
Published: June 01, 2011

r 2011 American Chemical Society 1703 dx.doi.org/10.1021/ci200136j | J. Chem. Inf. Model. 2011, 51, 1703–1715

ARTICLE

pubs.acs.org/jcim

Structure-Based Fragment Hopping for Lead Optimization Using
Predocked Fragment Database
Fang-Yu Lin† and Yufeng J. Tseng†,‡,*
†Graduate Institute of Biomedical Electronics and Bioinformatics and ‡Department of Computer Science and Information Engineering,
National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan 106

’ INTRODUCTION

Lead optimization typically involves substituent replacement
paired with a QSAR (quantitative structure�activity relation-
ship) model to refine and evaluate new compounds related to
a specific biological end point or druglike properties. The use
of QSAR optimization relies on the availability of confirmed
chemical and biological data for a series of molecules to build the
QSARmodel that is able to predict the bioactivity (or end point)
for new compounds in the hope of designing either better
compounds or finding a novel series of compounds.1 Scaffold
hopping aims to substitute the existing chemical core structure
with a novel chemical structure while maintaining—or improv-
ing—the biological activity of the original molecule and uses one
of two approaches: (i) virtual screening of the entire molecule,
not a specific scaffold, to find novel chemical structures in
molecular databases of available or virtual compounds2 or (ii)
replacing the core structure with a different chemical motif that
preserves similar ligand�receptor interactions via crucial ligand
terminal groups.3,4

The QSAR approach in the search for new scaffolds depends
mostly on the molecular similarity of the initial compound of
interest and the compounds in the database. The molecular
similarity search techniques include shape,5 pharmacophore,6 and
fingerprint-based2 methods or a combination of these strategies7

to identify similar molecules based on molecular features and
potential similar bioactivities. The type of structural features and
the molecular similarity cutoff value affects which molecules
are selected.8,9 To overcome the molecular similarity bias that
is commonly seen in ligand-based methods,10 fragment-based

approaches have become widely used.11 Fragment libraries of
possible molecular replacements (substituent) can be constructed
by searching for bioisosteres,12 locating similar ring systems,13

replacing a central atom of the scaffold, using simple chemical
rules (SMART matches, an extension of SMILES strings14 used
to locate molecular substructures to condense the current com-
pound databases15), or defining fragmentation schemes of known
ligands.16

Prior knowledge of the ligand�receptor interactions bymeans
of a cocrystal structure allows the incorporation of these molec-
ular interactions in the search for compounds with different core
structures while preserving similar biological activity.17 Berg-
mann et al.18 combined the GRID19-based interaction profile of
the target protein with the geometrical description of a ligand
scaffold to obtain new scaffolds with discrete structural features.
Favorable regions for potential ligand�receptor interactions are
identified through the creation (calculation) of isocontours. The
molecular probes used to calculate the molecular interaction field
isocontours include a water molecule, a methyl group, an amine
nitrogen, a carboxyl oxygen, and a hydroxyl group. Each probe
visits each grid point of a uniformly constructed grid that contains
the receptor or a user-defined region of the receptor such as the
binding site. Another methodology, GANDI,20 is fragment-based
and generates new molecules by connecting predocked—to the
receptor’s binding site—fragments and linkers within the binding
site. Successive force-field-based (molecular mechanics) energy
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ABSTRACT: In this work, we describe a structure-based de
novo optimization process, called “LeadOp” (short for lead
optimization), that decomposes a compound into fragments of
different molecular components either by chemical or user-
defined rules. Each fragment is evaluated through a predocked
fragment database that ranks fragments according to specific
fragment�receptor binding interactions, replacing fragments
that contribution the least to binding and finally reassembling
the fragments to form a new ligand. The fundamental idea is to replace “bad” fragments of a ligand with “good” fragments while
leaving the core of the ligand intact, thus improving the compound’s activity. The molecular fragments were selected from a
collection of 27 417 conformers that are the fragments of compounds in the DrugBank database. The collection of molecular
fragments are docked to the target’s binding site and evaluated using group efficiency (calculated binding affinity divided by the
number of heavy atoms), and the “strongest” binder is selected. The LeadOp method was tested with two biomolecular systems:
mutant B-Raf kinase and human 5-lipoxygenase. The LeadOp methodology was able to optimize the query molecules and
systematically developed improved analogs for each of our example systems.
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minimization of the new complex is carried-out to remove steric
clashes and optimize the ligand�receptor interactions to mirror
the 2D-similarity and 3D-overlap of the original compound’s
known binding mode(s) by way of a genetic algorithm. The
GANDI protocol was assessed using the cyclin-dependent kinase 2
(CDK2) biomolecular system. New bioactive compounds for
CDK2 were suggested that contained unique scaffolds and
transformed substituents, which preserved the main binding
motifs, along with corresponding to known CDK2 inhibitors.

