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Abstract
Virtual screening of small molecule databases against macromolecular targets was used to identify
binding ligands and predict their lowest energy bound conformation (i.e., pose). AutoDock4-
generated poses were rescored using mean-field pathway decoupling free energy of binding
calculations and evaluated if these calculations improved virtual screening discrimination between
bound and non-bound ligands. Two small molecule databases were used to evaluate the
effectiveness of the rescoring algorithm in correctly identifying binders of L99A T4 lysozyme.
Self-dock calculations of a database containing compounds with known binding free energies and
co-crystal structures largely reproduced experimental measurements, although the mean difference
between calculated and experimental binding free energies increased as the predicted bound poses
diverged from the experimental poses. In addition, free energy rescoring was more accurate than
AutoDock4 scores in discriminating between known binders and non-binders, suggesting free
energy rescoring could be a useful approach to reduce false positive predictions in virtual
screening experiments.

INTRODUCTION
Structure-based virtual screening of chemical databases against macromolecular targets has
identified bioactive compounds for the potential treatment of diseases such as dengue fever,1
cancer,2–4 bacterial infections,5, 6 inflammation,7 depression,8 and diabetes.9 Virtual
screening approaches systematically utilize docking programs (e.g., EUDOC,10 Dock,11

Glide,12 GOLD,13 FlexX,14 AutoDock415) to predict a small molecule’s lowest “energy”
conformation and orientation (i.e., pose) when bound to a macromolecular binding site. The
energy scoring function in conventional docking programs typically sums empirically-
derived terms meant to describe intramolecular conformational energies and non-bonding
interaction energies between the ligand and macromolecular target.16–20 The degree to
which the empirical energy function represents the observed free energy of binding (FEB)
influences the accuracy of the relative energy difference between bound potential ligands,
and therefore the correct identification of molecules that bind to the macromolecular target.
Recent comparative evaluations of several widely used docking programs concluded that no
docking program showed a significant performance advantage with respect to pose accuracy
and chemical database enrichment.21–24 Moreover, the pose accuracies of each docking
program were dependent on the protein target and no program had a significant advantage in
terms of accurate pose predictions for all tested proteins. Encouragingly, the lowest energy
docking pose of many programs typically differed from the known co-crystal structure by 1–
2 Å root-mean-square deviation (rmsd).21–24 In contrast, docking energy scores generally
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had poor agreements to experimental FEB, and were often biased by molecular weight,
functional groups, and/or number of intermolecular contacts.21–24

Consensus25, 26 and weighting27 score methods have attempted to correct inaccuracies and
bias in docking energy scores. However, significant errors persist in the docking scores due
to incomplete enumeration of conformational states, inexact treatment of solvent and
entropy contributions, and empirical parameterization of enthalpic energy terms. Thus,
contemporary virtual screening calculations have high false positive rates that necessitate
time-consuming laboratory validation to identify active (i.e., true positive) compounds from
large numbers of false positive predictions.

In principle, the FEB between a ligand and protein can be accurately calculated from
rigorous statistical mechanical (SM) theory.17, 28 Both endpoint and pathway algorithms
have been developed to efficiently perform SM-FEB calculations. End point methods (e.g.,
linear interaction energy [LIE],29 molecular mechanics Poisson-Boltzmann-and-surface-area
[MM-PBSA]30) compute FEB from the difference between unique states, whereas pathway
methods (e.g., alchemical pathways,31 annihilation,32 intermolecular interaction
decoupling33) incrementally transfer a ligand-protein system between states and integrate
energies along the transfer path to calculate FEB. Recent mean-field pathway decoupling
FEB calculations34–36 that used co-crystal structures for the starting states reproduced
experimental FEB measurements with accuracies of ~1 kcal/mol.

