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Blockage of the human ether-a-go-go related gene (hERG) potassium ion channel is a major factor related
to cardiotoxicity. Hence, drugs binding to this channel have become an important biological end point in
side effects screening. A set of 250 structurally diverse compounds screened for hERG activity from the
literature was assembled using a set of reliability filters. This data set was used to construct a set of two-
state hERG QSAR models. The descriptor pool used to construct the models consisted of 4D-fingerprints
generated from the thermodynamic distribution of conformer states available to a molecule, 204 traditional
2D descriptors and 76 3D VolSurf-like descriptors computed using the Molecular Operating Environment
(MOE) software. One model is a continuous partial least-squares (PLS) QSAR hERG binding model. Another
related model is an optimized binary classification QSAR model that classifies compounds as active or
inactive. This binary model achieves 91% accuracy over a large range of molecular diversity spanning the
training set. Two external test sets were constructed. One test set is the condensed PubChem bioassay database
containing 876 compounds, and the other test set consists of 106 additional compounds found in the literature.
Both of the test sets were used to validate the binary QSAR model. The binary QSAR model permits a
structural interpretation of possible sources for hERG activity. In particular, the presence of a polar negative
group at a distance of 6-8 Å from a hydrogen bond donor in a compound is predicted to be a quite structure-
specific pharmacophore that increases hERG blockage. Since a data set of high chemical diversity was used
to construct the binary model, it is applicable for performing general virtual hERG screening.

INTRODUCTION

Inhibition of the human ether-a-go-go related gene (hERG)
potassium ion channel is one of the major factors related to
severe cardiotoxicity leading to long QT syndrome (LQTS),
and it is a predisposing factor for syncope and sudden
death.1,2 In recent years, many major drugs, such as
terfenadine, cisapride, sertindole, thioridazine, and grepa-
floxacin, were withdrawn from the market as a result of their
cardiotoxicity. Therefore, it is important to screen and assess
the hERG channel protein binding of lead compounds early
in the preclinical phase of drug discovery. Early types of
preclinical hERG screenings includes several computational
approaches to identify potential hERG channel blockers and,
thereby, reduce the time and cost expended in performing
preclinical lead identification and optimization.

The crystal structure of the hERG channel is not currently
available. However, it is known that the overall protein
structure of hERG is closely related to the bacterial K
channels, including KcsA (PDB IDs 1BL83 and 1K4C4),
MthK (PDB ID 1LNQ5), and KvAP (PDB ID 1ORQ6), and
an eukaryotic Kv1.2 channel (PDB ID 2A79).7 Several
studies8-10 have used these crystal structures as templates
for homology modeling of the hERG potassium channel to
provide structure-based entities to dock and predict the
binding affinity of compounds to the hERG potassium
channel. The results of Farid and co-workers8 show a good
correlation (coefficient of determination, r2 ) 0.95) for five
sertindole analogues. Rajamani et al.10 selected 27 known
hERG channel binders and their composite predicted affini-
ties are in good agreement with experiment (r2 ) 0.82,
RMSE ) 0.56). Unfortunately, these studies are based upon
nonvalidated receptor models interacting with members of
relatively small analog data sets possessing limited ranges
in chemical diversity. Moreover, it is not clear, in general,
how binding alignments and poses can be reliably selected
for arbitrary, structurally diverse compounds binding to these
speculative types of homology based receptor models.

In view of the limitations to performing structure-based
studies because of (a) the unavailability of a hERG crystal
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structure and (b) the need to establish molecular alignments
and poses for structurally diverse compounds, most in silico
molecular design strategies are ligand-based and take the
form of traditional 2D-QSAR and 3D-QSAR studies. Within
the current ligand-based QSAR paradigm, the selection of
options available to build a modeling strategy is extensive
but can also be problematic. There is a wide range in the
types of QSAR descriptors that can be selected and which
ultimately dominate the predictive power of the resulting
QSAR model. The more common molecular descriptors
currently in use include 4D-FPs,11 MOE,12 VolSurf,13

DRAGON,14 ab initio, ADAPT,15 and winMolconn16 de-
scriptor sets. To explore the proper selection of descriptors
from the large collection available and to ultimately optimize
the resultant model, various machine learning methodologies,
including support vector regression,17 genetic algorithms,18

neural networks,19 recursive partition method,23 and PLS20

have been applied to ligand-design QSAR analyses.
Song and Clark,17 for example, have calculated self-

computed 2D fragment-based descriptors for a training set
of 71 compounds and a test set of 19 compounds, resulting
in hERG QSAR models with q2 values of 0.636 for the
training set and RMSE values of 0.440 and 0.597 for the
training and test sets, respectively. Yoshida and Niwa18

utilized manually descriptor-selection for 104 training com-
pounds and 18 test compounds. The hand-built hERG QSAR
model has a q2 value of 0.67, and RMSE values of 0.763
and 0.847 for the training and test set, respectively. Seierstad
and Agrafiotis19 used seven different 2D descriptors
(Kier-Hall topologic indices,21 Ghose-Crippen atom
types,22 ISIS keys, atom pairs, electrotopologic state indices,
medicinal chemistry descriptors, and MOE descriptors) for
an in-house large training set (not publicly available data
set) of 439 compounds screened for their affinities for the
hERG potassium channel to achieved a q2 of 0.76. This
model’s predictive nature, as measured by RMSE, is 0.88
for a test set of 40 compounds. Recently, Gavaghan et al.20

employed Selma (an AstraZeneca in-house software pack-
age), DRONE,23 VolSurf,13 and their in-house structural
fragment-based descriptors to build QSAR models for a
training set of 436 compounds from AstraZeneca’s in-house
data that were signified as interesting by the IonWorks high-
throughput, HT, electrophysiology assay.24 The resulting
hERG QSAR model has a q2 of 0.59 and a RMSE value of
0.44 for the training set and a RMSE value of 0.46 for an
in-house test set of 876 compounds that are not available in
the open literature. Overall, it can be seen for the hERG
models in the literature, except for Gavaghan and co-workers’
model, that the “quality” of the model (as measured by q2,
RMSE, or both) gradually decreases as the number of training
set molecules increases.

There is a large divergence and corresponding uncertainty
in the measures of the hERG biological activity end points
across the compounds studied. For example, the IC50 value
of terfenadine is reported as 0.0084 µM in the Gavaghan
study while another publication reports and uses a terfenadine
IC50 value of 0.33 µM,25 which is about a 40 times difference.
This problem of inconsistent and diverse measurements of
hERG binding end points is also presented and discussed in
the literature.26 One consequence of this lack of data
consistency is that, on average, increasing the number of
compounds in a training set increases the overall data noise

and reduces the predictive performance of the resultant
model. In the case of test sets, uncertainty in the data
measurements makes evaluation of prediction accuracy
difficult and, basically, uncertain.

In attempts to increase hERG prediction capacity, model-
ing strategies have included the use of molecular descriptors
that contain 3D information27-29,26,30 and constraining hERG
binding affinity estimates to classification predictions. An
effective means to the meaningful treatment of data sets
where the end point measures have a high component of
variability is to abandon continuous QSAR models and to
construct classification QSAR models irrespective of the
types of descriptors employed. Here the idea is to define
classes of end point measures whose ranges are larger than
the uncertainty in the end point measure. The predictive
reliability of the resultant QSAR model will increase at the
expense of the resolution of the prediction. The development
of a two-state (binary) hERG classification model has been
a principal goal of the work reported here.

Recently, Li et al.26 published a hERG classification model
(two-states) that employed the GRIND31 descriptors in
conjunction with support vector machine, SVM. They
achieved an overall classification accuracy of 74% for the
training set (283 of 343 nonblockers correctly classified and
83 of 152 blockers correctly classified) and correctly clas-
sified 48 of 66 (72%) the test set compounds. About half of
the compounds in the Li et al.23 articles consisted of binary
classification values. Therefore, these compounds and bio-
logical end points have not been used in constructing any of
the data sets employed in this study.

In another study, “shape signatures”30 molecular descrip-
tors were employed to build hERG blocker classification
models employing the SVM model fitting and optimization
methodology. The resulting QSAR classification models have
an overall accuracy of 69-73% for the 130 compound
training set.

