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Abstract
Mutations that arise in HIV-1 protease after exposure to various HIV-1 protease inhibitors have
proved to be a difficult aspect in the treatment of HIV. Mutations in the binding pocket of the
protease can prevent the protease inhibitor from binding to the protein effectively. In the present
study, the crystal structures of 68 HIV-1 proteases complexed with one of the nine FDA approved
protease inhibitors from the Protein Data Bank (PDB) were analyzed by (a) identifying the
mutational changes with the aid of a developed mutation map and (b) correlating the structure of
the binding pockets with the complexed inhibitors. The mutations of each crystal structure were
identified by comparing the amino acid sequence of each structure against the HIV-1 wild type
strain HXB2. These mutations were visually presented in the form of a mutation map to analyze
mutation patterns corresponding to each protease inhibitor. The crystal structure mutation patterns
of each inhibitor (in vitro) were compared against the mutation patterns observed in in vivo data.
The in vitro mutation patterns were found to be representative of most of the major in vivo
mutations. We then performed a data mining analysis of the binding pockets from each crystal
structure in terms of their chemical descriptors to identify important structural features of the
HIV-1 protease protein with respect to the binding conformation of the HIV-1 protease inhibitors.
Data mining analysis is performed using several classification techniques: Random Forest (RF),
linear discriminant analysis (LDA), and logistic regression (LR). We developed two hybrid
models, RF-LDA and RF-LR. Random Forest is used as a feature selection proxy, reducing the
descriptor space to a few of the most relevant descriptors determined by the classifier. These
descriptors are then used to develop the subsequent LDA, LR, and hierarchical classification
models. Clustering analysis of the binding pockets using the selected descriptors used to produce
the optimal classification models reveals conformational similarities of the ligands in each cluster.
This study provides important information in understanding the structural features of HIV-1
protease which cannot be studied by other existing in vivo genomic datasets.

1 Introduction
The human immunodeficiency virus (HIV) is a retrovirus that can lead to Acquired Immune
Deficiency Syndrome (AIDS). In 2008, an estimated 33.4 million people in the world were
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living with HIV, with two million deaths resulting from AIDS.1 The extensive genetic
variation and replicatory dynamics of the virus within human hosts has led to a high
mutation rate during the reverse transcriptase process, resulting in drug resistances which
frustrate the anti-HIV drug development process.2–4

HIV-1 protease is a major viral target for the development of new chemotherapeutics.
Inhibition of HIV-1 protease prevents the virus from maturing into its infectious form. More
than half a dozen commercially available drugs are HIV-1 protease inhibitors which are used
for the treatment of AIDS. However, mutations arising in HIV-1 protease resulting from the
use of current drug regimens is a major pitfall for the efficacy of the drugs. Hence, the quest
for the development of new intelligent HIV-1 protease inhibitors tolerable to mutations is
still on. This requires a thorough understanding of the various mutation patterns occurring in
the HIV-1 protease protein as these mutations may result in binding pocket conformational
changes which can affect inhibitor binding. To study mutation patterns of HIV-1 protease,
large genomic datasets from clinical DNA sequences have resulted in the development of
several HIV mutation databases which are used by researchers to study mutation patterns in
HIV proteins.

The two most noteworthy HIV mutation databases are the Stanford HIV Drug Resistance
Database5 and the UCLA HIV Positive Selection Mutation Database.6 The Stanford
database makes use of genomic datasets to produce mutation frequency information in HIV
proteins and infer resistances to various anti-HIV drugs. The UCLA database uses genomic
datasets to develop detailed mutation pressure maps in order to study the interrelated
mutation selection effects between amino acid positions. In addition to these genomic
datasets, the International AIDS Society-USA releases an annual to semi-annual mutation
map of HIV resistances to popular clinical drug combinations observed in vivo.7 These
mutation maps were designed to understand mutation patterns as a clinical guide for drug
treatment.

Mutation patterns inferred from these genomic sequences has led to hundreds of
crystallization studies involving HIV-1 protease proteins complexed with various inhibitor
molecules, including the FDA approved HIV-1 protease inhibitors, and are analyzed for
their physiochemical properties. It would be valuable to study the mutations present in the
HIV-1 protease crystal structures reported in the Protein Data Bank (PDB) to identify
mutation patterns existing with the complexed inhibitors. In the first part of our study, we
analyze HIV-1 protease crystal structures which are complexed to one of the FDA approved
HIV-1 protease inhibitors to identify mutation patterns and visually present these mutations
in the form of a mutation map. Furthermore, we perform a comparative analysis of the in
vitro (crystal structures) mutations with the mutations identified in vivo (genomic datasets).

The mutations present in the HIV-1 protease protein can cause changes in the binding
pockets in terms of their geometrical shape and physiochemical properties. In the second
part of our study, we investigate the relationship between the HIV-1 protease binding pocket
structure in terms of its chemical descriptors with its complexed protease inhibitor.
Chemical descriptors computed from the crystal structures of molecules based on their
atomic makeup are used for the development of classification models to establish a
relationship between the binding pocket structure and complexed inhibitor in terms of their
chemical descriptors.

The number of these chemical descriptors can range in the hundreds and usually exceeds the
number of samples available. In order to develop robust QSPR based models, optimization
of the descriptor space is required.8 Common linear modeling techniques in QSPR, such as
multiple linear regression (MLR)9–11 and linear discriminant analysis (LDA),12 require a
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decreased pool of the most relevant descriptors in order to train high predictive models.
Other commonly used nonlinear techniques with high predictive performance in QSPR
modeling include artificial neural networks (ANN),8,13,14 decision trees,15 and support
vector machines (SVM).13,14 However these techniques are also inefficient in dealing with
high dimensional data without dimensionality reduction or feature selection techniques.