SM-FEB calculations offer an alternative to empirical “energy” scoring approaches since
they can appear to be able to largely reproduce observed ligand-protein FEBs.37 However,
these calculations are computationally demanding. One possible approach to improve the
accuracy of virtual screening within the constraints of limited computing resources is to use
conventional docking programs to predict poses and preliminary interaction “scores” for the
compound library, and then perform rigorous calculations to determine FEB for the “best”
(i.e., top-ranked) docked compounds. This FEB rescoring method is attractive because
ligand poses can be rapidly determined with empirical energy functions, and SM-FEB
calculations can be limited to a subset of the original virtual library. Moreover, compound
databases can be examined with parallel calculations, and individual perturbation steps in
SM-FEB calculations are amenable to parallel processing and distributed computing
environments. For example, the perturbation sampling steps in pathway decoupling
calculations34–36 can be independently calculated in a distributed computing environment.38

This study compared the accuracy of virtual screening a library of known binders and non-
binders of L99A T4 lysozyme39 using either FEB rescoring or empirical docking scores.
The rescoring approach used the well-established AutoDock415, 40 program to compute
initial poses and empirical docking scores. Roux’ mean-field pathway decoupling FEB
approach34–36 was used to subsequently calculate FEBs. In addition, the sensitivity of these
calculations to the initial docked structures was determined. Significantly, FEB calculations
initiated with either crystal structures or AutoDock4 poses were in good agreement with
experimental measurements. In a limited virtual screening experiment, false-positive rates
were reduced and enrichment rates improved when libraries were evaluated with FEB
rescoring as opposed to AutoDock4 scores. Moreover, rescoring allowed clear
discrimination between ligands that were known binders and non-binders. These results
suggest that FEB rescoring could be used to efficiently screen large virtual libraries for
novel drug leads.
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EXPERIMENTAL METHODS
Hardware

All calculations were performed at the Texas Advanced Computing Center (TACC; Austin,
TX) using the “Lonestar” high-performance cluster that consisted of 1,300 dual core 64-bit
2.66 GHz Xeon (Intel) processors.

Atomic Coordinates
Atomic coordinates for L99A T4 lysozyme apo-enzyme and co-crystal structures were
obtained from the Protein Data Bank. The reference codes were 2B6Y for the apo-enzyme
and co-crystal structures were 1NHB (ethybenzene ligand), 188L (o-xylene ligand), 187L
(p-xylene ligand), 182L (benzofuran ligand), 185L (indole ligand), 186L (n-butlybenznene
ligand), and 184L (isobulbenzene ligand).41, 42 The benzene-lysozyme co-crystal
coordinates were provided by Y. Deng (University of Chicago).

Docking Calculations
Ligand coordinates, if not available from co-crystal structures, were generated with PyMol
0.99.43 Ligands were parameterized with Antechamber44 using the generalized AMBER
force field45 and AM1-BCC charges.46 The three-dimensional structures of all ligands were
minimized with CHARMM using an adopted basis Newton-Raphson minimization.47, 48

Ligands and lysozyme target proteins were prepared for docking using the program
AutoDockTools40 and its default parameters, including assigning of AutoDock’s atom types
and charges. All lysozyme side-chains were treated as fixed entities. Dockings were
performed using the program AutoDock 4.01.15, 40 Previously, this docking program had
successfully predicted co-crystal conformations for a number of systems.15 Grid parameters
were used with default settings, and the search areas were centered on the lysozyme-binding
pocket. Docking parameters were optimized for large-scale virtual screening (data not
shown), with the number of genetic algorithm runs set to 100, the maximum number of
energy evaluations set to one million, and the population size set to 200; all other docking
parameters were set tof default values. The most likely pose from a docking simulation was
determined using a pose-based cluster analysis and a 1.5 Å cut-off. Based on previous work,
poses that most closely mimicked the crystallographic structure typically had the lowest
energy score within the largest pose cluster (data not shown). The most likely pose was
protonated using PyMol and re-parameterized with Antechamber as described above;
however these poses were not subjected to additional minimization.

Mean-field Free Energy of Binding (MF-FEB) Calculations
The calculations were applied as described previously.34–36 Calculations were performed
using the CHARMM package47, 48 with the CHARMM22 force field49, 50 used to describe
the protein and TIP3 water parameters51 used to describe the explicit waters. Each binding
calculation was done in triplicate using same equilibrated starting coordinates.