In this study, we discuss the development and implementation
of the lead optimization algorithm, “LeadOp” for short, that (i)
decomposes a lead drug compound (structure) into fragments
either by chemical rules or user-defined rules, (ii) evaluates each
fragment’s (fragments from the LeadOp predocked fragment
database that includes those of the initial ligand andDrugBank21)
efficiency within the binding site and ranks the fragments
according to specific fragment�receptor binding interactions,
(iii) replaces ligand fragments that contribute the least to binding
with more favorable binders, (iv) reassemble the fragments from
each part of the binding site to construct a new ligand, and finally

(v) calculate the new binding affinity of the compound(s). The
substitution of the original ligand’s substituents (fragments)
from a database of ranked fragments that are prioritized as a
result of docking each fragment to the receptor facilitates the
generation of new structures that are possibly stronger binders.
Also, by evaluating the contribution of each fragment toward
binding with group efficiency instead of relying on similarity of
fragments or overall structure, LeadOp selects fragments that
bind stronger yet possess less heavy atoms.22,23 The assembly of
the fragments into a molecule is based on the bond distance and
angles of each fragment, with respect to each other. Only the
combinations of fragments that form reasonable chemical bonds
are selected to generate the new compound that is added to the
initial list of proposed compounds. The final list of suggested
compounds are reduced using Lipinski’s rules-of-five24 and a set of
in-house filters based on our observations of compounds within
DrugBank.21 The compounds that passed the molecular property
filters comprised the final list of proposed compounds. The
compounds were then energy-minimized and ranked on the basis
of the overall ligand�receptor binding energy. To investigate the

Figure 1. Illustration of the LeadOp optimization steps. Starting with a query molecule in its binding pose at the active site, it is decomposed into
fragments. The molecular fragments are evaluated and those with the least amount of contribution to binding, based on group efficiency, are replaced
with a fragment database through an evaluation process, while the remaining parts were preserved. New compounds are generated by linking the
fragments, and the newly proposed compounds are ranked on the basis of a calculated binding free energy.
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interactions between the newly assembled molecules and their
receptor, molecular dynamics simulations were performed to
investigate the poses and their interactions with the solved crystal
structure of the receptor.