A variety of molecular features and properties have been
proposed from hERG binding models as being important to
ligand-hERG channel interactions. Song and Clark’s frag-
ment-based models suggest that lipophilic groups, such as
benzyl and chloronaphthyl, and tertiary amines, like N-methyl
piperidine, increase hERG channel binding. Conversely,
some hydrophilic groups, such as carboxylic acid, ketones,
hydroxide groups, and amine or primary aliphatic amines,
and the presence of benzenesulfonamides or benzenesulfonyl
decreases hERG binding affinity. More generally, it appears
that the hydrophobicity of drugs, commonly characterized
by logP, and hydrogen-bonding groups tend to increase the
hERG blocking effect. The importance of the hydrophobicity
and hydrogen bonding features for hERG binding is also
reported in other studies reported in the literature.26,32

The Yoshida and Niwa model indicates that hydrophilic
feature like total polar surface area, TPSA, and polar van
der Waals surface area tend to decrease the blocking effect.
In addition, it has been observed that acidic ligand groups
can abolish hERG activity,33 and some hERG pharmacophore
models2 suggest that a positive-charge center, such as
piperidine and piperizine, is essential for hERG affinity.

In this study, a trial descriptor pool containing a novel
collection of descriptors formed by combining the 4D-
fingerprints11 and the Molecular Operating Environment’s
(MOE) traditional and VolSurf-like descriptors have been
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used to build hERG QSAR models. The three goals sought
by including this novel collection of descriptors are to
develop a binary classification hERG QSAR model that (a)
is accurate for a wide range of ligand structural diversity,
(b) has high predictive reliability, and (c) can be readily
interpreted in terms of a mechanism of action and corre-
sponding key ligand molecular features.

MATERIAL AND METHODS

Data Sets. A training set of 250 hERG inhibitors with
measured pIC50 values from in Vitro assay experiments were
assembled from the combined literature reports of Li et al.,26

Song et al.,17 Yoshida et al.,18 and Thai et al.32

The training set binding affinities have been primarily
determined using mammalian or nonmanmalian cell lines
(including HEK, CHO, COS, and XO) and provided as IC50

values. The IC50 (µM) values were then transformed to -log
IC50 (pIC50) values for use in QSAR analysis, and these end
points are provided in Supporting Information Table S1. The
pIC50 values range from 2.00 to 9.00 with 28 compounds in
the 2-4 range, 56 compounds in the 4-5 range, 81
compounds in the 5-6 range, 35 compounds in the 6-7
range, 33 compounds in the 7-8 range, and 17 compounds
in the 8-9 range. The distribution of pIC50 values over the
collected data set illustrates that the training set is a relatively
unbiased with respect to the dependent variable (biological
end point) and, therefore, should not lead to data-biased
QSAR models.

In building the training set, 105 hERG binding drugs were
available with known 2D structures, and the chemical
structures of the remaining compounds were retrieved from
NIH’s NCBI PubChem compound database as SDfiles by
querying their drug name. Each SDfile was transformed into
the MOL file format and checked for correctness using
SciFinder Scholar database version 2007.34 The resulting 3D
structures were imported into HyperChem 7.0 and geometry
optimization was carried out using the MM+ force field.

The continuous and binary QSAR models were evaluated
and validated using two external test sets. The first test set
of hERG binders was constructed from a PubChem bioassay
database (AID 376)35 that initially contained 1953 com-
pounds consisting of 250 active and 1703 inactive com-
pounds. After removal of compounds complexed with metal
ions, ambiguous compounds (two molecules within a single
SDF entry), hERG activators (only compounds that inhibit
hERG activity were considered for this study), and one
compound included in our literature data set, the scrubbed
PubChem test set contained 1668 compounds consisting of
163 actives and 1505 inactives. This test set was used to
validate the QSAR models. Preparation of the test set was
based upon the current strategy in the design of compound
libraries that focuses upon ‘compound scrubbing’ of a parent
data set. This protocol places constraints on the selection of
compounds which leads to smaller, more condensed, more
applicable libraries for lead optimization against a specific
target.36 In this case, the following two constraints were used:
(a) retain compounds that pass the Lipinski’s rule of five37

and (b) retain compounds based on relative lipophilicity.
Applying the first constraint resulted in 353 compounds

being removed from the 1668 PubChem hERG bioassay data
set. The surviving 1315 compounds were passed to the next

filter. As previously discussed in the Introduction, it is well-
known that the hydrophobicity (water disliking) of drugs
(bioactive compounds) tends to increase the hERG blocking
effect and the hydrophilicity (water liking) features of
molecules tends to decrease the hERG blocking effect. This
was the rationale for retaining compounds that are considered
hydrophilic. The average logP values12 of active and inactive
compound (categorized using an value of 10 µM) in our
literature data set were 4.1 and 2.8, respectively. The second
constraint discarded active compounds whose logP values
are less than 4.1 and inactive compounds with logP values
greater than 2.8. The application of the second constraint
led to a test set containing 876 compounds that are focused
toward the physicochemical requirements of the hERG
receptor. Using a focused test set provides a platform to more
thoroughly explore and validate a QSAR modeling strategy.

A second test set considered in this study is the hERG
data set of Nisius et al.38 that contains 106 compounds. Since
this was a previously published and validated data set, no
constraints were applied to modify this data set.

Universal 4D-Fingerprints. The detailed formalism to
compute the 4D-Fingerprints (4D-FPs) has been published
in previous research articles,11 and the methodology is only
summarized herein. It is a method that generates a set of
molecular fingerprints that are divided into pharmacophore
elements designed to capture the 3D size, shape, and
conformational flexibility of a molecule. These descriptors
embed conformational averaged molecular information.

The first step in constructing the 4D-FPs is the generation
of the conformation ensemble profile (CEP) of each molecule
via molecular dynamic simulation (MDS). The universal 4D-
fingerprints are the eigenvalues calculated from the absolute
molecular similarity main distance-dependent matrix (MDDM)
for each molecule. The MDDM captures how the shape and
flexibility of a molecule are distributed for the different types
of functional groups, also known as the interaction pharma-
cophore elements (IPEs). The atoms of a molecule are
currently assigned one of the appropriate eight IPEs listed
in Table 1. For each compound 36 MDDMs are constructed,
from the same term or a cross-term, based on the IPE pair
type from eight IPEs. An element of MDDM is defined as

where V is set to 0.25, which maximizes the difference in
the sum of eigenvalues of any two compounds with the same
number of a particular IPE type. The 〈dij〉 is the conforma-
tional average distance between atom i and j for a molecule
over the entire CEP and defined as

Table 1. Definition of the Interaction Pharmacophore Elements,
IPEs, Currently Used in the 4D-Fingerprint Paradigm

IPE code IPE abbreviation IPE description

0 any all atoms in the moledule
1 np nonpolar atoms
2 pp polar (+) atoms
3 pn polar (-) atoms
4 hba hydrogen bond acceptor atoms
5 hbd hydrogen bond donor atoms
6 aro aromatic atoms
7 hs non-hydrogen atoms

E(dij)
) e(-V〈dij〉) (1)
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The term dij(k) represents the distance between atom i and j
of IPE u and V for a molecule in the kth conformer state;
p(k) denotes the thermodynamic probability of conformer
state k and is evaluated from the ensemble of conformational
energies.

Eigenvector and corresponding eigenvalues are derived
from the diagonalization of the MDDM. When the IPE types
are the same, that is, u ) V, MDDM is an upper/lower
triangular matrix and can be directly diagonalized. The
resulting eigenvalues are then normalized and sorted in
numerically descending order. The ith normalized eigenvalue
for IPE type u of a molecule R is denoted by εuu(R) and
evaluated using eq 3.

In eq 3, εuu′ (R) stands for the non-normalized eigenvalue,
and rank(R)u is the rank of the MDDM matrix of molecule
R for IPE type u.

When the IPE types are different, that is, u * V, MDDM
will be rectangular because the number of u and V IPE
elements can be different. Two square MDDMs can be
calculated in eqs 4 and 5.

MDDM(u,u) and MDDM(V,V) possess the same rank and
trace because of their equivalent set of eigenvalues. There-
fore, the eigenvalues for the IPE pair u * V are derived in
eq 6.

