noncluster heads in clusters where
alignment made to head

noncluster head all cluster heads with alignment
to its cluster head

all noncluster heads in clusters where
alignment made to head

model all cluster heads with alignment
to its primary template

all noncluster heads in clusters where
alignment made to head

Figure 2. Histogram of StructSorter vs DALI rankings. The rank
calculated by subtracting the score of the DALI alignment from
that of the StructSorter alignment, dividing by the larger score, and
multiplying by 100. Scores are computed using the Gerstein and
Levitt scoring function. Positive scores indicate StructSorter found
a more accurate alignment.
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select. We ran pairwise StructSorter on each of these
structures with every other representative in the same family,
superfamily, and fold. Then, we chose a set of 10 structures
from each SCOP class to first run against each other to assess
the performance of the algorithm at the class level and then
run against the other classes to determine how the algorithm
behaves when no SCOP similarity is present. The resulting
set consists of∼140 000 pairs.

We chose thep-value cutoff of 0.0001 as a balance
between retaining true positives yet keeping our database to
a reasonable size. As can be seen in Table 2, this cutoff
performs best for retaining what we can confidently label
as true positives and eliminating the relationships we know
are false positives. Limiting the size of our database is
important since it has a direct relationship to efficacy of our
clustering scheme. As the number of relationships in the
database increases, so too does the number of relationships
a given cluster head has. Thus, the number of attempts we
make at generating alignments will increase dramatically,
causing an unacceptable increase in computation time.
Moreover, limiting the size of the database is essential for
keeping search times to a minimum since there are less data
to search against. Overall, we keep the majority of family
and superfamily similarities while discarding almost all of
the class and no-similarity cases.

It is important to note that the SCOP curators have, for
many SCOP similarities in the superfamily and fold levels,
utilized additional knowledge such as protein function when
assigning proteins to a particular family. The percentage of
significant family and superfamily cases we find is consistent
with the result obtained by Gerstein and Levitt17 as well as
the recent work by Zhu and Weng where they assessed the
performance of their algorithm as well as several others.8

These results highlight the difficulty in the automated
assessment of structural significance, and likely, the incor-
poration of more information beyond raw geometric similar-
ity will be required to show additional improvement in this
area.

3.3. Effect of Clustering Protocol. To ascertain the
validity of our clustering protocol, we ran 43 cases against
all PDB chains and models in our database. Our database
consists of 64 980 PDB chains taken from the recent 21-
Jun-2005 release of the PDB in addition to 27 982 homology
models built primarily from the human genome. These cases
were selected based on chain length and cluster size. Five
cluster heads were chosen from large clusters, and five were
chosen from small clusters. We chose clusters in this manner
to investigate how cluster size affects the number of structural
similarities found. Moreover, we chose cluster heads with
disparate chain lengths to test how it affects the number
found. We also chose a nonredundant set of cases within
each head’s cluster to gain insight into the effect the
bootstrapping was having.

As Table 3 demonstrates, we found that while the size of
the cluster caused no appreciable degradation in the number
of structural similarities found, the length of the chain did
have an impact. This is to be expected when considering
large chains are more likely to have a local structural
difference. This could cause two chains that have a very
significant global structural alignment to have similarity to
different shorter chains that would align to only the areas of
the larger chains that differ. Of all of the similarities that
were found in the unclustered runs that were not found in
the clustered runs, none had ap-value lower than 1e-7, and
the average of all of thep-values for these cases was 4.58e-
5. Therefore, these were all fairly borderline cases that did
not have a very high level of significance.

For the 43 cases used in the clustering analysis, the average
time taken to run against the 64 980 PDB chains and 27 982
models in the database was 134 981 s on average. This is
roughly 1.45 s per comparison. When run using our cluster-
ing scheme, the average time taken was 6846 s. This is nearly
a 20-fold reduction in the average time required to compare
a structure against the entire database of structures. This
allowed us to compute the all-against-all structural similarity
database in roughly 1.5 months instead of the 2.5 years
required without clustering. The calculations were run on
Pentium IV 2.4 GHz processors with 2 GB of RAM.

The most significant benefit of our clustering strategy is
in the processing of noncluster heads and model structures.
For a recent PDB update to our database comprising 846
cluster heads and 3158 noncluster heads, the average
processing time was 8442 and 792 s, respectively. For a
cluster that has relatively few neighboring clusters, the vast
majority of proteins are true negatives, and our clustering
scheme effectively prunes away the need to explicitly
compute most of these insignificant alignments.