To demonstrate the LeadOp algorithm, we selected the
mutant B-Raf kinase enzyme25 and human 5-lipoxygenase
(5-LOX)26 with their associated inhibitors as model systems. B-Raf
is a Ras-activated serine/threonine protein kinase that belongs to
the Ras protein family (A, B, C)27 and forms part of a conserved
signal transduction pathway that regulates cellular responses to
extracellular signals. B-Raf is critical for cell survival, growth, and
proliferation and is most frequently shown as a mutated protein
kinase (a valine amino acid residue is mutated to a glutamic acid
at residue position 600, B-RafV600E) in the development of
cancer.28 Mutagenesis studies revealed that 40�60% of melano-
mas and 7�8% of all cancers carry an activating mutation in the
gene encoding B-Raf and involve the mitogen-activated protein
(MAP) kinase pathway (Ras/B-Raf/MEK/ERK) in a large panel
of common cancers.29 The activity of mutant B-RafV600E kinase is
elevated 500-fold (due to the mutation), providing cancer cells
with both proliferation and survival signals, allowing them to
grow as tumors in model systems.30 With the kinase domain of
mutant B-Raf being reported (solved X-ray structure),25 this has
allowed the optimization of the compounds for preferential
binding to mutant B-Raf over wild-type B-Raf. Thus, the devel-
opment of inhibitors that target mutant B-Raf is of particular
interest for the design of cancer31 therapeutics through target-
based approaches. Lipoxygenases are a family of iron-containing
enzymes found in a large variety of organisms, such as bacteria
and animals. It catalyzes the dioxygenation of polyunsaturated
fatty acids containing a cis-1,4-pentadiene structure—the first
committed structure in a casade of metabolic pathway—and is
involved in the initiation of signaling molecule synthesis and
inducing structural or metabolic changes.32 In animal, four major
isozymes of lipoxygenases have been identified,33 including 5-, 8-,
12-, and 15-LOX, which are key enzymes in the metabolism of
prostaglandins and leukotrienes. In particular, leukotrienes are
produced through the 5-LOX pathway, and the increased activity
of the 5-LOX pathway, which includes another protein termed
FLAP (5-lipoxygenase�activating protein),34 is strongly asso-
ciated with atherosclerosis. As these biological pathways and
byproducts lead to inflammation, discovery of a 5-lipoxygenase
inhibitor is important in the fields of inflammatory and allergic
diseases.35

’MATERIALS AND METHODS

Overall Procedure. The overall protocol for LeadOp is
illustrated in Figure 1 and the details of each step are described
in the following sections. The molecule to be modified is docked
to the receptor’s known drug binding site and then decomposed
into molecular fragments. Each fragment of the query ligand was
evaluated with the degree of interaction based on group effi-
ciency or user-defined/scientific knowledge to determine which
fragments were to be replaced. Molecular fragments of the ligand
that possess an unfavorable interaction with the receptor, based
on the initial evaluation, are marked for replacement while those
with more favorable interactions are retained. Before the sub-
stitution of ligand fragments, a fragment library (consisting of
fragments from the initial ligand and the DrugBank database21)
was constructed and predocked into the receptor’s binding site.
All predocked fragments are sorted (ranked) by their group

efficiency—and ligand attachment point—creating a predocked
fragment database used to draw potential ligand�fragment
replacements for the noted ligand fragments possessing unfavor-
able interactions with the receptor. Tabu searching36 was im-
plemented to search for the “superior” substituent from the
predocked database. Once an optimal set of fragments for
substitution was found, fragments are linked with the remaining
portion of the initial molecule to generate a new compound.
Finally, all the compounds generated with this strategy were
ranked, providing a series of new de novo compounds.
Example Systems. B-Raf kinase (PDB ID: 3idp), a ras-acti-

vated proto-oncogene serine/theronione protein kinase,25 and
human 5-LOX enzyme (obtained from the homology model by
Caroline et al.,37 a key enzyme in leukotriene biosynthesis, were
selected as our model systems to examine the LeadOp approach.
One B-Raf kinase inhibitor, compound 16 (aminoisoquinoline
series) in ref 25 (denoted as compund A in this study), and a
human 5-LOX inhibitor, compound 7 (substituted coumarins) in
ref 26 (denoted as compound F in this study), were selected as
LeadOp examples.
Generation of Fragments. The library of potential substitu-

tion fragments was generated by decomposing 4855 molecules
from the “small molecule structures” property descriptions of the
“drug structure” section in the DrugBank database.21 The
DrugBank database contains chemical, pharmacological, and
pharmaceutical drug data along with sequence, structure, and
pathway information for various drug targets. The DrugBank
compounds were energy-minimized and subsequently decom-
posed with DAIM38 to generate the fragments; duplicate frag-
ments were removed, resulting in 1688 fragments being added to
the LeadOp fragment library from DrugBank. LeadOp fragment
library also included 1311 amine building blocks from SciFinder
(heterocycles such as quinolines, imidazoles, biaryls, pyrrolizines,
thiopyranol[2,3,4-c,d]indoles, naphthalenic lignan lactones, phe-
noxymethylpyrazoles, methoxytetrahydropyrans) and substi-
tuted coumarins from a previous studies.25,39,40 Fragments
were removed if (i) the number of oxygen, nitrogen, sulfur,
phosphates, and halogens in a fragment was greater than two, (ii)
there was more than one double and/or triple bond, and (iii)
there was more than two hydrogen-bonding donors or acceptors.
Predocked Fragment Database Construction. Each frag-