Various dimensionality reduction techniques have been used to decrease the number of
descriptors and extract the most relevant data in order to construct reliable models.16 Hybrid
methods involving genetic algorithms17 and particle swarm optimization18 have been used
to tackle the high dimensionality problem by acting as a feature selection proxy prior to
training ANN based QSPR models. However, these techniques often require a large sample
size to train effective models.

Random Forest is a relatively new technique applied in QSPR modeling. In a chemometrics
case study by Svetnik et al., Random Forest was found to be one of the top classification
methods, being able to handle high dimensional data while ignoring redundant and irrelevant
descriptors.19 Random Forest has a unique feature of measuring feature relevance in its
classification models called the variable importance measure. A study by Li et al. has shown
that Random Forest's ability to rank chemical descriptors based on their relevance serves as
an important feature selection technique prior to training effective SVM-based classification
models.20

We evaluated the use of several hybrid classification modeling techniques, Random Forest-
LDA and Random Forest-logistic regression (LR), for the classification of HIV-1 protease
crystal structures to an FDA approved HIV-1 protease inhibitor. The Random Forest
classifier is used as a feature selection proxy which is used to select the most relevant
chemical descriptors for the development of LDA and LR based classification models.
Model validation of the LDA and LR models is performed by a cross validation scheme.
Hierarchical clustering also used to classify the HIV-1 protease proteins with the subset of
descriptors used to develop the most optimal LDA and LR models. The results from these
classification models support each other with few deviations. This study captures the
conformational changes of the HIV-1 protease binding pockets due to both the mutations
present in the structure and the protein-ligand interactions in terms of a few quantitative
descriptors. These descriptors will provide insight for the design of new inhibitor molecules.

2 Methods
In this two part study, we first study the mutation patterns of the HIV-1 protease crystal
structures by developing a mutation map (Figure 1). Secondly, we perform data mining
analysis on the chemical descriptors calculated from the binding pocket structures of these
crystal structures through the use of classification models and hierarchical clustering to
correlate the structural features of the HIV-1 binding pocket with its complexed ligands
(Figure 2).

2.1 Dataset
The PDB was searched for all HIV-1 protease crystal structures complexed with an FDA
approved protease inhibitor.22 The PDB is a crystal structure repository database for large
biological macromolecules and provides information regarding the experimental method
used to obtain the crystal structure, the molecule class, fragment description, any ligands
complexed with the biological molecules, and any amino acid residue mutations that exist
within the structure.
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The structures were selected based on the molecular classification and fragment descriptions
provided by the PDB entry. Of the approximately 200 HIV protease crystal structures
deposited in the PDB (Figure 3), a total of 68 crystal structures were found to be HIV-1
complexed with one of the nine FDA approved protease inhibitors (Table 1): Darunavir
(017), Nelfinavir (1UN), Amprenavir (478), Lopinavir (AB1), Atazanavir (DR7), Indinavir
(MK1), Ritonavir (RIT), Saquinavir (ROC), and Tipranavir (TPV).

During our research on the PDB crystal structures of HIV-1 protease, the molecular
classification for some of the structures were found to be inconsistent. We noticed that the
molecular classification varied widely from “pol protein” to “ASPARTYLPROTEASE”, in
addition to inconsistencies in the fragment description, which varied from a correct
description of “Protease” to an inconsistent residue numbering with “57-155”, “69-167”, and
“500-598” as possible entries in the database. We also observed that some crystal structures
were given an incorrect classification of “Gag-Pol polyprotein (Pr160Gag-Pol)” with no
fragment description, which would imply that the crystal structure is the Gag-Pol precursor
polyprotein which, if cleaved, would produce the following mature proteins: the matrix,
capsid, p2, nucleocapsid, transframe protein, protease, reverse transcriptase, and integrase.23

Furthermore, we found that the crystal structure of PDB-ID 1HSH was reported to be HIV-1
protease when it was in fact a crystal structure of HIV-2 protease.

To create our dataset, we addressed these inconsistencies by searching for all structures
complexed with the specific inhibitor of interest and using verification methods such as
sequence alignment (discussed later in this section) and literature verification to validate that
each crystal structure is indeed HIV-1 protease. All of the PDB queried HIV-1 protease
proteins complexed with one of the nine FDA approved protease inhibitors used in our
dataset with their molecular classification, fragment description, and reported mutations are
provided in Supplementary Table S1.

2.2 Mutation Map Development
2.2.1 Sequence Alignment—All protein sequences in our dataset (Supplementary Table
S1) were aligned and compared against a base strain sequence to verify the structure and
eliminate the inconsistencies as discussed earlier. We used the HXB2 sequence as it was
proposed by researchers at the Los Alamos National Laboratory to address a similar kind of
variation in HIV DNA and protein sequences in the HIV literature.24 HXB2 is also one of
the most commonly used laboratory viral sequences in HIV-1 mutation studies.21 An
example of sequence alignment between the PDB-ID 1T7J protein and HXB2 is shown in
Figure 4. The amino acid differences between the two sequences are identified as mutations.
Supplementary Table S2 lists the mutations in each crystal structure after alignment with the
HXB2 amino acid sequence. The mutation list is then adjusted to take into account for
crystallized mutations which is discussed in the next section.