Statistics
All statistics were preformed using Microsoft’s Excel 2003. P-scores were calculated using
the two-tailed Student T-test and varying standard deviation options. All other functions
used the default settings.
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RESULTS AND DISCUSSION
Test Systems

We tested the accuracy of the AutoDock scoring function and free energy calculations using
the L99A T4 lysozyme39 as a test system. The L99A mutation in T4 lysozyme created an
~150 A3 void in center of a helix bundle that can bind small hydrophobic molecules.52 Two
collections of small molecules were used as test sets. The first set, or control set, consisted
of eight lysozyme ligands (n-butlybenznene, i-butlybenzene, ethylbenzene, benzofuran,
benzene, indole, p-xylene, and o-xylene), each with a known binding affinity and co-crystal
structure.39, 42 Experimental binding energies (ΔGexp) for the control set ranged from −6.70
to −4.60 kcal/mol. 39 This set was used to examine the accuracy of MF-FEB predictions
relative to the experimental energies. We used a second ligand set, or screening set, to
examine the ability of MF-FEB predictions to discriminate between lysozyme binders and
non-binders in a small-scale virtual screening experiment. The screening set consisted of 30
compounds selected from thermal shift experiments that categorized the compounds as
either lysozyme binders (16 compounds) or non-binders (14 compounds).39 Experimental
binding energies for the known binders in the screening set ranged from −6.70 to −4.59
kcal/mol. 39

Accuracy of MF-FEB Calculations Using AutoDock4-predicted Binding Poses
Three experiments were performed with the control set to test the accuracy of MF-FEB
calculations. These experiments used as initial coordinates for the MF-FEB calculations the
coordinates from co-crystal structures, AutoDock4-generated self-docked binding poses, and
AutoDock4-generated cross-docked binding poses.

To minimize errors arising from inaccurate binding orientations between a ligand and target
protein, the first set of MF-FEB calculations were completed using coordinates extracted
from inhibitor-lysozyme co-crystal structures (Table 1). The implicit assumption was that
these structures represented the biologically relevant docking result, and thus were good
starting structures for MF-FEB (ΔΔGbinding) calculations. These calculations showed good
agreement to ΔGexp measurements, with a linear correlation coefficient r=0.85 and an
average error of 1.3 kcal/mol (s.d.=0.99 kcal/mol; n=3) between calculated and experimental
free energies (Table 1). In addition, these calculations were in good agreement (average
error of 1.6 ± 1.2 kcal/mol) with previous MF-FEB calculations performed with ligand
partial charges calculated with CHARMM.34 During the molecular dynamics equilibration
phase of the MF-FEB calculations the initial ligand positions shifted on average ~0.7 Å
relative to the crystal structure coordinates (Table 1). The average position during
equilibration was used as the reference pose for applying translation and conformation
constraints to the ligand. These calculations were more accurate than MF-FEB calculations
that used co-crystal structures as the constraint reference poses.36

Previous studies had observed that conformational bias in the T4 lysozyme binding site
could reduce the accuracy FEB predictions.34, 53 To determine the sensitivity of MF-FEB
calculations to the initial coordinates of the ligand-protein structure, ligands of the control
set were self-docked into the binding site of their corresponding lysozyme structures using
AutoDock4. The ligands were not energy minimized prior to the docking calculations and
therefore the docking simulations inherited the information implicit in the co-crystal
coordinates. Since Val111 in the T4 lysozyme binding pocket was observed to adopt ligand-
dependent conformations,39 self-docking was expected to reduce systematic bias arising
from treating the protein binding site as a fixed structure.