Up to 36 different εuV(R) are used as the 4D-fingerprints
of a molecule Rfor the measurement of molecular similarity
and dissimilarity. In eq 7, DR� indicates the dissimilarity
between molecule R and � for a specific IPE pair. Index i
stands for the ith eigenvalue of one IPE pair and thus, the
sum of all absolute difference of eigenvalues between
molecules R and � are defined as the DR�.

The molecular similarity, SR�, is then given as

where

The rank of a MDDM matrix represents the number of
atoms for a specific IPE pair, and hence, � incorporates the
atom size information into the similarly measurement.
Molecules that are significantly different based on the number
of atoms, the measure 1 - �, results in values approaching

0 for the range 0-1, and thus, SR� is reduced. The range of
SR� and DR� is between 0 and 1 because the normalized
eigenvalues are adopted. SR� values closer to 1 indicate higher
degrees of similarity, whereas DR� values approaching 1
refers to higher degrees of dissimilarity.

All of the eigenvalues for all of the MDDMs for all IPE
pairs are utilized as the universal 4D-fingerprints for one
molecule. To use all of the derived 4D-FPs as molecular
descriptors in a partial least-squares (PLS) regression each
molecule in the training set needs to have the same number
of “effective” eigenvalues as PLS predictor variables. To
accomplish this, the number of eigenvalues, n(u,V) of IPE
pair (u,V) for each training set molecule is calculated. The
maximum number of n(u,V) among all molecules is then
determined as nmax(u,V), and assigned to the each molecule
as its initial number of eigenvalues. For the case where the
molecule contains the n(u,V) less than nmax(u,V), the missing
eigenvalues for n(u,V) are set to zero. Hence, the total number
of 4D-fingerprint descriptors of each molecule effectively
becomes the sum of all nmax(u,V) for the 36 IPE pairs. In
this study, the total number of eigenvalues is 813 for each
training set compound. Each 4D-FP descriptor is normalized
to a mean of zero and a unit variance (standard deviation)
of one by dividing each column by the corresponding
standard deviation.

For each test set molecule, the number of eigenvalues of
specific IPE type (u,V) is set to nmax(u,V) of the training set.
If the number of eigenvalues of a test set compound is greater
than nmax(u,V), the smallest excess eigenvalues are disre-
garded. The test set descriptor matrix is also normalized using
the same protocol used for the training set.

MOE Descriptors. In addition to the 4D-FP descriptors,
a set of 280 2D and 3D descriptors from MOE12 were
included in the descriptor pool for this study. The 2D
molecular descriptors are numerical features derived from
the connection table representing a molecule and include
physical properties, subdivided surface areas, atom counts,
bond counts, Kier and Hall connectivity and Kappa Shape
indices, adjacency and distance matrix descriptors containing
BCUT and GCUT descriptors, pharmacophore feature de-
scriptors, and partial charge descriptors. 3D molecular
descriptors, which are dependent on the conformation of a
molecule, include potential energy descriptors, surface area,
volume, shape descriptors, and charge descriptors. Addition-
ally, the VolSurf-like descriptors, which embed 3D molecular
field interaction energies,39 were added to the descriptor pool.

Model Selection and Statistical Analysis. Data fitting was
accomplished using PLS regression analysis. This data fitting
technique is useful when there are a large number of
independent variables in the trial descriptor pool relative to
the number of dependent variables, the pIC50 end points. PLS
is especially useful when there is no way of ranking the
individual members (molecular descriptors) of the trial
descriptor pool and/or knowing possible inter-relationships
among the training set of descriptors.

The Genetic function approximation (GFA)40 was used
to optimize the QSAR models using the important descriptors
as indicated by the PLS models. GFA is a multidimensional
optimization procedure based on genetic algorithms41 (GA).
GFA uses a GA to search the descriptor space of the possible
QSAR models by evolving a population of models that best
fit the training set data with respect to the lack-of-fit (LOF)

〈dij〉 ) ∑
k

dij(k)p(k) (2)

εuu(R) )
εuu′ (R)

rank(R)u
(3)

MDDM(u, u) ) MDDM(nu, nV) × MDDM(nu, nV)
T

(4)

MDDM(V, V) ) MDDM(nV, nu) × MDDM(nV, nu)
T

(5)

εuV(R) ) {[ε(R)]MDDM(u,V)}
1/2 (6)

DR� ) ∑
i

|ε(R)i - ε(�)i| (7)

SR� ) (1 - DR�)(1 - �) (8)

� ) |rank(R) - rank(�)|/(rank(R) + rank(�)) (9)
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score that automatically penalizes models with too many
features.42 Moreover, the size of a model, that is number of
descriptor terms, can be controlled in a GFA optimization
through the smoothing factor, a component of the LOF
scoring function. As the smoothing factor is increased, the
size of the corresponding QSAR model decreases.

The PLS regression was used to build a single QSAR
model that contains the entire trial descriptor pool. The GFA
constructed the optimal QSAR model using the fewest
number of descriptors selected through the exploration of
the overall molecular descriptor space. Both r2 and the leave-
one-out (LOO) cross-validated correlation coefficient, q2,
were employed to characterize the quality of the resultant
QSAR models. In this study, a cutoff pIC50 value, c, was
selected to separate active from inactive compounds and,
correspondingly, transform the continuous QSAR modeling
predictions into binary classifications. For the binary clas-
sification scheme, a compound with a pIC50 predicted value
higher than c is classified as active, whereas a predicted value
lower than c is classified as inactive. This approach was taken
to optimize model reliability, and to be consistent with the
operational implementation of a hERG model: to discern
whether or not a compound is toxic (a hERG blocker) and
not to compute specific pIC50 hERG affinity values for the
compound.

The quality of binary classification models have also
evaluated in terms of accuracy (eq 10), sensitiVity (eq 11),
and specificity (eq 12).

In eqs 10-12, tp (true positives) and fn (false negatives)
are the number of known active (toxic) compounds predicted
to be active and inactive, respectively. Correspondingly, tn
(true negatives) and fp (false positives) are the number of
known inactive (nontoxic) compounds predicted to be
inactive and active, respectively.

RESULTS

Molecular Similarity Characterization of the Train-
ing and Test Sets. The range and average molecular
similarities, using 4D-fingerprints, were computed for mem-
bers of both the training set and the PubChem test set. The
results in Table 2 give the minimum, maximum, and average
molecular similarity values of the IPE types for the 250
training set molecules and also for the 1720 PubChem test
compounds. The IPE similarity values range from 0.00
(effectively no similarity) to a maximum value near 0.99
(identical molecular structures), and the average similarity
values for the IPE types range from 0.28 to 0.75 for both
data sets. These 4D-FP similarity measures illustrate the high
diversity within each of these two data sets. Additionally,
these similarity studies confirm that, in composite, the
training and test sets are representative of one another. Both
data sets have similar average values for all IPE types with

the exception of the (nonpolar-nonpolar) IPE type. Thus,
the PubChem test set can be considered a validated test set
for evaluating the performance of QSAR models derived
from the training set.

Selection of Descriptors and Continuous QSAR Models.
The continuous hERG QSAR models were constructed using
the entire training set (250 compounds) with the correspond-
ing pIC50 measures. The continuous hERG QSAR models
were optimized by GFA optimization, and the most relevant
descriptor terms identified. Three different portions of the
complete descriptor pool were considered in building the
continuous hERG QSAR models: (a) 4D-FPs with logP, (b)
the set of MOE descriptors (traditional and VolSurf-like),
and (c) the 4D-FPs combined with MOE descriptors. Each
of these three trial descriptors sets were restricted to the 200
most highly weighted descriptors of each set that were
embedded in the principal components of corresponding PLS
QSAR models.

The best continuous QSAR model constructed when the
descriptor pool consisted of 4D-FPs and logP is given by eq
13

In eq 13, by way of example, ε112(all,all) represents the
112th largest eigenvalue from the MDDM of u ) (all) and
V ) (all), and ε9(np,hbd) denotes the ninth largest eigenvalue
from the MDDM of u ) (np) and V ) (hbd). The GFA
optimization suggests that the maximum explanation of the
variance, r2, across the training set is captured by eight
universal 4D-FPs, but the r2 is only 0.52 indicating that only
52% of the total variance of the training set can be captured.
Moreover, q2 for eq 13 is nearly the same as r2 indicating
that no specific compounds of the training set particularly
bias the QSAR model.