ment of the LeadOp fragment library, generated in the previous
step, was docked into the B-Raf and 5-LOX binding site via
SEED,41 which explicitly calculated the desolvation energy of the
fragment while exploring the fragment’s possible binding modes.
Each docked fragment resulted in multiple poses and associated
binding energies. A representative fragment pose was selected
using a cutoff energy of 5 kcal/mol; this yielded 236 585 con-
formations for 1688 docked fragments. All fragments were ranked
according to group efficiency, calculated by dividing the fragment’s
docked binding energy with the number of heavy atoms within the
fragment. The resulting prioritized, predocked fragments database
contained 27 417 conformers for 1688 fragments.
Preparation for Optimization. Compounds to be docked

were geometry optimized with the MM+ force field in HyperCh-
em 7.042 and docked into the target protein binding sites with
AutoDock Vina43 using the default settings.
Selection of Fragments To Be Replaced. The ability to

indicate how the docked inhibitors are decomposed along with
which fragments are retained are user specifications within the
LeadOp protocol. The decomposition retains the docked orien-
tation and position of each fragment, and the group efficiency of
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each fragment is calculated. The top 20% of the original
fragments (from the original query molecule), on the basis of
group efficiency, are automatically retained while the remainder
of the original fragments undergo replacement.
Tabu Search for Better Replacement and Compounds

Assembly. To efficiently search and determine reasonable
replacement fragments, a look-up table consisting of the bond
distances and angles between the fragments and the original
compound’s attachment points (location of substituents to be
exchanged) is constructed. Acceptable bond distance(s) and
angle(s) between the fragment and the potential attachment
point are a key indicator to determine if the docked fragment
should be a possible replacement. The new compounds are
generated by connecting all the possible combinations of frag-
ments to the remaining initial ligand based on appropriate bond
lengths and angles.
Trimming the Potential Compound Library. After the

assembling the compounds and removing those that violate
Lipinski’s rules-of-five, the following filters are applied to reduce
the total number of new compounds. Compounds with (i) four
or more double bonds (excluding aromatic bonds) or triple
bonds with no more than three of each type or (ii) 11 or more
triple bond are removed from the potential set of compounds.
After reducing the compounds that violate the above rules, each
compound is energy minimized and prioritized (ranked) using
the overall binding energy.
Molecular Dynamics Simulations. The bound pose of the

newly constructed compound, as determined with AutoDock
Vina,43 is refined from the lowest binding free energy and the
number of favorable ligand�receptor interactions within the
binding site. The unfavorable contacts between the docked pose
of the energy-minimized “constructed” compound (fragments
connected to the remaining initial compound) and the residues
within the binding site are removed using molecular dynamics
simulations, thus allowing the complex to explore local energy
minima. The best complex pose was selected and molecular
dynamics was performed using GROMACS version 4.0344 and
the GROMOS 53A6 force field.45 The complexes are placed in a
simple cubic periodic box of SPC216-type water molecules,46 and
the distance between protein and each edge of the box was set as
0.9 nm. To maintain overall electrostatic neutrality and isotonic
conditions, Na+ and Cl� ions were randomly positioned within
this solvation box. To maintain the proper structure and remove
unfavorable van der Waals contacts, a 1000-step energy minimiza-
tion using the steepest descent algorithm was employed with an
energy minimization convergence criteria of a between-step
difference smaller than 1000 kJ mol �1 nm �1. After the energy
minimization, the system was subjected to a 1200 ps molecular
dynamics simulation at constant temperature (300 K), pressure
(1 atm), and a time step of 0.002 ps (2 fs) with the coordinates of
the systems recorded every 1 ps.