The AutoDock generated structures and the MF-FEB constraint structures had average rmsd
of 1.4 Å and 0.8 Å, respectively, relative to the co-crystal structures (Table 2). However, the
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constraint reference structures produced from either AutoDock or co-crystal starting
structures differed by ~1 Å after the equilibration phase of the MF-FEB calculations.
AutoDock scores for each ligand-lysozyme complex showed little correlation with ΔGexp
measurements (r = 0.52), while the MF-FEB ΔΔGbinding calculations correlated weakly with
the ΔGexp measurements (r=0.67) (Table 2). The average deviation between AutoDock
scores and ΔGexp measurements was 0.86 “kcal/mol”, whereas the average deviation
between MF-FEB ΔΔGbinding and ΔGexp measurements was 1.5 kcal/mol. However, these
differences in the average deviation were not statistical different (two-tailed Student T-test,
p=0.23). These results implied that AutoDock scores and MF-FEB calculations would likely
be unable to correctly rank-order ligands with <10-fold differences in equilibrium
dissociation constants.

In more demanding experiments, the control set used the apo lysozyme structure as a target
for AutoDock and MF-FEB calculations (Table 3). These simulations would be
characteristic of approaches used for virtual screening where numerous ligand structures
would be tested for binding to a single protein conformation. In these cross-docked
experiments, the AutoDock program positioned the test ligands within the apo lysozyme
structure in orientations that approximated the experimentally determined co-crystal
structures (average rmsd ~1.6 Å) (Table 3). The MF-FEB molecular dynamics calculations
typically repositioned the ligands so they more closely matched the co-crystal structures
(average rmsd ~1.4 Å). The observed displacements of the docked ligands relative to the
corresponding X-ray structures were largely due to the conformation of Val111 in the apo
structure, which reduced the volume of the lysozyme apo binding site relative to the
observed co-crystal structures. MF-FEB calculations performed with the AutoDock cross-
docked poses as a starting conformation differed an average of ~1.4 kcal/mol from the
ΔGexp measurements (Table 3). However, the set of individual MF-FEB ΔΔGbinding
calculations correlated poorly with ΔGexp measurements (r = −0.16). As observed for MF-
FEB calculations that used self-docked poses, these cross-docked MF-FEB results implied
that MF-FEB calculations would likely be unable to correctly rank-order ligands with <10-
fold differences in equilibrium dissociation constants.

MF-FEB calculations initiated with either AutoDock-generated or co-crystal ligand
conformations generally produced similar values. On average, more accurate MF-FEB
ΔΔGbinding calculations occurred in cases where the AutoDock structures most closely
reproduced the available co-crystal structures. Docking against an apo protein that had
binding site conformational differences relative to the co-crystal structure produced ligand
structures that were displaced from the co-crystal structure and generally produced less
accurate agreements between MF-FEB ΔΔGbinding and ΔGexp values.

Receptor binding site flexibility is a challenge for docking programs.16, 19, 20, 54, 55 Some
approaches have modeled receptor flexibility by combining docking calculations with
receptor molecular dynamics (MD).56 However, the MD performed during the above MF-
FEB calculations was not sufficiently lengthy to enable significant changes in the receptor
binding site conformation. More accurate MF-FEB predictions may result from calculations
that incorporate receptor flexibility.5758

Enrichment and Discrimination Characteristics of MF-FEB-based Virtual Screening
Although relatively accurate binding free energies could be calculated using the bound
conformations that resulted from docking ligands in the control set to the apolysozyme, the
average error of ~1.4 kcal/mol for these calculations was not sufficiently accurate to produce
a high correlation to the experimental binding energies that spanned only 2.1 kcal/mol. Since
virtual screening experiments require discrimination between molecules that bind to the
target protein (binders) and molecules that do not bind to the target protein (non-binders),
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the free energy range for these molecules includes both positive and negative values and
likely spanned a larger range of free energies than existed in the control set. Thus, a small-
scale virtual screening experiment was performed to determine if the accuracy of MF-FEB
calculations would be sufficient to distinguish between binding and nonbinding molecules.
This experiment used apo T4 lysozyme L99A as the target protein and a library of 16 known
binders and 14 known non-binders known as the screening set (Table 4). In this experiment,
a correlation coefficient between experimental and calculated FEB could not be determined
as the ΔGexp for the non-binders was unknown. However, this experiment provided insight
on library enrichment, ligand discrimination, the responsiveness of the energy functions, and
the role of solvation in binding predictions.