The GFA optimized continuous QSAR model built from
only the MOE descriptors (traditional descriptors and Vol-
Surf-like descriptors) is given as follows;

accuracy ) tp + tn
tp + fn + tn + fp

(10)

sensitivity ) tp
tp + fn

(11)

specificity ) tn
tn + fp

(12)

Table 2. Range (Minimum and Maximum) and Average Molecular
Similarity for Each of the IPE Types Based on 4D-Molecular
Similarity, of the Training Set, and of the PubChem Test Set

IPE type minimum maximum average

any-any training 0.15 0.99 0.75
test 0.08 0.97 0.70

np-np training 0.09 0.99 0.73
test 0.00 0.97 0.56

pp-pp training 0.00 0.99 0.33
test 0.00 0.99 0.28

pn-pn training 0.00 0.99 0.49
test 0.00 0.99 0.48

hba-hba training 0.00 0.99 0.46
test 0.00 0.99 0.44

hbd-hbd training 0.00 0.99 0.46
test 0.00 0.99 0.34

hs-hs training 0.10 0.99 0.73
test 0.09 0.99 0.70

pIC50 ) 4.61 + 22.06ε112(all, all) - 90.83ε25(hs, hs) -
20.7ε2(np, np) - 215.87ε35(hs, np) + 0.31 logP -

16.63ε1(hs, hs) + 13.77ε9(np, hbd) -
10.84ε6(hbd, hbd) + 2.21ε2(pn, hbd)

N ) 250, r2 ) 0.52, q2 ) 0.48 (13)
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In eq 14, nine MOE descriptors, including eight traditional
descriptors and one VolSurf descriptor, were selected in
building the GFA optimized model, and r2 and q2 are near
0.6. Equations 13 and 14 both have nine descriptors and
comparable predictive capabilities. For eq 14 the r2 is 0.60
indicating that only 60% of the total variance of the training
set has been captured. And like eq 13, the finding that q2 is
nearly the same as r2 indicates that no specific compounds
particularly bias the QSAR model.

Finally, the 4D-FPs and MOE descriptors were combined
into a single descriptor pool to construct an optimized
continuous QSAR model, which is given by eq 15.

There are three 4D-FPs, four traditional MOE descriptors,
and two VolSurf-like MOE descriptors in the GFA optimized
model derived from the complete descriptor pool. However,
the r2 and q2 of eq 15 are about the same as eq 14 suggesting
the continuous models (eqs 13-15) are all about equivalent
in quality.

Binary QSAR Predictions Derived From the Continu-
ous QSAR Models. The continuous QSAR models given
by eqs 13-15 can be transformed into binary models to
separate active from inactive compounds once a separation
cutoff pIC50 value is established. To separate active hERG
blockers from inactive compounds, different threshold values
of IC50 have been proposed in the literature. Aronov and
Goldman adopt a cutoff IC50 value of 40 µM,43 O’Brien and
de Groot used a cutoff of 20 µM, Sun selected a cutoff values
of 30 µM, respectively,33,44 and Fioravanzo et al.45 selected
10 µM as a cutoff. Tobita et al.46 and Roche et al.47 divided
their respective data sets into three classes by implementing
two cutoff values; Tobite et al. used IC50 cutoff values of 1
and 40 µM, and Roche et al. opted for cutoff values of 1
and 10 µM. Recently Li et al.26 published a binary hERG
classification model, and tested the performance and accuracy
of the model at various IC50 cutoffs of 1, 5, 10, 20, 30, and
40 µM. The model employing a 40 µM threshold showed
the best performance via internal validation. By selecting a
high cutoff IC50 value, the risk of missing potentially toxic
hERG compounds is reduced, but the accuracy and sensitiVity
(see eqs 10 and 11) of the model may suffer. In this study,
an IC50 cutoff value of 40 µM (pIC50 ) 4.39) was chosen as
the cutoff to provide an acceptable degree of safety and is
also effectively the optimum cutoff for the performance of
equations (constructed QSAR models) 13-15.

The predicted accuracy, sensitiVity, and specificity values
are 89%, 97%, and 48%, respectively, when using the pIC50

cutoff value of 4.39 for eq 13. The binary classification
quality improves for eq 14’s specificity, relative to eq 13,
when using the pIC50 cutoff value of 4.39. The predicted

accuracy, sensitiVity, and specificity value are 89%, 95%,
and 58%, respectively, for model 14. When binary clas-
sification modeling, with the cutoff value of 4.39, is applied
to eq 15, the predicted accuracy, sensitiVity, and specificity
value are 90%, 96%, and 60%, respectively and the predictive
power is slightly greater than the MOE descriptor-based
model. While the two models from eqs 14 and 15 are
comparable, eq 15’s is based upon 4D-FPs and MOE
descriptors. Hence, eq 15 was adopted for further consideration
because of the 1D, 2D, 3D, and 4D information that is
embedded into this model, and its prediction power, especially
specificity, is slightly better than that of eq 14. Additionally,
the inclusion of the 4D-FP descriptors, as discussed below,
permits the extraction of several 3D-pharmacophore features
that are characteristic of hERG binding.

Determination of the Best QSAR Models. The model
derived from the descriptor pool of the 4D-fingerprints and
MOE descriptors, was further explored, refined and optimized
with respect to the different parameter and settings employed
during the GFA and PLS model building and optimization
process. Equation 15 was built using a GFA smoothing factor
of 0.17. Different smoothing factor values were applied in
this part of the study to explore model stability and to avoid
overfitting the QSAR model. The results of varying the GFA
smoothing factor are presented in the Table 3 with the first
column, SF, containing the selected smoothing factor, the
second through fourth columns reporting the accuracy,
sensitivity, and specificity percentages, respectively found
for the resulting analog binary QSAR models to eq 15. These
results are based on using a pIC50 cutoff value of 4.39 for
each of the optimized binary QSAR models reported in Table
3. The right-most column of Table 3 indicates the number
of descriptor terms in the corresponding optimized model.
The findings reported in Table 3 indicate that the overall
quality of this family of QSAR models is not particularly
sensitive to the choice in smoothing factor value. In turn,
this finding suggests that these models are quite stable with
respect to the PLS fitting metric. The eighth model in Table
3 was selected as the overall best model because of its
combined high accuracy, sensitivity, and specificity, and for
the variety of structural information contained in the eight
descriptors of the model. The continuous form of this optimal
binary QSAR model is given by

pIC50 ) -2.01 - 0.005E_oop + 0.02PEOE_VAS +
3 - 0.001DCASA + 0.33dipole - 0.04PEOE_VSA -

5 - 5.37Vsurf_CW5 + 0.34radius -
2.07BCUT_SMR_0 + 0.74std_dim2

N ) 250, r2 ) 0.60, q2 ) 0.56 (14)

pIC50 ) 7.13 - 10.23ε6(all, hbd) + 10.62ε7(pn, hbd) -
15.43ε1(hs, hs) + 1.9Vsurf_CW2 - 0.01Vsurf_W4 +

0.02PEOE_VSA - 4 - 0.02PEOE_VSA_POL -
0.36GCUT_SLOGP_0 + 0.62std_dim2

N ) 250, r2 ) 0.60, q2 ) 0.56 (15)

Table 3. Performance of the Optimized Analog Binary Qsar
Models to Eq 15 Resulting from Using Different Gfa Smoothing
Factors

smoothing
factor

accuracy
(%)

sensitivity
(%)

specificity
(%)

no. of
terms

0.15 90 96 60 9
0.17 90 96 60 9
0.2 90 97 55 8
0.4 90 96 58 10
0.6 88 96 45 9
0.8 91 96 63 9
1 89 95 55 9
1.2 91 97 60 8

pIC50 ) 9.52 - 14.61ε6(all, hbd) - 17.52ε1(hs, hs) +
16.43ε7(pn, hbd) - 4.36Vsurf_HL1 + 2.06Vsurf_CW2 -

0.11a_acc - 0.02PEOE_VSA_POL -
0.004E_SOL N ) 250, r2 ) 0.58, q2 ) 0.54 (16)
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The r2 and q2 of eq 16 are slightly lower than those of eq
15. However, the optimized binary prediction accuracy of
91%, sensitivity of 97%, and specificity of 60% for eq 16
are slightly better than the accuracy of 90%, sensitivity of
96%, and specificity of 60% for eq 15 when it is used as a
binary model.