2.2.2 Mutation Map—Amino acid mutations occurring in the binding pocket results in
conformational changes and have the most direct effect on the binding affinity of the HIV-1
protease protein towards a specific inhibitor.25 Hence it becomes significant to highlight the
mutations occurring in the binding pocket. We define the binding pocket as the set of amino
acid residues within a six angstrom radius of the complexed inhibitor as non-covalent
interactions found within this distance, such as cation-π and π-π interactions, are important
in the protein-ligand binding recognition process.26–30 The amino acid makeup of the
binding pocket was determined using the PyMOL Molecular Viewer.31 In the development
of the mutation map, we consider all the mutations based on sequence alignment and
whether these mutations are found within the binding pocket (Figure 1). In the mutation
map, we have grouped all the mutations across all the crystal structures by ligand.
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Some mutations reported in the PDB are artificially created due to necessary experimental
conditions to produce viable crystal structures. We call these mutations crystallized
mutations. From the corresponding literature associated with each of the crystal structures,
we determined that the following three types of mutations are introduced into the crystal
structure for a variety of experimental necessities: the Q7K, L33I, and L63I mutations are
created to minimize autoproteolysis,32 the C67A and C95A mutations are to prevent
cysteine-thiol oxidation,32 and the D25N mutation allows for the study of inhibitor binding
without interference of the cleavage reaction by the protease.33 While the Q7K, L33I, L63I,
C67A, and C95A mutations are often necessary to create crystal structures of HIV-1
protease, the kinetic parameters are indistinguishable from their native enzyme which makes
these crystal structures viable for research.34 Although D25 is a member of the catalytic
triad in the active site of HIV-1 protease, a study by Sayer et al. reveals that the D25N
mutant results in very subtle structural differences from the wild type at the active site and
dimer-interface geometry, however binding Darunavir with the mutant results in a less
favorable binding constant.35 We assumed that as we are only interested in the structure of
the protease to obtain information on the amino acid positions which define the binding
pocket, these subtle structural differences would not affect the binding pocket extraction.
Thus in the development of the mutation map, we have discounted these necessary
experimental mutations from the individual ligand mutation maps. This final mutation map
is shown in Figure 5.

2.3 Data Mining Analysis
2.3.1 Chemical Descriptor Calculations—Chemical descriptors are quantitative
measurements derived from chemical structures which describe its physiochemical and
structural properties. To compute the quantum-chemical descriptors of the binding pocket,
calculations of the molecular electronic structure must be computed. The Austin Model 1
(AM1) energy calculation of each pocket structure using the atomic coordinates of the
crystal structure was computed using AMPAC.36 A set of 562 constitutional, geometrical,
electrostatic, topological, and quantum-chemical descriptors were derived from the binding
pocket structures and their AM1 energy calculations using Codessa.37 To reduce the
descriptor space, we eliminated any descriptors with null or constant values across the
majority of the samples. Null values occur because the descriptor is specific for atoms which
are not present in the structure. This resulted in a total of 456 descriptors in the dataset. All
descriptor values were recentered to have a zero mean and a standard deviation of one.

If multiple ligands were found to be complexed in the crystal structure, then multiple
binding pockets will be extracted from the structure. The PDB structures 1N49, 2AVV,
2R5P, and 2R5Q each had two ligands complexed in the binding pocket region and as such
have two binding pockets used in this classification study. The extracted binding pocket
structures have also been checked for completeness; HIV-1 protease is a dimer structure
which cleaves the nascent polypeptide at the dimer interface and is the target site of HIV-1
protease inhibitors.38 Thus any pocket structures which do not contain atoms from both
dimers were eliminated from the dataset; PDB-ID 1FB7 was eliminated for not meeting this
criterion. In addition, PDB-ID 1RV7 was eliminated from the dataset as the chemical
descriptors were not successfully computed for the structure. This quality assurance check
resulted in a total of 70 binding pocket structures in the dataset.

2.3.2 Descriptor Selection—Random Forest is a decision tree based ensemble learning
technique which consists of a collection of unpruned trees used collectively to determine the
output for a given observation.39 Ensemble learners utilize multiple models in combination
which may result in an improved predictive model over a standalone model. A Random
Forest classification model is a collection of classification tree predictors
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where Θk are independent identically distributed random vectors which each cast a vote for a
class for a given input vector x.39 For each tree, a bootstrap sampling of the dataset is
selected as the training set for the model building process. In the tree growing steps of
Random Forest, a small random sampling of the variables are considered for each nodal
split. Each of the classification tree models are grown fully without pruning as to keep bias
at a minimum. Bootstrap sampling of the observations and random variable sampling
ensures no two trees are identical. The Gini measure of impurity is used to determine the
variable selected to make the nodal split. The Gini impurity measure at node t is defined as

where i and j are the outcome categories for the variable. The subsequent Gini criterion for
determining a split with variable s at node t is defined as

where pL and pR are the proportion of observations in t in the left and right child nodes
respectively. The variable s which maximizes Φ(s, t) is selected for the nodal split.

In the statistical computing environment R,40 there are two major parameters used to train
the Random Forest classifier model: nTree, the number of classification trees to train, and
mtry, the number of variables to randomly consider at each node of each tree. In R, 63.2% of
the observations in the dataset are selected by bootstrap sampling for model building with
the remainder used as a test set to measure the performance of the trained tree. As each
classification tree is built, an estimate of the Random Forest classifier performance is
measured, called the Out-of-Bag (OOB) error. The OOB error is the misclassification
measurement of all of the trained classification trees in the Random Forest model using the
non-selected bootstrapped samples as the test set.