Enrichment curves (Fig. 1) that compared the percent of binders relative to the energy-
ranked virtual database were constructed from the information in Table 4. Ranking the
compound library by either AutoDock score or MF-FEB ΔΔGbinding identified known
lysozyme binders as the first three hits (Table 4, Fig. 1). Moreover, the top scoring hit in
each method corresponded to one of the strongest lysozyme binders in the screening set.
However, after the initial three successful hits, the percentage of binders predicted by
AutoDock scores began to approach a random distribution. In contrast, there were very few
false positive hits using MF-FEB ΔΔGbinding calculations, and the percentage of binders
identified relative to percentage of hits examined closely followed an ideal distribution. One
of the few false positive MF-FEB predictions was tert-butylbenezene, which both scoring
methods predicted to be a lysozyme binder. Tert-butylbenezene was an interesting non-
binding ligand since it was chemically similar to the two strongest binders in the screening
set. It is possible that tert-butylbenezene was experimentally classified as a non-binder
because it could not enter the lysozyme binding site as opposed to having unfavorable
interactions with the binding site; this restriction on binding would not be recognized by
either the AutoDock or MF-FEB calculations.

The ΔGexp for ligands in the co-crystal test set spanned 2.1 kcal/mol. In contrast, the range
of free energies should be greater in the screening set since both non-binders and binders
were included. The AutoDock calculations displayed similar scoring ranges for both binders
and non-binders, with AutoDock scores for the screening set spanning ~4 kcal/mol (Table 4,
Fig. 2) and scores for the bound ligands of the screening set spanning 2.5 kcal/mol (Table 4,
Fig. 2). This small response range of AutoDock scores was consistent with previous virtual
screening experiences in our laboratory (data not shown). In contrast, MF-FEB values
calculated for the screening set spanned ~14 kcal/mol, and the majority of non-binders were
predicted to have ΔGbinding > −2 kcal/mol. (Table 4, Fig. 2). MF-FEB energies were
significantly better than AutoDock scores at discriminating between binders and non-
binders. The average AutoDock score for lysozyme binders and non-binders was −5.0±0.3
and −4.3±0.5 kcal/mol, respectively. The p-score between these two groups was 0.015,
which suggested a weak statistically relevant difference between the two groups. In contrast,
the average MF-FEB ΔΔGbinding for lysozyme binders and non-binders was −5.7±0.7 and
−1.6±1.6 kcal/mol respectively. The p-score between these groups was 0.00009, indicating
the discrimination between the two groups based on MF-FEB energies was highly
significant.

Overall, the screening set was more highly enriched for lysozyme binders when ordered by
MF-FEB energies instead of AutoDock scores. However, it was difficult to compare the
enrichment observed in this MF-FEB study to previous comparative enrichment studies of
docking programs21–24 because the number of compounds in the screening set was small
and contained similar numbers of binders and non-binders.
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The high degree of discrimination observed with the MF-FEB calculations may arise from
its accurate treatment of solvation effects. The majority (11 of 14) of non-binders in the
screening set were weakly polar, whereas the T4 lysozyme L99A binding site was
predominantly hydrophobic. The MF-FEB ΔΔGbinding was the differential energy for the
ligand interacting with the protein (ΔGsite) and the solvent (ΔGsolvation) (Table 4). The
average ΔGsite for binders and non-binders was -7.6±0.9 and −6.2±1.8 kcal/mol,
respectively, and the p-score between these groups was 0.096. The average ΔGsolvation for
binders and non-binders was −1.9±0.8 and −4.6±1.6 kcal/mol, respectively, with a p-score
of 0.005 between these groups. Thus, it appeared that the discrimination between binders
and non-binders observed with the MF-FEB calculations was largely driven by solvation
calculations, which was consistent with the physical nature of ligands and binding site. The
screening set contained 3 non-binders that lacked polar groups. Tert-butylbenzene, already
discussed, ranked high (i.e., lower AutoDock score or MF-FEB energy relative to other
ligands) in both docking and MF-FEB calculations. Cyclohexane and azulene non-binders
had unfavorable MF-FEB energies due to steric constraints that resulted in weak ΔGsite
contributions. The screening set highlighted the importance of determining both solvation
and interaction energy contributions for the accurate calculation of the binding free energy.