’RESULT AND DISCUSSION

Structure-Based Fragment Hopping of B-Raf Inhibitors.
For the B-Raf inhibitors example, a mutant B-Raf and a ras-
activated proto-oncogene serine/theronione protein kinase were
selected. An aminoisoquinolines series of mutant B-Raf pathway
inhibitors was investigated in the literature,25 and a cocrystal
structure of inhibitor L1E with B-Raf shows the interactions in
the B-Raf active site (PDB ID: 3idp). In this cocrystal structure,
the purine group of L1E forms several stabilizing interactions

with the receptor: (i) two hydrogen bonds with Cys532 of B-Raf
(one with the backbone amine and the other with the backbone
carboxyl group), (ii) π-stacking with the side chain of Trp531, and
(iii) a π�hydrogen atom interaction with Phe595. Figure 2 illus-
trates the ligand�receptor interaction of this cocrystal structure.
A pose similar to the solved crystal structure of L1E bound to

B-Raf was determined through our docking study. Therefore, the
same AutoDock Vina parameters were used to dock compound
A, from the same series, into the binding pocket; Figure 3a
illustrates the docked pose. Compound A was selected for
optimization by the LeadOp algorithm in this example.
The aminoisoquinoline core was preserved during the frag-

ment hopping due to its kinase selectivity and favorable pharma-
cokinetic properties.25 Compound A—docked to B-Raf—was
decomposed (fragmented) into six fragments (Frag-0 to Frag-5
in Table 1, indicated using different colors in Figure 3a), and the
group efficiency scores were calculated. More positive group
efficiency values infer a weaker binding interaction than fragments
with lower values. Thus, the original ligand fragments with themost
positive group efficiency scores were selected for replacement
(Frag-0, Frag-1, and Frag-5 in Table 1) under the user-defined
selection mode. The new compounds were constructed after
replacement of the weakly performing (binding) fragments with
fragments considered to have “better” interactions with the recep-
tor. The last step of LeadOp is the ranking of the new compounds
based on their calculated binding energy. For this example, 5576
new B-Raf inhibitors were generated, evaluated, and ranked.
To evaluate our algorithm, we compared all of the LeadOp-

generated compounds to the proposed aminoisoquinoline analogs
from the original literature and found that six of the LeadOp
compounds (Figure 3b) are among the 12 proposed aminoisoqui-
noline analogs that have been synthesized and measured.25 The
inclusive replacement of fragments (substituents) combined with
systematically examining the proposed fragment’s interactions with
the receptor while retaining the core generated six compounds that
have more potent IC50 values than the original compound

Figure 2. Illustration of the ligand�protein interaction of mutent B-Raf
and LIE from cocrystal stsructure (PDB ID: 3idp) Chemical character-
istic of each residue and interaction within the complex are colored and
described in the following.
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(compound A). Four (compounds B�E) of the six generated
compounds were selected for further investigation of their ligand�
receptor interactions to represent diverse IC50 values.
The poses, ligand�receptor interactions, and the replaced frag-

ments (in red) of these four compounds are shown in Figure 3b. It is

interesting to note that even though Frag-0, Frag-1, and Frag-5 were
possible replacement locations, these three fragments are retained in
their original location for several of the final structures.
Compound B (the most active compound among the four

proposed with an IC50 = 1.6 nM) preserved Frag-1 in one of the

Figure 3. LeadOp result in B-Raf model system: (a) Each fragment of compound A is colored differently (left). The red ovals indicated the fragments
selected to be replaced (right). (b) The carbon atoms of the original compound A are colored yellow and the new fragments’ carbon atoms, of the
generated compound (middle), are colored red (left). Amino acid residues that participate in hydrogen-bonding interactions with the proposed
compound, at the binding site (right), are depicted with cyan molecular surfaces.
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final proposed compounds, while Frag-0 and Frag-5 were replaced
with a purine and a phenylchloro group, respectively. It is interest-
ing that compound B, generated with the LeadOp algorithm, is the
same structure as the original ligand (inhibitor L1E) of the cocrystal
structure (PDB ID: 3idp). Compound C kept Frag-1 in its final
state while Frag-0 and Frag-5 were replaced with pyrimidine and
phenylchloro groups, respectively. CompoundD retained Frag-1 in
the final compound, and Frag-0 and Frag-5 were replaced with
pyrimidine and trifluoromethylphenyl groups, respectively. Com-
pound E combined Frag-0 and Frag-1, resulting in Frag-0, yet