The internal training set predictions, based on a cutoff IC50

value of 40 µM, for all 250 training molecules using eq 16
are presented as part of Table S1 in Supporting Information.
The first column of Table S1 is the drug name as reported
in each reference, and the second and third columns list the
observed and predicted pIC50 values (using eq 16). The
corresponding binary values are listed in columns 4 (ob-
served) and 5 (predicted). A binary value of 1 in Table S1
indicates the compound is active, and a value of 0 indicates
that the compound is inactive with respect to hERG blockage.

The 40 µM IC50 cutoff used in this study was, as discussed
above, chosen based upon a previous investigation26 where
it was demonstrated that an IC50 of 40 µM was the optimum
value to classify the hERG toxicity as active or inactive.
However, an alternate cutoff value of 10 µM has been
explored in this study, and the observed and predicted binary
results are listed in columns 6 and 7 of Table S1. This choice
in the cutoff value also leads to high accuracy, sensitivity,
and specificity values of 85%, 97%, and 85%, respectively.

The good results found in using two significantly different
cutoff values illustrates that the underlying QSAR model is
very stable and reliable. The cutoff value of 40 µM (pIC50

) 4.39) was employed in making validation predictions for
the large external data set even though the 10 µM (pIC50 )
5.00) cutoff appears to perform better for eq 16. This was
done because the cutoff of 4.39 is consistent with, and
comparable to, other reported studies that employed the 4.39
(IC50 ) 40 µM) cutoff for hERG blockage activity.

Although leave-one-out cross-validation was utilized to
evaluate the best PLS models, there is residual debate on
whether the performance of our model is stable with respect
to the training set. The literature data set of 250 compounds
was randomly divided into a training set (80% of the
compounds; 200 compounds, 168 active, 32 inactive) and a
test set (the remaining 20% of the compounds; 50 com-
pounds, 42 active, 8 inactive). The PLS model was derived
from the training set, and the best classification model was
chosen based on the performance of the model in predicting
the end points of the test set. While the compounds were
randomly selected, the selection process was constrained to
maintain the same ratio of active to inactive compounds as
found in the complete literature set. Ten training and test
set groups were constructed using this protocol. Table 4a
lists the r2 and q2 of the PLS models constructed using the

Table 4. Statistics Fit and Performance of Ten Classification Models Derived from the 80% Randomly Selected Training Set Compounds of
the Literature Data Seta

part a

training set test set complete literature data set

model r2 q2 Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

1 0.61 0.57 86 98 25 87 95 43
2 0.65 0.59 88 100 40 89 96 52
3 0.62 0.58 86 95 44 88 95 50
4 0.62 0.58 88 100 25 87 97 38
5 0.62 0.57 82 95 13 88 96 48
6 0.64 0.59 82 90 38 88 94 58
7 0.66 0.62 76 81 50 89 94 63
8 0.67 0.63 88 95 50 85 93 45
9 0.64 0.58 86 93 56 89 95 58
10 0.63 0.59 82 97 27 90 97 55

average 0.64 0.59 84 94 37 88 95 51
best model (eq 16) 0.58 0.54 91 97 60

part b

PubChem all testing filtered PubChem testing

model Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

1 67 64 68 87 83 87
2 59 70 58 75 90 75
3 68 64 68 84 86 84
4 69 59 70 81 79 81
5 65 60 65 80 90 79
6 71 66 71 89 90 89
7 71 61 72 86 79 86
8 66 60 67 85 83 85
9 65 66 65 81 86 80
10 68 59 70 89 83 90

average 67 63 67 83 85 84
best model (eq 16) 65 74 64 83 97 82

a Part a lists the r2 and q2 of the 80% training set and the accuracy (Acc), sensitivity (Sen), and specificity (Spe) for the 20% test set, as well
as the complete literature data set, respectively. Part b lists the accuracy (Acc), sensitivity (Sen) and specificity (Spe) for the all PubChem and
filtered PubChem data set, respectively.
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ten randomly selected training sets. Also included in Table
4a are the accuracy (Acc), sensitivity (Sen) and specificity
(Spe) for the test sets and the entire data set. The average
values for the statistics of performance from these ten models,
the 80-20 models, are reported in the second to last row.
The results for the suggested (best) model (eq 16) are shown
in the last row of Table 4a. All of the models based on
randomly selected training sets are observed to result in
slightly higher r2 and q2 than the best model because of the
smaller number of compounds in these training sets. Overall,
the training and test set models retain a high accuracy and
sensitivity for the entire literature data set and the test set.
However, the specificity values of several models are
relatively low when compared to the average specificity
value. These lower specificity values are likely the result of
low molecular similarity between the inactive compounds
of the training and test sets. The average accuracy, sensitivity,
and specificity values from the predictions for the complete
literature set, using the ten models, are only slightly lower
than those reported using eq 16.

Statistical and Mechanistic Interpretation of the
4D-FPs and MOE Descriptors of the Best Model. Three
4D-FPs, two VolSurf-like MOE descriptors, and three
traditional MOE descriptors terms form the optimal binary
QSAR model, eq 16. In terms of a statistical interpretation
of eq 16, the constant value (y-intercept) of 9.52 indicates
that descriptor terms, in composite, contribute to decreasing
the predicted pIC50 values since the maximum pIC50 value
in the training set is only 9.00. This can also be inferred
from the fact that the regression coefficients are negative
for all but two of the descriptor terms in eq 16, and the large
majority of the molecular descriptor values are positive.

One metric to measure a descriptor’s relative importance
in a QSAR model is to compute the product of the magnitude
of a regression coefficient times the range in values adopted
by its descriptor across the training set. This metric is a
measure of the variability of dependent variable of the QSAR
upon the descriptor. Table 5 lists the relative importance of
each of the descriptors in eq 16, based on this metric. The
descriptors are listed in descending order (descriptors with
the largest magnitude first) of their relative importance in
Table 5 The data in Table 5 shows that the ε1(hs,hs)
molecular descriptor (4D-FP) is the most important factor
and ε7(pn,hbd) is the least important term of the optimal
QSAR model. A full discussion on the physical features these

descriptors encode is presented in the Spatial Shape and Size
Descriptors section below.

The descriptors comprising eq 16, regardless of their
relative importance, can be divided into spatial shape and
size, thermodynamic, and electronic descriptors. Table 6 lists
the descriptors of eq 16 using this classification.

Spatial Shape and Size Descriptors. All of the 4D-FPs
are classified as spatial shape and size descriptors. ε1(hs,hs)
is the most dominate molecular descriptor term in eq 16,
and this suggests that the greater the number of non-hydrogen
atoms that are tightly packed near to one another in a
compound, the compound’s hERG blocking activity is
reduced. That is, the smaller the value of the eigenvalue
index, number, x, in εx, the closer the distance between the
IPE pair as can be inferred from eqs 1 and 2. An eigenvalue
index of one means the nonbonded, non-hydrogen atoms are
as close as possible to one another. Unfortunately, using this
relatively nonspecific structural feature is difficult. This
descriptor can be interpreted as indicating that having a
relatively large number of heavy (polar) atoms, such as
nitrogen, oxygen, sulfur, and chlorine, clumped together,
within a molecule, is a good way to avoid hERG activity.
Methylecgonidine and nicotin, shown in Figure 1, are two
examples of compounds that possess a high percentage of
polar atoms closely packed that are also low in hERG
potency.