Despite the promising discrimination observed with the lysozyme small-scale virtual screen,
the MF-FEB calculations suffered from many of the drawbacks common to all molecular
mechanical calculations. The available force fields were approximate, and could be
improved by including polarizable force fields.37, 59 Convergence of the molecular
dynamics simulations was a concern, since the variations in replicate MF-FEB calculations
might suggest that some systems were not fully converged. In addition, the molecular
dynamics simulations must sufficiently sample protein-ligand conformation space to ensure
accurate calculation of solvation and interaction energies. Moreover, these simulations only
permit local protein conformational changes and do not allow long-range protein motions or
partial charge redistribution during protein-ligand interactions. However, in spite of these
limitations, the use of MF-FEB energies with AutoDock-determined poses provided a
powerful approach to discriminate between binders and non-binders in a virtual screening
experiment.

CONCLUSIONS
MF-FEB energies correlated strongly with experimental binding energies when accurate
structures of the lysozyme-ligand complex were used to initiate the MF-FEB calculations.
As the deviation between the crystallographic and docked structures increased, the average
error of the MF-FEB calculations only slightly increased. However, small-scale virtual
screening results showed that rank-ordering libraries based on MF-FEB energies of docking
poses could provide significant enrichment relative to rank-ordering based on AutoDock
scores. The MF-FEB rescoring provided significant discrimination between micromolar
binders and non-binders. These results suggested that rescoring docking poses with MF-FEB
calculations could significantly reduce the false positive rate of conventional virtual
screening projects.

Currently, limits on the accuracy of MF-FEB calculations initiated from docking poses may
prevent these calculations from being used to design ligands with incremental improvements
(e.g., 1.5 kcal/mol) in binding free energies. However, since these calculations can
discriminate between binders and non-binders, they could be used to ensure that novel
molecules proposed for chemical synthesis will bind to desired molecular targets. The
results of this study were encouraging and merit further testing against larger virtual
libraries.
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Figure 1.
Enrichment curve showing AutoDock and MF-FEB results for small-scale virtual screening
of T4 lysozyme L99A against a library of 16 known binders and 14 known non-binders. The
ideal line represents a best-case prediction with no false positives. The random line
corresponds to a random distribution of binders and non-binders.
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Figure 2.
Energy distribution of ligands rank-ordered by AutoDock score (circles) or MF-FEB
ΔΔGbinding (squares). Filled and unfilled markers represent lysozyme binders and non-
binders, respectively.
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Table 1

Comparison between MF-FEB Calculations and Experimental Binding Energies a

Ligands
Experimental MF-FEB

ΔGexp (kcal/mol) rmsd* (Å) ΔΔGbinding ( kcal/mol)

n-butylbenzene −6.7 ± 0.02 0.9 −7.8 ± 0.5

i-butylbenzene −6.5 ± 0.06 0.9 −9.5 ± 0.6

ethylbenzene −5.8 ± 0.07 1.3 −8.0 ± 0.2

benzofuran −5.5 ± 0.03 0.3 −6.5 ± 0.4

benzene −5.2 ± 0.2 0.8 −5.2 ± 1.0

indole −4.9 ± 0.06 0.7 −3.9 ± 0.2

p-xylene −4.7 ± 0.06 0.6 −5.5 ± 0.8

o-xylene −4.6 ± 0.06 0.3 −5.3 ± 0.2

a
Inhibitor-lysozyme co-crystal structures were used as the starting poses for the ΔΔGbinding calculations. MF-FEB calculations were performed

in triplicate. Root-mean-square deviation (rmsd) reflects the displacement of heavy atom positions between the final equilibrated pose and the
starting structure.
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