Random Forest includes an implicit measure of variable importance when determining
classification which is obtained by two quantitative measurements, the Gini importance and
the mean decrease in accuracy measurements.41 The Gini importance measures the
improvement of each variable in the Gini criterion selected to split at each classification tree
node. In R, the Gini importance measure is referred to as the mean decrease in Gini. As each
split occurs during the tree growing process, the Gini impurity measure decreases. The mean
decrease in Gini for each variable is computed by measuring the sum of decreases in the
Gini impurity measure divided by the number of trees in the Random Forest model. The
variables with the largest decrease in the Gini impurity measure are deemed the most
significant. The mean decrease in accuracy measurement involves measuring the error of a
trained classifier by randomly permuting a variable's values. The mean decrease in accuracy
measure for each variable is defined as
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where ROOB is the OOB error at each tree in the model with the full dataset, and RPerm is the
OOB error at each tree for the full dataset with permuted values for the variable i; The mean
decrease in accuracy of the variable i is the average difference between the OOB error of the
full dataset and the full dataset with the permuted variable over all the trees.19 A significant
decrease in the performance of the Random Forest classifier as a result of permuting the
values of i signifies its importance in the classification model. This combination of a
classifier tool with an implicit variable relevance measurement makes Random Forest a
highly desirable technique for use as a standalone classifier or in conjunction with other
classification techniques as a preprocessing filter to develop improved models.

Random Forest is used to classify each of the 70 HIV-1 protease binding pockets to one of
the nine FDA approved HIV-1 protease inhibitors in order to determine an optimal subset of
descriptors to be used in other classification modeling techniques more suitable for small
datasets. For the determination of the optimal tree size with the lowest OOB error, a
Random Forest classifier is trained with parameters nTree = 20000 and the default parameter
of mtry. The default parameter of mtry in a Random Forest classifier is equal to the square
root of the number of variables available. In R, as each tree is generated in a single Random
Forest model, the OOB error is computed, enabling the determination of the optimal tree
size. 40,000 Random Forest models were generated from which the average OOB error is
determined at each tree size. The optimal value of mtry at the optimal nTree value is
determined by the minimum average OOB error from a simulation of 10 Random Forest
models at each mtry value from 1 to 456.

A final Random Forest model is generated with the optimal nTree and mtry parameters. A list
of variables deemed to be the most important set of chemical descriptors in building the
classifier is determined by the mean decrease in Gini and the mean decrease in accuracy
criteria.

2.4 Classification Modeling
LDA is a statistical technique used to determine a linear combination of features that best
separates multiple classes of objects, whereas LR predicts the class of an object by assuming
a logistic relationship exists between the probability of class membership and its variables.42

A thorough discussion of LDA and LR in the context of QSPR modeling is provided by
Worth and Cronin.43 The MATLAB implementation of Fisher's discriminant analysis and
nominal multinomial LR was used to develop the LDA and LR models respectively.44

Hierarchical clustering is a partitioning method which uses similarity measures to cluster
objects into optimal homogeneous groups.45,46 The R implementation of hierarchical
clustering was used to perform the clustering analysis.

To determine the optimal model for LDA and LR, we used recursive elimination on the top
group of descriptors as determined by the Random Forest variable importance measure. For
model evaluation, cross validation was used as a strategy for estimating model performance
when exposed to unseen data.47 Due to the small nature of the dataset, leave-one-out cross
validation was used.

Hierarchical clustering of the binding pockets is performed with the optimal subsets of
descriptors as determined by the LDA and LR model performance. It is expected that a good
set of descriptors would have each of the binding pockets clustered together by their
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complexed ligands. Several combinations of distance metrics and hierarchical clustering
linkage methods in R were computed on the set of descriptors determined by the optimal
LDA and LR classification models. The Pearson correlation distance metric with the Ward
linkage method was observed to produce the best groupings of the data points, whereas the
data appeared to be grouped randomly with the other methods. The Pearson distance metric
between two data samples xi and xj for a given variable k is defined by one minus the
Pearson correlation coefficient:

The Ward linkage method produces a hierarchical tree which form clusters such that the sum
of squares error of the distance matrix is at a minimum between each cluster. A detailed
explanation of the algorithm is provided by Ward.48

3 Results and Discussion
3.1 Mutation Map Development

3.1.1 Mutation Map Analysis—Mutations at the 82nd and 84th positions are well known
binding pocket mutations associated with HIV-1 protease inhibitors. In depth analysis of our
mutation map (Figure 5) shows that all inhibitors have at least one crystal structure with a
mutation at the 82nd position (V82A, V82F, V82L, and V82T) and the I84V mutation,
except for Nelfinavir for which no crystal structures were studied with an amino acid
mutation at those two positions. Besides these two mutations, several other binding pocket
mutations were found to be unique to specific inhibitors. Atazanavir was found to have the
unique binding pocket mutation L10I, Indinavir with I54V, and Saquinavir with I54M.
Lopinavir was found to have mutations at the 47th position unique to itself with the I47A
and I47V mutations. In general, all amino acid mutations at a position collectively lie either
inside or outside the binding pocket. However, for Lopinavir, although the M46V mutation
resides inside the binding pocket, the M46L mutation does not. Similarly, for Saquinavir, the
I54M mutation resides inside the binding pocket, whereas the I54V mutation does not.
While most of the crystal structures are missense mutation studies, one crystal structure,
PDB-ID 2RKG, studied the effects of a frameshift mutation with Lopinavir, an insertion
mutation E35EE where an extra glutamate is inserted after the 35th position.49

Further analysis of the mutation map did find the crystallographic D25N mutation to reside
within the binding pocket of crystal structures complexed with Darunavir, which could
explain the less favorable binding constant observed in the study by Sayer et al. due to
physiochemical changes as a result of the amino acid substitution.35 It was also found that
D25N resides within the binding pocket of crystal structures complexed with Ritonavir and
Lopinavir.