3.4. Application for Structure-Function. While the link
between structural similarity and functional similarity is well
established,1 to specifically demonstrate the value of our
database of StructSorter-computed structure alignments for
efficient structure-based functional prediction, we performed
a search using an example from the literature where structure
had been previously used to infer function in the absence of
sequence similarity. The protein MJ0577 fromMethanococ-

Figure 3. Example of failure of DALI scoring function. The
StructSorter result is pictured on the left, while the DALI result is
on the right. The StructSorter scoring function scored the alignment
on the left well and the alignment on the right poorly, correctly
recognizing the poor alignment.

Table 2: Number of SCOP Similarities Found by StructSorter for
Variousp-Value Cutoffsa

p-value family (%) superfamily (%) fold (%) class (%) none (%)

0.001 96.83 62.76 28.49 0.67 0.08
0.0001 95.52 57.59 21.43 0.03 0.02
0.00001 93.15 42.20 7.20 0.02 0.002

a Family level relationships can be confidently assigned as true
positives while the class and none level relationships are false positives.
Superfamily and fold level relationships are also true positives; however,
they will contain a large number of cases with known functional
similarity but relatively low geometric similarity. While the difference
in the number of class and none similarities kept may appear small,
using the 0.0001 cutoff versus the 0.001 cutoff leads to a decrease of
roughly 1 100 000 class level false positives and 600 000 none level
false positives in the comprehensive database.

1874 J. Chem. Inf. Model., Vol. 46, No. 4, 2006 PALMER ET AL.



cus jannaschii(PDB: 1mjh) was previously discovered to
have ATP-binding activity and function as an ATPase only
after it was serendipitously found to cocrystallize with ATP
during its experimental structure determination.19 We used
PDB 1mjh as the query of our database and within a search
time of 5 s returned 53 nonredundant structures from the
PDB with superfamily level structural homology to MJ0577
(Z-scores between 5.05 and 14.38). Top scoring results
included several ATP-binding proteins, including electron
transfer flavoprotein and N-type ATP pyrophosphatase.
Using the computed alignments to overlay these structures
onto MJ0577 reveals that all of the key H-bonding contacts
to ATP are conserved, confirming that MJ0577 could be
annotated as a likely ATP-binding protein via structural
homology, even if it had not been cocrystallized with ATP.
The rapid turnaround time for search, retrieval, and overlay
of MJ0577 with its structural homologues demonstrates the
utility of our approach for structural homology-based func-
tional inference.

4. DISCUSSION

We have developed a unique approach to computing and
maintaining a comprehensive database of structural align-
ments. Utilizing a clustered database of PDB chains is a key
component of this approach. Our clustering protocol, which
is both automatic and based on the PDB representative
sequences’ alignments, drives the construction of our data-
base of alignments, allowing its completion in a reasonable
amount of time. We have shown that this clustering does
not cause a significant degradation in the coverage of our
structural alignments. The automated aspect of our procedure
easily accommodates updates to the PDB and the processing
of new homology models. This is essential for keeping the
database up-to-date with minimal human intervention and
maintenance. The clustering protocol is sufficiently flexible
such that nearly all pairwise structural alignment algorithms
would work within its framework. However, due to the use
of disparate scoring functions, the parameters used to assess
the significance of the alignment would have to be rederived.
Thus, using a variety of structural alignment methods to
compute the database would be significantly more compli-
cated and computationally prohibitive.

The iterative dynamic programming approach to solving
the structural alignment problem continues to be validated
by its role in recently developed algorithms such as FAST.7

Moreover, our approach is broad and general enough to
incorporate additional methodologies for seeding the dynamic
programming like the novel approach utilized by FAST. Still,
we have found the overall efficacy of our algorithm to be
on par with the widely accepted DALI algorithm. We have
tuned the significance criterion to the SCOP database and
found it to do extraordinarily well at eliminating undesirable
cases. The performance of the algorithm is suitable for
computing structural alignments for a database of the entire
PDB and a large number of homology models.

Having a precomputed database of structural alignments
for not only the PDB but also homology models spanning
key genomes is of great utility to the field of structural
genomics. As the number of experimental protein structures
grows, so too will the number of homology models, resulting
in an increasingly cumbersome amount of structural data.
The ability to search through these data and find proteins
with similar structure to a protein of interest is key to
assigning function and discovering proteins that share
function. Our system enables this ability, and the data
available will continue to become richer as the number of
experimental protein structures increases.
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