Frag-5 was replaced with the phenylchloro group. The detailed
rankings from our algorithm for the compounds B�E, X, and Y on
the basis of biologically measured IC50, depicted structure, and the
predicted binding energy are reported in Table 2.
Molecular dynamics simulation studies were performed to

further investigate the resulting ligand�receptor interactions as
suggested by our algorithm (LeadOp) and to explore the possible
interactions within the cocrystal complex of B-Raf and com-
pound L1E.25 The generated compounds B�E were energically
optimized and docked into the receptor’s binding site as

Table 1. Evaluation of the Six Fragments, Frag-0 to Frag-5, from Compound A for the B-Raf Biological System with Binding Free
Energy (ΔG) and Group Efficiency (GrpEff)b

aHA is the number of non-hydrogen atoms in the fragment. bThe fragments selected to be replaced aremarked as T and those preserved aremarked as F.
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described previously in the Materials and Methods. Molecular
dynamics simulation studies were performed with the final poses
of the compounds B�E with respect to B-Raf, and the unique
low-energy conformations of the complexes, from the last 50 ps
of the MDS (50 configurations), are shown in Figure 3b.

The available cocrystal of the B-Raf-L1E complex shows
hydrogen-bonding interactions between Cys532 of B-Raf and
the purine group, hydrogen bond interactions between Glu501
and a nitrogen atom connecting two aromatic groups, a hydrogen
bond between an aromatic nitrogen of L1E and a bound water

Table 2. Ranking of the New Compounds Generated by the LeadOp Algorithm and Their Biologically Determined Inhibition
Potency (IC50) of B-Raf from the Literature42 a

aAll new compounds have a higher potency than the query compound, and the suggested priority of the new compounds with the predicted binding
energy as well as their original rankings (out of 5576) from the algorithm have a similar trend as the IC50 potency values from the literature.
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that is hydrogen bonded to Asp594 and Lys483 of B-Raf, and a
potential favorable π-stacking interaction with the side chain of
Trp531.25 We observe similar hydrogen-bonding interactions
between the aminoisoquinoline group in compound B with
binding site residues Asp594 andGlu507 and between the purine
group of compound B and residues Leu463 and Cys532 of the
receptor.
Compound C has a similar set of hydrogen bond interactions—

as compared to B-Raf�L1E complex—between itself and
Asp594 and Cys532 along with two additional hydrogen-bond
interactions with residues Lys483 and Thr529. Compounds D
and E also display key hydrogen-bond interactions that are
similar to those between L1E’s three nitrogen groups and the
surrounding binding site residues (the nitrogen atom bridging
two aromatic ring groups and Glu501, a nitrogen atom in an
aromatic ring and Asp594 via a bound water molecule, and two
nitrogen atoms of an aromatic ring group and the backbone
hydrogen-bond acceptor and donor of Cys532).
Structure-Based Fragment Hopping of Human 5-Lipoxy-

genase Inhibitors. The human 5-lipoxygenase (5-LOX) en-
zyme with the well-known 5-LOX inhibitors was selected as the
second LeadOp test case. To design better 5-LOX inhibitors,
structural insight of the 5-LOX active site and its associated
interactions with ligands would be helpful; unfortunately, the
crystal structure of this enzyme has yet to be elucidated. We
selected a theoretical model (comparative/homology protein
structure/model) of 5-LOX37 that has good agreement with
mutagenesis studies.47,48 The proposed active site of 5-LOX
forms a deep and bent cleft that extends from Phe177 and
Tyr181 on the top of the cleft to the Trp599 and Leu420 at the
bottom (shown in Figure 4). Most of the residues lining the cleft
are hydrophobic with several polar residues (Gln363, Asn425,
Gln557, Ser608, and Arg411) distributed along the channel that
have the ability to interact with ligands during the binding
process. A small side pocket off of the main channel is composed
of hydrophobic residues (Phe421, Gln363, and Lue368), and it is
postulated that lipophilic interactions with the ligand may
enhance activity. The purported major pharmacophore interac-
tions needed for ligand binding to 5-LOX include (i) two
hydrophobic groups, (ii) a hydrogen-bond acceptor, (iii) an
aromatic ring, and (iv) two secondary interactions. These two
secondary interactions are between the ligand and an acidic
moiety and a hydrogen-bond acceptor within the binding pocket