The binding pocket of HIV-1 protease is known to be hydrophobic in nature,50 which is
observed by the hydrophobic residues of the wild type sequence. Many hydrophobicity
scales for amino acid residues have been developed.51 For our analysis of the hydrophobic
changes in the binding pockets due to mutations, we use the hydrophobicity scale developed
by Rose et al. which describes the hydrophobic nature of amino acid residues in globular
proteins.52 In general, the hydrophobic residues are mutated to a different hydrophobic
residue. A common interchange occurs between isoleucine and valine, which is observed at
the 13th, 32nd, 47th, 50th, 54th, 64th, and 84th positions. Mutations at the 82nd position trend
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towards residues of a less hydrophobic nature, whereas mutations at other positions trend
towards residues of a more hydrophobic nature as observed at the 10th, 46th, and 48th

positions. Thus, we believe these trends in hydrophobic residue exchanges maintain a level
of hydrophobicity necessary to retain protease function while consequently affecting the
binding pocket shape which determines whether a protease inhibitor can bind to the active
site with ease. The changes in the hydrophobic nature of the binding pockets may lead to a
decrease in the binding affinity of currently existing HIV-1 protease inhibitors, thus a new
complimentary inhibitor molecule suited for the new hydrophobic environment would be
needed for inhibition.

3.1.2 In vivo and in vitro Mutations Comparison—Binding pocket mutations have
the most direct effect on the binding affinity of the HIV protein towards an inhibitor.25 The
International AIDS Society-USA classifies mutations considered to be major as those shown
to arise first in the presence of the drug or play a significant role in binding inhibition.7 To
draw a comparison of the mutations between the in vivo genomic datasets and the in vitro
crystal structures, we used the December 2008 in vivo mutation map developed by the
International AIDS Society-USA.7 We compared the major mutations of each drug
combination in the in vivo mutation map with the binding pocket mutations of the crystal
structures by combining the mutation maps of the crystal structures by each drug
combination and compared the binding pocket mutations collectively with the in vivo major
mutations.

We have used the information obtained from the Amprenavir crystal structures to represent
Fosamprenavir in this comparison study. Fosamprenavir is the prodrug of Amprenavir,
which when orally administered is hydrolyzed in the gut epithelium of the body into
Amprenavir.53 The NEAT clinical study in which antiretroviral therapy naïve patients were
administered unboosted Fosamprenavir were found to have the same mutation profile as
previous studies with Amprenavir.54 In Table 2, we present the in vivo data and the
combined inhibitor binding pocket mutations.

Of the in vivo drug combinations, the most important observations are that the following
major mutations are represented by at least one crystal structure:

• Ataznavir/Ritionavir has the I84V mutation,

• Darunavir/Ritionavir has the I50V and I84V mutations,

• Fosamprenavir/Ritonavir has the I84V mutation,

• Indinavir/Ritonavir has the V82A, V82T, and I84V mutations,

• Lopinavir/Ritonavir has the V32I, I47A, I47V, V82A, and V82T mutations,

• Nelfinavir has the D30N mutation,

• Saquinavir/Ritonavir has the G48V mutation,

• Tipranavir/Ritonavir has the V82L and I84V mutations.

We also observed that several of the in vivo major mutations not found in the binding
pockets of the crystal structures but found in at least one crystal structure are the I54M
mutation of Darunavir/Ritonavir, M46I of Indinavir/Ritonavir, L90M of Nelfinavir and
Saquianvir/Ritonavir, and L33F of Tipranavir/Ritonavir.

Comparison of the full list of major mutations listed in Table 2 with the mutation map in
Figure 5 shows that the I50L and N88S mutation of Atazanavir/Ritonavir, I54L and I76V of
Darunavir/Ritonavir, M46L and V82F of Indinavir/Ritonavir, V82F and V82S of Lopinavir/
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Ritonavir, and I47V, Q58E, T74P, and V82T of Tipranavir/Ritonavir are not represented by
any crystal structure.

3.2 Data Mining Analysis
3.2.1 Descriptor Selection—In our Random Forest simulations, we determined the
optimal parameters for nTree, the number of trees in the model, and mtry, the number of
variables to randomly consider for splitting at each tree node. From the simulation of 40,000
Random Forest models, each of the classification trees were built using a default parameter

of . In Figure 6a, we observe the behavior of the Random Forest algorithm on
the dataset to converge quickly towards an error of 40%. The optimal tree size with the
minimum error was determined to be at nTree = 10586 with an average OOB error of
40.113%. Next, the optimal mtry parameter was determined. Ten Random Forest models
were generated using nTree = 10586 at each varying value of mtry from 1 to 456. In Figure
6b, we observe the performance of Random Forest is sensitive to the value of mtry, with the
minimal average OOB error occurring near the default value of mtry. Although the OOB
error converges relatively quickly, we observed it was less likely for the top ranked
descriptors to deviate as more classification trees were introduced. This indicates that a large
tree size stabilizes the ranking of the top group of descriptors that best influence the
classification ability of the Random Forest model.

A final Random Forest model was generated using the parameters nTree = 10586 and mtry =
21. The list of the most importance descriptors determined by the mean decrease in accuracy
and the mean decrease in Gini measurement of this model is shown in Figure 7. Here, we
observe that most of the top group of descriptors in the mean decrease in accuracy plot are
also the top group in the mean decrease in Gini plot. Based on the natural break in the elbow
curve of the mean decrease in Gini plot, the top 12 descriptors are used to generate the LDA
and LR classification models (Table 3).