Perhaps the most interesting molecular feature from eq
16 is the pair of 4D-FP molecular descriptors (-14.61ε6(al-
l,hbd) + 16.43ε7(pn,hbd)); all refers to all IPE types, hbd
represents the hydrogen bond donor IPE, and pn indicates
the polar-negative IPE. This pair of descriptors actually forms
a single descriptor since ε6 and ε7 are equivalent eigenvalue
terms (eg., they have nearly the same eigenvalue index
number, x, in εx) representing a common separation distance
between the two stated IPE types. The larger the value of
the eigenvalue index, the greater is the separation distance
between the IPE pair as can be inferred from eqs 1 and 2. In

Table 5. Relative Importance (Weight) of the Descriptor Terms
(Molecular Descriptors) of Eq 16 as Measured by the Product of the
Regression Coefficient and the Range (Maximum Minus Minimum
Value) for Each Descriptor Value in the Training Seta

descriptor name

relative importance of
descriptors over the

training set for eq 16

ε1(hs,hs) -4.77
PEOE_VSA_POL -3.18
Vsurf_CW2 2.82
E_SOL -2.28
a_acc -1.58
Vsurf_HL1 -1.48
ε6(all,hbd)b -1.31
ε7(pn,hbd)b 1.16

a The sign of the relative weight reflects the sign of the regression
coefficient. b An inter-related pair of descriptors, see text.

Table 6. Classification of the Descriptors in Eq 16 by Their
General Physicochemical Property Type

class name descriptor names

six spatial shape and size descriptors ε6(all,hbd)
ε1(hs,hs)
ε7(pn,hbd)
Vsurf_HL1
Vsurf_CW2

two thermodynamic descriptors E_SOL
PEOE_VAS_POL

one electronic descriptor a_acc

Figure 1. Methylecgonidine and nicotin are two examples of
compounds that possess a high percentage of polar atoms closely
packed that should decrease hERG binding based upon the
εA1(hs,hs) term of eq 16.
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this case, the meaning of this pair of descriptor terms is that
all IPE pairs, other than pn and hbd, which are separated by
6-8 Å will decrease pIC50. But (pn, hbd) IPE pairs 6-8 Å
apart will increase pIC50. Thus, eq 16 shows that compounds
having polar-negative groups located 6-8 Å from hydrogen
bond donors may increase the propensity for hERG binding.
These same two descriptors are found in identical fashion
but with different regression coefficients, in eq 15. An
example of a compound from the training set that contains
the (pn, hbd) IPE pair is alosetron, which is shown in its
global minimum conformation in Figure 2A. Alosetron
possesses a high hERG activity (IC50 ) 3.2 µM) and has
one hydrogen bond donor (hbd) and one polar-negative atom
(pn) separated by a distance of 7.8 Å, depicted by the yellow
dotted line in Figure 2A. An example of a compound with
low hERG activity and containing one hydrogen bond donor
atom but with polar-positive and aromatic atoms that are 6-8
Å apart is ciprofloxacin (IC50 ) 244.8 µM), which is shown
in Figure 2B.
Vsurf_CW2 and Vsurf_HL1 are molecular surface and

volume descriptors based on the 3D molecular interaction
fields constructed through the calculated interaction energy

between a compound in its low-energy conformation and a
molecular probe. Thus, Vsurf_CW2 and Vsurf_HL1 can be
classified as shape and size descriptors. Specifically, Vsur-
f_CW2 is the fraction of a molecule’s hydrophilic surface
area compared to the molecule’s entire molecule surface area.
For eq 16, as the fractional amount of hydrophilic surface
area increase, the predicted pIC50 values are also expected
to increase. This relationship between hydrophilic surface
area and pIC50 is at odds with the hypothesis that increasing
the hydrophilic groups in a compound decreases a com-
pound’s hERG binding affinity. However, it needs to be
remembered that there are other descriptor terms in eq 16,
such as E_sol, where increasing hydrophilic character is
predicted to decreases hERG binding. In other words, it can
be misleading to decouple the descriptors in eq 16 or any
QSAR model from one another in trying to postulate a
mechanism of action from the QSAR.
Vsurf_HL1 is the hydrophilic-lipophilic balance, a ratio

of the hydrophilic regions and hydrophobic regions of a
molecule. Vsurf_HL1 measures which of these two features
are dominate in a molecule or if they are approximately the
same. Increasing the hydrophilic region, based upon eq 16,
decreases hERG binding, which is in agreement with many
literature reports.17,18,26,32 The cross-correlation coefficient
between these two descriptors for the training set is 0.47, a
moderate, but not a high correlation. While these two
descriptors measure related physical properties of a molecule,
they are not very similar features in terms of their control
over hERG activity.

Thermodynamic Descriptors. E_sol, the aqueous solvation
energy, suggests that as the aqueous solubility of the
compound increases, there is a decrease in predicted pIC50.
The other thermodynamic descriptor, PEOE_VSA_POL, is
the total van der Waals surface area of a compound’s polar
atoms. Atoms are considered polar if the absolute value of
the assigned Gasteiger atomic partial charge48 is greater than
0.2, and the surface area is calculated using an approximate
connection table. As the van der Waals polar surface area
of a compound increases, pIC50 is predicted by eq 16 to
strongly decrease. The Vsurf_HL1 and PEOE_VSA_POL
molecular descriptors in eq 16 are consistent with the general
finding that higher molecular lipophilicity promotes hERG
activity.

Electronic Descriptors. a_acc is the only electronic
descriptor in eq 16, and it is the number of hydrogen bond
acceptor atoms of a compound. On the basis of eq 16, pIC50

is predicted to decrease as the number of hydrogen bond
acceptors increases.

Model Validation Using the PubChem Bioassy Test
Set and Additional Literature Set. To evaluate and validate
the binary QSAR hERG blockage model given by eq 16, a
large test set of hERG bioassay data was assembled from
PubChem as described above. Currently, the hERG assays
given in the PubChem repository only provide the percentage
of hERG blockade and not an actual IC50 value. To construct
the test set, compounds from PubChem were classified as
active, or inactive, using a cutoff value of 20% hERG
blockage. That is, compounds with a hERG blockage
percentage of 20% or greater were considered active. The
predicted value from the continuous QSAR model (eq 16)
is a pIC50 value that cannot be directly converted into the
percentage of hERG blockade. Thus, it was necessary to

Figure 2. Two examples of compounds which possess a hydrogen
bond donor (hbd) 6-8 Å from (A) a negative-polar (np) atom and
(B) non-negative-polar atoms, respectively. The dotted lines and
numbers indicate the separation distances between these pairs of
atoms in Ångstroms.
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develop a bridging relationship between the hERG blockage
percentage cutoff from PubChem and the IC50 cutoff used
in the binary form of the QSAR model (eq 16). In the
PubChem hERG assay protocol, a 10 µM dosing of terfena-
dine produced a 100% hERG blockade and was adopted to
represent the positive control in test set validation screening.
Correspondingly, a cutoff value less than the binary model
cutoff IC50 value of 40 µM, successfully used for the training
set in Table S1, must be identified to match the cutoff value
of 20% in the PubChem classification protocol. To find an
appropriate cutoff value to use with eq 16 for validation
screening of the PubChem test set, the following was done:
(a) First, eq 16, along with the “standard” cutoff value of

40 µM (pIC50 ) 4.39) was used to predict the active or
inactive hERG blockage of all 1668 PubChem com-
pounds. For the active molecules, 141 of 163 compounds
were correctly predicted, and 724 compounds of 1505
inactive (nonblockers) were correctly estimated. The
overall accuracy was 52% and, obviously, the model
performs poorly.

(b) Next, the binary active/inactive cutoff value was lowered
to 10 µM (pIC50 ) 5.0) and, as expected, better hERG
blockage predictions were obtained with an overall
accuracy of 65% (74% for sensitivity and 64% for
specificity). This lower cutoff value (IC50 ) 10 µM) is
in much better agreement with the categorization of
PubChem data than the 40 µM cutoff.

(c) Then the Lipinski’s rule-of-five and logP constraints,
presented in the Materials and Methods section, were
applied to the PubChem data set to take advantage of
information learned from previous hERG studies and to
recognize that the high-throughput screening data from
PubChem might contain non drug-like and/or non-
hERG-related compounds.