of the receptor. The hydrogen-bond acceptor probably interacts
with the key anchoring points (Tyr181, Asn425, and Arg411) to
form the hydrogen bond, while Leu414 and Phe421 form a
hydrophobic interaction between the ligand and the binding
cavity.37

The 5-LOX inhibitor compound F (compound 6 in the
literature26) was selected as our initial molecule for lead optimi-
zation and has a biologically determined IC50 value of 145 nM.
Compound Fwas docked into the theoretical 5-LOX binding site
and the lowest energy conformation was submitted to LeadOp.
This selected conformation possesses similar interactions that
have been previously reported37 and discussed above within at
the 5-LOX active site (Figure 4). The oxochromen group
favorably interacts with the hydrophobic residue Leu414
(CH 3 3 3π interaction) in the middle of the cavity, while the
fluorophenyl group extends to the hydrogen-bond-acceptor
region in the lower cleft of the active site. The docked conforma-
tion was selected as the query molecule and was decomposed
into the five fragments shown in Figure 5a.
The group efficiency was evaluated for each of the decom-

posed fragments to determine if it is eligible for replacement. The
oxochromen and fluorophenyl groups (Frag-0 and Frag-1 in
Table 3, respectively) were considered the largest contributing
features for ligand binding to 5-LOX according to the literature37

and our observations from the docking simulation, decomposi-
tion, and group efficiency calculation. On the basis of these
circumstances, the oxochromen and fluorophenyl groups were
therefore preserved during the replacement portion of LeadOp.
As in the B-Raf example, LeadOp can identify analogs
(compounds G�I in Figure 5b) that were previously proposed,
synthesized, and had their biological end points measured while
also discovering compound F in the literature.26

In the final set of proposed compounds, compound G (the
strongest inhibitor among those that were previously proposed;
IC50 = 10 nM) and compound I (IC50 = 130 nM) were the most
potent; compound G was generated by replacing Frag-2, Frag-3,
and Frag-4 of compoundFwith a secondary amine, an oxadiazole
ring, and a �C(CH2CH3)(CF3)OH, respectively, and com-
pound I was created by replacing Frag-4 of compound F with
�C(CH2CH3)2OH. Compound H (IC50 = 64 nM) preserved
Frag-3 and Frag-4 of compound F, while Frag-2 was replaced
with an alkyl group. The three compounds suggested by LeadOp,
based on the query molecule compound F, were ranked with

Figure 4. Schematic representation of the human 5-LOX active site (left) and the binding pocket (right). The perceived pharmacophores of the binding
site of 5-LOX involve two hydrophobic groups (blue ovals), two hydrogen-bond acceptors (green ovals), and an aromatic ring (orange oval) for ligand
binding at the binding cavity.
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respect to their predicted binding energy. Depicted representa-
tions of compounds F�I, as well as the corresponding inhibition
data from the biological experiments and their predicted binding
energy, are listed in Table 4.