3.2.2 Classification Modeling—The LDA and LR models were trained using the full
dataset and evaluated for their predictive ability using leave-one-out cross validation (LOO-
CV). Cross validation is used to ensure a model is not being overfitted to the dataset. The
desired model is one whose apparent error and cross validated error difference is smallest
regardless of error percentage.55 The optimal descriptor set was determined to be the top
eight descriptors for the LDA model (Table 4) and the top five descriptors for the LR model
(Table 5). For the optimal LDA model, using the top eight descriptors resulted in correctly
classifying 49 of the 70 (70% correct classification rate) binding pockets in the full model,
while correctly classifying 39 of the 70 binding pockets when using LOO-CV. For the
optimal LR model, using the top five descriptors resulted in correctly classifying 50 of the
70 (71.429% correct classification rate) binding pockets in the full model, while correctly
classifying 41 of the 70 binding pockets when using LOO-CV. These two models were
considered optimal due to the low error delta between the full model and LOO-CV
performances while maintaining a high predictive performance. While LDA and LR have
similar classification performances, the LR model has a slightly lower overall
misclassification error and cross validation misclassification error.

Confusion matrices were developed to compare the model performances of each
classification method. In Figure 8, each column of the confusion matrix represents the
predicted class, whereas each row represents the actual class. This matrix provides
information regarding the correct and incorrect predictions of each model. Assessing the
confusion matrices of the three classification models (Figure 8), we observe that LR focuses
its classification on small and large sample sizes, whereas LDA performs better than LR on
mid-sized samples. In comparison with LDA and LR, the training of Random Forest is

Ko et al. Page 10

J Chem Inf Model. Author manuscript; available in PMC 2011 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



biased towards the large sample sizes, completely misclassifying the two ligands with the
smallest sample sizes, Amprenavir (478) and Atazanavir (DR7). We also observed that LR
is a more balanced classifier compared to Random Forest and LDA as every ligand is
correctly classified at least once.

Hierarchical clustering of the binding pockets with the top five and top eight descriptors was
performed (Figure 9). The Pearson distance metric with the Ward agglomerative method
was found to produce the best clustering result with which many of the binding pockets are
clustered together by their complexed ligands. As expected, the ligands which have very few
samples would not be clustered well, whereas the ligands with the most samples, Indinavir
(MK1) and Darunavir (017), are within close proximity with one another. Both hierarchical
trees showed similar groupings of the binding pockets. We observed that the ligands were
primarily grouped into one of the first two branches. If we consider only two groups of
ligands: DR7, MK1, and ROC would belong to cluster one; whereas 017, 1UN, 478, AB1,
RIT, and TPV would belong to cluster two.

We analyzed the binding conformation of each of the ligands by extracting the ligand
structures from the crystal structures. For each ligand class, we selected one crystal structure
to represent the general binding conformation. For each selected structure, we performed
structure alignment using PyMOL. The following PDB crystal structures were used to
represent each class of ligands: 1T3R (017), 1OHR (1UN), 1HPV (478), 2Q5K (AB1),
2FXD (DR7), 2AVO (MK1), 1HXW (RIT), 2NNP (ROC), and 2O4N (TPV). We
superimposed the ligand structures in each of the clusters and observed they all had similar
conformation poses within their individual clusters, with the exception of Ritonavir (RIT)
and Tipranavir (TPV) in cluster two (Figure 10). Ritonavir, while being grouped into cluster
two, appeared to have a conformational pose which closely matches the conformation of
Saquinavir in cluster one. Tipranavir, although designated in cluster two, was observed to
fill the space occupied by both cluster one and two.

3.2.3 Chemical Descriptor Interpretations—The top 12 ranked descriptors as
determined by the Random Forest variable importance measure (Table 3) are exchange
energy + electron-electron repulsion for a C-N bond, max resonance energy for a C-C bond,
molecular volume/XYZ box, min >0.1 bond order of a C atom, max total interaction for a C-
C bond, relative number of benzene rings, average information content (order 1), exchange
energy + electron-electron repulsion for a C-C bond, maximum electron-nuclear attraction
for a C-N bond, relative number of C atoms, YZ Shadow/YZ rectangle, and the number of
benzene rings.

The physical shape of the binding pocket is emphasized by the geometrical descriptors YZ
Shadow/YZ rectangle and molecular volume/XYZ box. The atomic connectivity of the
binding pocket is described by the topological descriptor average information content.

The HIV-1 protease active site is known to be hydrophobic in nature and thus protease
inhibitors with hydrophobic side chains have a higher binding affinity.50 The hydrophobic
binding site may be reflected by the two number of benzene rings descriptors as three of the
amino acid residues with a hydrophobic side chain contain an aromatic ring (phenylalanine,
tryptophan, and tyrosine). Analysis of the mutation map in Figure 5 reveals that none of the
wild type amino acid residues in the binding pocket are phenylalanine, tryptophan, or
tyrosine; and most are not mutated to either of these three amino acids. Among the binding
pocket mutations, most of the mutations involving a hydrophobic amino acid in the wild
type sequence are often replaced by another hydrophobic amino acid. In the case of the 82nd

and 84th positions which have valine and isoleucine respectively as the wild type amino
acid, based on the hydrophobicity scale by Rose et al.,52 these two amino acid residues are
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among the most hydrophobic and are being replaced by amino acids which are less
hydrophobic with the exception of the V82F mutation in Atazanavir and Tipranavir where
phenylalanine is considered to be more hydrophobic than valine.