(i) When only the Lipinski’s rule-of-five constraint was
applied, 1315 compounds were retained in the test set,
which partition into 105 blockers (actives) and 1210
nonblockers (inactives). The overall accuracy is 69%
with the cutoff value of 10 µM. Among the predicted
105 blockers, 72 compounds were correctly predicted,
and for the nonblockers, 847 of the 1210 compounds
were successfully classified. Overall, this initial con-
straining strategy provided marginal improvement.

(ii) Application of the logP constraint, as well as the Lipinski
rule-of-five constraint, resulted in a filtered test set of
876 compounds from the PubChem repository database
(29 active and 847 inactive compounds). When the IC50

cutoff value of 10 µM was applied to this 876 compound
test set, the overall accuracy realized is 82% with
sensitivity and specificity values of 97% and 82%,
respectively. Thus, these findings demonstrate that the
binary form of the QSAR model, eq 16, is reliable and
robust in classifying hERG toxicity for drug-like
compounds.

Only one of the 29 active compounds, NSC7814, was
misclassified in the PubChem test set that consists of 876
compounds. NSC7814, shown in Figure 3, is arguably only
weakly active and has structural and property features that
have been suggested should not lead to active hERG
blockages. Some hydrophilic groups, such as benzenesulfo-
nyl, hydroxide groups, and amine tend to abolish hERG
blocking potency as shown in the Song and Clark study.17

The misclassified active compound, NSC7814, contains

benzenesulfonyl, hydroxide, and amine functional groups that
are chemical fragments associated with compounds that are
not hERG blockers.

For the nonblockers, 154 out of 847 compounds were
misclassified as hERG binders. Among the 154 misclassified
compounds, the average number of nitrogen atoms is
approximately 3, and only 7 of these compounds do not have
any nitrogen atoms. It has been established that a basic
nitrogen atom in a compound is a molecular characteristic
that is often associated with hERG affinity.26 Thus, many
of these 154 outliers containing basic nitrogens and exhibiting
low hERG blockade in the current PubChem assay, might
actually be weak hERG binders. Furthermore, many of these
154 outliers also contain N-methyl-piperidine, tertiary amino,
benzyl, secondary aliphatic amine, sulfonamide, and hydro-
phobic groups all of which have been suggested as important
features for hERG binding. Four examples of outlier
compounds containing these pro-active hERG groups are
shown in Figure 4.

Two compounds predicted by eq 16 as false positives are
given in Figure 5. These two outlier compounds both have
multiple polar-negative groups located 6-8 Å from hydrogen
bond donors which, according to eq 16, increases the
propensity for hERG binding. Additionally, these compounds
each contain a large number of polar groups that increase
the Vsurf_CW2 term of eq 16 and, thus, hERG potency.
Hence, these two compounds are predicted to be hERG
blockers using eq 16 with the cutoff value set to 10 µM.

Table 4b lists the test set accuracy (Acc), sensitivity (Sen),
and specificity (Spe) for the PubChem data set (all com-
pounds and the filtered data set of 876 compounds) for the
ten 80-20 models. The PubChem external test sets demon-
strate the robustness of the models through (a) high individual
accuracy values with the average accuracy of the ten models
(for the filtered PubChem data set) the same as the best model
(eq 16) and (b) the sensitivity for the best model is higher
than the models based on the randomly selected training set.

Thus, it is reasonable to suggest eq 16 is highly reliable
and functionally useful for the prediction of hERG toxicity
across a wide range of chemistry. Overall, eq 16 could
actually be more robust in correctly making hERG activity
predictions than is realized from evaluation and validation

Figure 3. Chemical structure of the one weak hERG binder from
the PubChem test set that were misclassified by eq 16 when using
a 10 µM cutoff.
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studies using the PubChem test set because of limitations in
the fidelity and comparability of the hERG activity measures
using this test set.

The second external test set of 106 compounds was used
to further validate eq 16 as a reliable hERG screening model.
When the IC50 cutoff value of 40 µM was applied to the
second external test set, the overall accuracy was 77% with
corresponding sensitivity and specificity values of 92% and
38%, respectively. Even though the calculated root-mean-
square deviation (rmsd) between the observed and predicted
pIC50 was 1.39, eq 16 has a high sensitivity score that is
also found in the external PubChem data set (sensitivity of
74% for all compounds, and 97% for filtered compounds).
Again, this illustrates that eq 16 is very reliable in being
able to predict active hERG compounds. Additional data on
this validation analysis are given in the Supporting Informa-
tion Table S2.

Model Comparisons. To further compare the quality and
predictive power of the continuous and binary QSAR models
constructed in this study, five published hERG studies
employing different methods and models were compared to
the findings of this study and are summarized in Table 7.
The first column of Table 7 describes each of the modeling
methodologies, the second column contains the training set
accuracy and the number of training set compounds in
parentheses, and the last column has the test set accuracy
with the number of test set compounds also given in
parentheses. The summary findings from applying each

method, except for those from this investigation, are sorted
(in ascending order) by the number of compounds of the
training set. The studies listed in the second through fifth
rows in Table 7 have good training set accuracy, but these
models are based upon relatively small training sets. Con-
versely, the support vector machine study was applied to a
large training set, but, correspondingly, the training set
accuracy is reduced. The size of the supervised neural
network study and the molecular similarity-based study are
near to the number of compounds in our training set. Among
these three studies, the training set predictions from the
models of this study are slightly less significant than the
models from the other two studies. However, it is quite
reasonable to ascertain that the neural network study involves
a degree of nonlinear fitting, and the use of more descriptors
than presented in eq 16. It is hard to determine how many
descriptors were used, what the fitting protocols were used
for the molecular similarity-based study and the accuracy
of the similarity-based strategy is limited to the chemical
space of the applied training set. The overall accuracy values
of the test sets (internal and external), when predicted with
eq 16, are comparable to the other referenced hERG blocker
prediction studies.

Two other evaluation analyses, based upon using the entire
PubChem hERG data set as a test set, and each analysis using
a different model development method, namely, SVM
classification26 and random forest (RF) decision tree analy-
sis,49 were carried out. A summary of the findings from these
two studies is as follows: (a) The SVM model achieved 73%
accuracy (57% sensitivity). (b) The RF model achieved about
69% accuracy (47% sensitivity). Overall, the predictive
performance of eq 16 in this comparative study is superior
to both the SVM and the RF models.

DISCUSSION

The continuous QSAR models derived from the three
molecular descriptor pools used in this study have (a) r2 and
q2 values that are nearly the same, (b) accuracies, as binary
classification models, that are at least 90%, while their r2

values to predict pIC50 only explain around 60% of the of
the training set variance, and (c) their performance as binary
classification models is not particularly sensitive to the cutoff
value used for classifying compounds as active or inactive.

Overall, the QSAR models developed in this study are
not particularly good in precisely explaining the continuous
pIC50 values of the training set compounds but are quite good

Figure 4. Four examples of hERG nonblockers in the PubChem test set that are misclassified by eq 16 using the 10 µM cutoff yet contain
significant hERG binding features.

Figure 5. Examples of hERG nonblockers in the PubChem test
set that are misclassified by eq 16 using the 10 µM cutoff yet contain
a relatively large number of hydrogen bond donor or acceptor atoms.
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in classifying the lower half of the training set pIC50 values
from the upper half. Of the various QSAR models developed
in this study, eq 16 performs slightly better for two-state
classification than the others.

The most definitive 3D structure-activity interpretation
from eqs 15 and 16 is that all IPE pairs, other than pn and
hbd, which are separated by 6 to 8 Å, will decrease pIC50.
But (pn, hbd) IPE pairs 6 to 8 Å apart in a compound will
increase pIC50. The implication of this finding to minimize
hERG blockage is to avoid having negatively partially
charged atoms or groups (including hydrogen bond acceptors)
in a compound that are 6-8 Å from hydrogen bond donors.
The other 4D-FP structural finding, which has the highest
significance in the QSAR but is not readily translated into
definitive chemical structures, is that polar atoms, like
nitrogen, oxygen, and sulfur atoms, which are grouped close
together in space are a good feature for avoiding hERG
activity.