The three LeadOp proposed compounds were submitted to
molecular dynamics simulations (MDSs) to analyze the li-
gand�receptor interactions within the 5-LOX active site.
Figure 5b displays the last conformation from the MDS along

Figure 5. LeadOp result in 5-LOXmodel system: (a) Each fragment of compound F is colored differently (left). The red ovals indicated the fragments
selected to be replaced (right). (b) The original compound F carbon atoms are colored yellow and the new fragments’ carbon atoms, of the generated
compound (middle), are colored red (left). Amino acid residues that participate in hydrogen-bonding interactions with the proposed compound, at the
binding site, (right) are depicted with cyan molecular surfaces.
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with the interaction between each ligand and the 5-LOX binding
site. The interactions of compounds G�I all contain the hydro-
gen-bonding interactions between the oxygen or nitrogen atoms
of the thiazol group at the Frag-2 or Frag-3 position. In
compounds G and H, the fluoro group at the Frag-4 position
extends to the hydrogen-bond acceptor in the upper domain of
the active site and interacts with Lys409 through hydrogen
bonding. In addition, the oxochromen ring of Frag-1 is in close
proximity to Leu414 and is potentially an important CH 3 3 3π
contact, as indicated in the literature.37 Also, Frag-3 of compound
G interacts with 5-LOX hydrophobic residues Leu420 and
Leu607, which have been suggested to improve binding in the
5-LOX system via complementary hydrophobic interaction
between the ligand and receptor, which probably explains

compound G’s better inhibition compared to compounds F, H,
and I. These optimized results indicate that hydrogen-bonding
and hydrophobic interactions are important for ligands binding
to and inhibition of 5-LOX, as previously reported.37

The diversity of the fragment database is a critical factor
when searching for substituent fragments. The number of
different poses determined by docking fragments to each
binding location is always important. The more substructural
classes and docked conformations in the fragment database, for
the system of interest, results in a greater number of possible
combinations that are available to generate new compounds. As
LeadOp is an optimization algorithm that starts with a query
molecule, better lead optimization occurs when starting with a
strong inhibitor.

Table 3. Evaluation of the Five Fragments, Frag-0 to Frag-4, from Compound F, a Human 5-LOX Inhibitor with Binding Free
Energy (ΔG) and Group Efficiency (GrpEff)b

aHA is the number of non-hydrogen atoms in the fragment. bThe fragments selected to be replaced aremarked as T and those preserved aremarked as F.
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’CONCLUSION

In this study, we have implemented a structure-based ligand
optimization algorithm called “LeadOp”. The mutant B-Raf and
human 5-LOX series of inhibitors was selected to demonstrate how
structured-based fragment hopping can improve the ligand�receptor
interactions from a querymolecule by optimizing the querymolecule
through decomposition and selection of alternative substructures
from thousands of fragments in our in-house library. In the case of
mutant B-Raf and its inhibitors, LeadOp generates a set of potential

compounds that exhibit better inhibition. The docking andmolecular
dynamic simulation analysis demonstrates that the generated struc-
tures preserve the important ligand�receptor interactions as seen in
the crystal structures. In the case of human of 5-LOX, without a
cocrystal structure, leadoptimizationwasperformedwith a theoretical
5-LOX receptor model (comparative or homology protein model)
and a known inhibitor. The optimization process was able to improve
the known inhibitor through the decomposition and replacement of
fragments with substituents that possess better efficiency score(s).

Table 4. Ranking of the New Compounds Generated by the LeadOp Algorithm and the Inhibition Potency (IC50) of Human
5-LOX from the Literature43 a

aAll new compounds have a higher potency than the query compound, and the suggested priority of the new compounds with the predicted binding
energy as well as their original rankings (out of 1637) from the algorithm have a similar trend as the IC50 potency values from the literature.



1714 dx.doi.org/10.1021/ci200136j |J. Chem. Inf. Model. 2011, 51, 1703–1715

Journal of Chemical Information and Modeling ARTICLE

For the proposed compounds with biological inhibition values
(IC50) from the literature, LeadOp calculated inhibition values
correspond to the literature values when ranking the generated
structures according to binding energy. The interactions between
the inhibitors and proteins, as noted in the literature, were
observed in the molecular dynamic simulation. Moreover, we
observed fragments with more ligand�protein interactions than
the original fragment.

In short, LeadOp is an algorithm that can automatically
optimize a query molecule by searching and replacing fragments
from a predocked fragment database in the active site to generate
structures with better binding without prior knowledge of better
fragments. Also, users can specify parts of structures to be
optimized on the basis of known interactions or preference.
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