The quantum-chemical descriptors reveals interactions between C-C and C-N atoms play a
role in the binding pocket structure. The exchange energy + electron-electron repulsion
descriptors signify that non-covalent London-van der Waals interactions with these atoms
play a role in the ligand's ability to bind to the active site. The max resonance energy for a
C-C bond descriptor reveals that the presence of benzene rings also play a major role in the
protein-ligand binding process. These few selected quantitative descriptors captures the
conformational changes of the HIV-1 protease binding pockets due to the mutations and the
protein-ligand interactions at the geometric and atomic interaction level which can provide
insight for the design of new inhibitor molecules.

4 Conclusions
There are a sufficient number of crystal structures in the PDB to represent most of the
identified major in vivo mutations. It is important to study crystal structures as they are the
basis of understanding the structural features of HIV-1 protease. The present study concerns
the mutations in the HIV-1 protease crystal structures reported in PDB complexed to an
FDA approved protease inhibitor.

In the first part of this study, we have shown how combining in vivo with in vitro mutation
information of HIV-1 protease crystal structures provides useful information to drive the
HIV drug discovery and design process. The mutations in each of the HIV protease crystal
structures were identified by aligning the amino acid sequence against a standard strain,
HXB2. We identified the mutations in the binding pocket and compared them with the
identified major mutations of in vivo data as mutations in the binding pocket have been
reported to have the most direct effect on the proteins' binding affinity towards a particular
drug.25 It has been observed that although there appears to be some major differences
between the identified major in vivo mutations and the binding pocket mutations of the
crystal structures, most of these major mutations seem to have no direct effect in the binding
mechanism of the drug combinations with HIV-1 protease as they do not reside in the active
site. In addition, most of the identified major mutations are represented by at least one PDB
crystal structure. Analysis of the mutation patterns in the binding pocket region reveals the
tendency of the virus to maintain a hydrophobic active site.

In the second part of this study, we have utilized crystal structures to construct QSPR
classification models to understand the binding conformational mode of the HIV-1 protease
protein with their respective complexed ligands. We have applied several machine learning
methods to build an appropriate classification model for predicting complexed HIV-1
protease binding pocket structures to one of the nine FDA approved HIV-1 protease
inhibitors. Based on the results of the LR classification model, Random Forest has
performed proficiently in selecting relevant descriptors for classification modeling. Out of
the three classification models, the Random Forest-LR model outperformed the stand alone
Random Forest and Random Forest-LDA models, having lower overfitting effects and a
better predictive ability. We also simulated a Random Forest-Random Forest hybrid model,
with the second Random Forest model trained with the top 12 descriptors; however we
observed no significant improvement in its classification performance as the average OOB
error was 38%. Hierarchical clustering of the binding pockets with the optimal subset of
descriptors results in two significant clusters. Analysis of the shape profile of each of these
ligands reveals similarities in the binding conformation among each of the clusters. Here we
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find that all of these models support each other based on their results and chemical
interpretation.

The top ranked descriptors reflect the geometric shape and atomic makeup of the binding
site. The quantum-chemical descriptors signify the London-van der Waals interactions
between the C-C and C-N atoms which play a role in the protein-ligand binding process.
The importance of benzene rings is signified by the max resonance for a C-C bond
descriptor and its contributions in terms of physiochemical interactions which were revealed
by an analysis of mutation patterns which showed that HIV-1 protease maintains its
hydrophobicity in the active site through various point mutations. These descriptors provide
a means of quantifying the geometric and electronic properties of the HIV-1 protease
binding pocket which can be used to design novel HIV-1 protease inhibitors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
HIV-1 protease mutation map development scheme. HIV-1 protease crystal structures
complexed with one of the nine FDA approved protease inhibitors are selected and verified
through the literature. Each qualified HIV-1 protease crystal structure then has the binding
pocket identified and its amino acid sequence aligned against the HXB2 sequence (most
commonly used laboratory viral sequence in HIV-1 mutation studies).21 The mutations are
then aggregated by ligand to build the mutation map.
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Figure 2.
Flowchart of the classification model development scheme.
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Figure 3.
HIV-1 protease statistics from the Protein Data Bank (PDB) repository.
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Figure 4.
Sequence alignment example. Comparison of PDB-ID 1T7J and the HXB2 protein
sequence. Amino acid differences are identified (underlined) which is then compared against
the list of crystallized mutations. Any mutations found in the list of artificial mutations
required for viable crystal structures (Q7K) are then removed to obtain the final list of
mutations for 1T7J.
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Figure 5.
HIV-1 protease crystal structures mutation map.
α While most amino acid residues within the binding pocket when mutated still lie within the
binding pocket, the M46L mutation of Lopinavir and I54V of Saquinavir lie outside the
binding pocket.
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Figure 6.
Random Forest simulation results. (a) The average Out-of-Bag (OOB) error for each tree
size in a simulation of 20,000 trees over 40,000 runs for the determination of the optimal
tree size (nTree). The optimal tree size is nTree = 10586 with an average OOB error of
40.113%. (b) The average OOB error for each value of mtry in a simulation of 10586
classification trees over 10 runs for the optimal mtry determination. The optimal value of
mtry with the smallest OOB error occurs near the default parameter of mtry = 21.
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Figure 7.
Variable importance measure of the optimal Random Forest classifier using the (a) mean
decrease in accuracy and (b) mean decrease in Gini importance measurements. Due to the
natural break in the curve, the top 12 descriptors determined by the mean decrease in Gini
importance measure have been considered to determine the final optimal set of descriptors to
be used in classification modeling.