It also remains unclear, in terms of specific chemical
structures, how to take direct advantage of the other
descriptors in eq 16 to decrease hERG blockage. However,
PEOE_VSA_POL, Vsurf_CW2, E_SOL, and Vsurf_HL1 can
be conceptually organized into one feature class related to
the solvent accessible polar surface of a compound. With
this in mind, the relative importance of the descriptor terms
listed in Table 5 have been recomputed with the PEO-
E_VSA_POL, Vsurf_CW2, E_SOL, and Vsurf_HL1 descriptors
considered, effectively, as a single descriptor and are given
in Table 8. The combined contribution of these four
descriptors is -4.12, and thus, this new cluster feature
becomes the second most significant molecular property. This
cluster feature suggests that as the gross polar solvent

accessible surface area of a compound increases, its hERG
affinity will decrease.

Perhaps the most novel and useful part of this QSAR
analysis and the corresponding models is that pharmacophore
and molecular property information can be directly extracted
and then used as a guideline in designing and refining drug
candidates. As an example to demonstrate this capability, a
potent hERG blocker and a quite inactive compound have
been selected from the training set. The compound desm-
ethylastemizole, shown in Figure 6, has an IC50 value of
0.001 µM and is a strong inhibitor of the hERG channel.
Figure 6 displays the chemical structure and a 3D ball-stick
model of desmethylastemizole in its lowest-energy confor-
mation. Superimposed on the ball-stick model of desmethy-
lastemizole are representations of the important structural
features, based upon the descriptors of eq 16, which increase
and decrease the hERG blockage potency of the compound.
A structural feature colored red indicates a positive descriptor
term in eq 16 (an increase in hERG activity) and features in
different shades of blue represent the negative descriptors.
A darker blue color indicates a higher weight of the
descriptor term to decreasing hERG activity. The distances
between an oxygen atom (#1) and two nitrogen atoms (#2
and #3) are within 6-8 Å, and both distances delineate the
one important feature, ε-7(pn,hbd), that increases hERG
affinity based on eq 16. In Figure 6 the blue dots depict the
partial polar surface areas of the molecule. These rather
sparse polar surface area regions do not significantly decrease
hERG affinity. In addition, desmethylastemizole has three
hydrogen bonding acceptor atoms (#2, #3, and #4) contribut-
ing to the least significant negative descriptor term, a_acc
of eq 16. Desmethylastemizole has only two heavy atoms
(#2 and #4), which are in close proximity to one another
and thus contribute to satisfy the ε1(hs,hs) 4D-FP descriptor
term of eq 16. Thus, desmethylastemizole is predicted by
eq 16, and shown in Figure 6, to have potent hERG activity
because it lacks significant contributions from the most two
important features, total solvent accessible polar-surface area
and ε1(hs,hs), that can decrease the hERG affinity. Desm-
ethylastemizole is not rich in those structural features of eq
16 that explicitly increase hERG blockage.

Nifedipine can be considered an inactive compound, with
respect to hERG blockage, having an IC50 value of 275(µM).
The equivalent graphical representations used for desmethy-
lastemizole in Figure 6 are given in Figure 7 for nifedipine.

Table 7. Comparisons of the Performances of Several hERG Models Including eq 16 of this Paper

modeling methodology

accuracy of training
set predictions

(number of compounds)

accuracy of testing
set predictions

(number of compounds)

binary QSAR, this study (40 µM cutoff) 91% (250) 83% (876)
PLS (traditional and hologram QSAR)50 83-87 (55) 83% (95)
shape signatures30 69%∼73% (83) 85-95% (21)
fragment-based-evolutionary algorithm51 87-89% (70-100) 85-90% (22-24)
recursive partition52 96% (100) 93-96% (55)
binary QSAR model32 83-87% (150-223) 78-86% (64)
supervised neural network47 93% (244) 82% (72)
similarity-based method38 76% (275) 80% (500a)
supported vector machine, SVM26 70-86%a (495) 73% (1877)

a The reported methods contains linear and nonlinear models at different threshold values; 86% accuracy is for the linear SVM model at a 1
µM threshold, and 72% is an approximate overall accuracy of the nonlinear SVM model at a 30 µM threshold since the precise values are not
stated in the reference.

Table 8. Relative Importance of the Descriptor Terms of Eq 16
when PEOE_VSA_POL, E_SOL, Vsurf_CW2, and Vsurf_HL1 are
Grouped Together and Considered as a Single Descriptor

descriptor name

relative importance of
descriptors over the

training set for
eq 16

ε1(hs,hs) -4.77
PEOE_VSA_POL + Vsurf_CW2 +

E_SOL + Vsurf_HL1
-4.12

a_acc -1.58
ε6(all,hbd) -1.31
ε7(pn,hbd) 1.16
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This compound has six hydrogen bond acceptor atoms
(a_acc) (#2, #3, #4, #5, #6, and #7), which is twice the
number as desmethylastemizole. It is also seen in Figure 7

that the polar surface area for nifedipine is a much larger
fraction of the total surface area than is the case for
desmethylastemizole. The large amounts of these two
features contribute to eliminate nifedipine’s hERG activity.
In addition, there are three clusters of polar atoms (the first
consisting of atoms #1,#2,and #3, the second being atoms
#4 and #5, and the third composed of atoms #6 and #7) that
lead to major contribution from the most significant molec-
ular feature, ε1(hs,hs), that diminishes the hERG binding
affinity of the molecule. The only structural feature of
nifedipine that increases pIC50 is the spatial distance of a
hydrogen bond donor (hbd) atom, #1, and a negative-polar
(np) atom, #6. These atoms are the required 6-8 Å apart,
based upon the ε-7(pn,hbd) fingerprint, to enhance a
compounds hERG blocking ability. Two levels of structural
feature significance that decrease hERG binding are cor-
respondingly colored by light and dark blue representations
in Figure 7. The contributions to the polar surface area are
colored light blue (#8, least significant). Five atoms are
colored dark blue (most significant), which contribute to the
ε1(hs,hs) descriptor and also to the hydrogen bond acceptor
atom count. The structural feature, ε-7(pn,hbd) formed by
atoms #1 and #6, which contributes to increasing hERG
activity, has, overall, significantly less weight when compared
to the structural features that decrease hERG activity. The
structural features which decrease hERG activity dominate
the structure of nifedipine, as can be seen in Figure 7, and
therefore, the compound is an inactive hERG blocker.

CONCLUSION

The QSAR models developed and presented here are
applicable to both virtual screening and limited chemical

Figure 6. Desmethylastemizole (chemical structure shown at the top) in its lowest-energy conformation. The structural features, based
upon the descriptors of eq 16, which contribute increasing hERG blockage are shown in red. Features that decrease hERG activity are
portrayed in different shades of blue to reflect their relative importance with dark blue representing the most highly weighted features. The
blue dots depict the polar surface regions and the numbers along the white dotted line indicates the distances between the specified pairs
of atoms in Ångstroms. Atoms of interest are highlighted with green numbers.

Figure 7. Nifedipine (chemical structure shown at the top) in its
lowest-energy conformation. The structural features, based upon
the descriptors of eq 16, which contribute decreasing hERG activity
are portrayed in different shades of blue to reflect their relative
importance with dark blue being most highly weighted. The blue
dots depict the polar surface regions, and the numbers along the
white dotted line indicate the distances between the specified pairs
of atoms in Ångstroms. Atoms of interest are highlighted with green
numbers. The distance between atoms #1 and #6 is the only feature
that modestly contributes to the increasing hERG binding affinity,
and for this reason, these atoms are colored red.
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modification studies based on interpretation of the models.
The approach taken herein also permits the inclusion of 3D
and 4D information without introducing the alignment and
pose complications that typically arise in structure-based
studies. Having a set of descriptors that can be readily
interpreted in terms of chemical structure is a useful feature
of this modeling approach. However, it does remain prob-
lematic in deciding how much weight to assign to the
inclusion or exclusion of molecular features derived from
any hERG QSAR model, as compared to the need for that
feature to realize therapeutic potency. Structurally modifying
a compound based upon any of the descriptors in eq 16 to
reduce hERG activity will, at least initially in the design
phase of the drug discovery process, likely be trumped by
the requirement of the pharmacophore needed for therapeutic
activity. As such, the findings from eq 16 may only be
implemented as guides or constraints to decrease hERG pIC50

that are secondary to realizing therapeutic potency.
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