Ko et al. Page 22

J Chem Inf Model. Author manuscript; available in PMC 2011 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Confusion matrices for the (a) Random Forest model with parameters nTree = 10586, mtry =
21, (b) linear discriminant analysis model using the top eight descriptors, and (c) logistic
regression model using the top five descriptors.
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Figure 9.
Hierarchical clustering of the binding pockets with the (a) top five descriptors and (b) top
eight descriptors. The Pearson distance metric with the Ward agglomerative method was
used to produce the dendrograms.
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Figure 10.
Superimposed ligand structures. (a) DR7, MK1, and ROC of cluster one. (b) 017, 1UN, 478,
and AB1 of cluster two. (c) RIT (green) superimposed with 017, 1UN, 478, and AB1 of
cluster two (red). (d) RIT (green) superimposed with ROC (red). (e) TPV (blue)
superimposed with DR7, MK1, and ROC of cluster one (red) and 017, 1UN, 478, and AB1
of cluster two (green).
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Table 1

Number of HIV-1 Protease PDB crystal structures complexed with an FDA approved protease inhibitor.

PDB-ID Inhibitor Name Number of Structures

017 Darunavir 14

1UN Nelfinavir 7

478 Amprenavir 2

AB1 Lopinavir 8

DR7 Atazanavir 4

MK1 Indinavir 13

RIT Ritonavir 5

ROC Saquinavir 10

TPV Tipranavir 5
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Table 2

In vivo and in vitro comparison of binding pocket mutations of FDA approved HIV-1 protease drug
combinations.

Drug Combination Major Mutations Binding Pocket Mutations

Atazanavir/Ritonavir I50L, I84V, N88S L10I, V32I, V82A, V82F, I84V

Darunavir/Ritonavir I50V, I54L, I54Mα, I76V, I84V D30N, V32I, M46L, I50V, V82A, V82T, I84V

Fosamprenavir/Ritonavir I50V, I84V V32I, V82A, V82T, I84V

Indinavir/Ritonavir M46Iα, M46L, V82A, V82F, V82T, I84V V32I, I50V, I54V, V82A, V82T, I84V

Lopinavir/Ritonavir V32I, I47A, I47V, V82A, V82F, V82T, V82S V32I, M46V, I47A, I47V, V82A, V82T, I84V

Nelfinavir D30N, L90Mα D30N

Saquinavir/Ritonavir G48V, L90Mα V32I, G48V, I50V, I54M, V82A, V82T, I84V

Tipranavir/Ritonavir L33Fα, I47V, Q58E, T74P, V82L, V82T, I84V V32I, I50V, V82F, V82L, I84V

Amino acid mutations shown in bold are located in both the binding pocket of the crystal structures and found to be major mutations arising in

clinical studies as described by the International AIDS Society-USA.7

α
Mutations identified as major by the International AIDS Society-USA which are not located in the binding pockets of the crystal structures, but

exist in at least one crystal structure.
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Table 3

Top 12 descriptors as selected by the Random Forest mean decrease in Gini importance measurement.

Rank Descriptor Category

1 exch. eng. + e-e rep. for a C-N bond Quantum-Chemical

2 Max resonance energy for a C-C bond Quantum-Chemical

3 Molecular volume / XYZ Box Geometrical

4 Min (>0.1) bond order of a C atom Quantum-Chemical

5 Max total interaction for a C-C bond Quantum-Chemical

6 Relative number of benzene rings Constitutional

7 Average Information content (order 1) Topological

8 exch. eng. + e-e rep. for a C-C bond Quantum-Chemical

9 Max e-n attraction for a C-N bond Quantum-Chemical

10 Relative number of C atoms Constitutional

11 YZ Shadow/YZ Rectangle Geometrical

12 Number of benzene rings Constitutional
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Table 4

Performance of linear discriminant analysis models by recursive elimination of descriptors.

Top Descriptors Full Model LOO-CV Delta

12 53/70 (0.75714) 36/70 (0.51429) 0.24286

11 52/70 (0.74286) 36/70 (0.51429) 0.22857

10 50/70 (0.71429) 35/70 (0.5) 0.21429

9 50/70 (0.71429) 38/70 (0.54286) 0.17143

8a 49/70 (0.7) 39/70 (0.55714) 0.14286

7 48/70 (0.6851) 39/70 (0.55714) 0.12857

6 46/70 (0.65714) 34/70 (0.48571) 0.17143

5 44/70 (0.62857) 33/70 (0.47143) 0.15714

4 45/70 (0.64286) 36/70 (0.51429) 0.12857

3 43/70 (0.61429) 37/70 (0.52857) 0.085714

2 34/70 (0.48571) 31/70 (0.44286) 0.042857

a
The model utilizing the top eight descriptors is considered to be the optimal model with its overall performance and predictability performance

relative to the other 10 models.
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Table 5

Performance of logistic regression models by recursive elimination of descriptors.

Top Descriptors Full Model LOO-CV Delta

12 69/70 (0.98571) 33/70 (0.47143) 0.51429

11 64/70 (0.91429) 33/70 (0.47143) 0.44286

10 60/70 (0.85714) 34/70 (0.48571) 0.37143

9 55/70 (0.78571) 32/70 (0.45714) 0.32857

8 54/70 (0.77143) 31/70 (0.44286) 0.32857

7 51/70 (0.72957) 35/70 (0.5) 0.22857

6 52/70 (0.74296) 38/70 (0.54286) 0.2

5a 50/70 (0.71429) 41/70 (0.58571) 0.12857

4 49/70 (0.7) 40/70 (0.57143) 0.12857

3 46/70 (0.65714) 37/70 (0.52857) 0.12857

2 37/70 (0.52857) 32/70 (0.45714) 0.071429

a
The model utilizing the top five descriptors is considered to be the optimal model with its low overfitting effects and good predictability based on

leave-one-out cross validation.
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