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Abstract
The use of Quantitative Structure-Activity Relationship models to address problems in drug
discovery has a mixed history, generally resulting from the mis-application of QSAR models that
were either poorly constructed or used outside of their domains of applicability. This situation has
motivated the development of a variety of model performance metrics (r2, PRESS r2, F-tests, etc)
designed to increase user confidence in the validity of QSAR predictions. In a typical workflow
scenario, QSAR models are created and validated on training sets of molecules using metrics such
as Leave-One-Out or many-fold cross-validation methods that attempt to assess their internal
consistency. However, few current validation methods are designed to directly address the
stability of QSAR predictions in response to changes in the information content of the training set.
Since the main purpose of QSAR is to quickly and accurately estimate a property of interest for an
untested set of molecules, it makes sense to have a means at hand to correctly set user expectations
of model performance. In fact, the numerical value of a molecular prediction is often less
important to the end user than knowing the rank order of that set of molecules according to their
predicted endpoint values. Consequently, a means for characterizing the stability of predicted rank
order is an important component of predictive QSAR. Unfortunately, none of the many validation
metrics currently available directly measure the stability of rank order prediction, making the
development of an additional metric that can quantify model stability a high priority. To address
this need, this work examines the stabilities of QSAR rank order models created from
representative data sets, descriptor sets, and modeling methods that were then assessed using
Kendall Tau as a rank order metric, upon which the Shannon Entropy was evaluated as a means of
quantifying rank-order stability. Random removal of data from the training set, also known as
Data Truncation Analysis (DTA), was used as a means for systematically reducing the information
content of each training set while examining both rank order performance and rank order stability
in the face of training set data loss. The premise for DTA ROE model evaluation is that the
response of a model to incremental loss of training information will be indicative of the quality
and sufficiency of its training set, learning method, and descriptor types to cover a particular
domain of applicability.

This process is termed a “rank order entropy” evaluation, or ROE. By analogy with information
theory, an unstable rank order model displays a high level of implicit entropy, while a QSAR rank
order model which remains nearly unchanged during training set reductions would show low
entropy. In this work, the ROE metric was applied to 71 data sets of different sizes, and was found
to reveal more information about the behavior of the models than traditional metrics alone. Stable,
or consistently performing models, did not necessarily predict rank order well. Models that
performed well in rank order did not necessarily perform well in traditional metrics. In the end, it
was shown that ROE metrics suggested that some QSAR models that are typically used should be
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discarded. ROE evaluation helps to discern which combinations of data set, descriptor set, and
modeling methods lead to usable models in prioritization schemes, and provides confidence in the
use of a particular model within a specific domain of applicability.

Introduction
Model validation is not a solved problem in Quantitative Structure-Activity Relationships
modeling, though there are many techniques to validate models that enjoy varying degrees
of success. These techniques are often particular to the task and often incorrectly applied to
QSAR models. In prioritization schemes, often used in drug discovery, ensuring the stability
of rank order predictions can be more important than the prediction of floating point values,
especially in the selection of promising scaffolds. The stability of rank order prediction as a
validation of model performance could therefore have significant utility on lead candidate
prioritization schemes.

Model stability is of critical importance in determining their utility, as top-ranking
predictions affect future decisions. Because model performance is dependent upon the size
and quality of data sets, as well as the parameters used in model creation, understanding how
models perform in response to changes in the training set helps to establish the validity of
the model within its domain of applicability. If models are highly sensitive to changes in the
parameters used in the creation process, the trustworthiness of the combination of data,
descriptors, and modeling method used to create the model must be questioned. Creating a
stress test to reveal trustworthy combinations of data, descriptors, and modeling methods
necessitates the use of validation metrics that also determine model rank order stability.

Evaluating rank order stability involves utilizing metrics that evaluate the usefulness of a
model in making rank-order predictions. While many traditional model performance metrics
exist including r2, Q2 (the predicted residual sum of squares), and Root Mean Squared Error
(RMSE), they assess the quality of floating point predictions, and not rank order, which is of
greater concern in discerning rank order stability.1 Commonly used rank order metrics
include Spearman’s rank correlation coefficient and Kendall Tau.2,3 The main difference
between them is that Spearman’s rank correlation coefficient penalizes all changes in
predicted rank order equally, while Kendall Tau is less stringent, and credits retention of
portions of relative rank order despite any shift in predicted rank order. As retention of
relative rank order has value within prioritization schemes, Kendall Tau more completely
fulfills the requirements of this project. Evaluation of rank order performance alone by
Kendall Tau does not necessarily validate model performance, unless the stability of the
ranking results are also considered, resulting in the need for a metric (ROE) that quantifies
the stability of a predicted rank order. Finally, it should be said that a favorable ROE result
is not necessarily a definitive metric of model performance, but can increase user confidence
in predicted rankings.

Currently existing validation techniques mostly fall within two basic types: methods that
affect model construction, and methods that test model construction methods. Traditional
validation techniques that influence model creation include Leave-One-Out and
bootstrapping methods. These model validation techniques incorporate multiple models into
one, after which r2 or other similar metrics are applied to the results. Such techniques are
often used in combination with other validation methods, such as those that discern the
potential for overfitting, but even this combination of validation methods often fails to
provide an adequate indication of model stability. Validation metrics that directly address
overfitting include y-scrambling and partial y-scrambling.4,5 Though y-scrambling assesses
the propensity of a particular modeling method towards overfitting, it is only one indicator
of potential prediction issues when the resulting models are used on unknown data sets.
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Model validation can be extended by adding a rank order stability assessment step in
prioritization schemes. Model stability can be thought of as disorder in model output in
response to changes in training set information content, and therefore may be assessed using
metrics such as Shannon information entropy.6 Assessment of ranking stability requires
determining changes in predicted rank order with respect to changes in the training data,
during which multiple predictions from the decreasing data set are evaluated. As stated
earlier, changes in model performance resulting from the reduction of information in the
training data can be represented as disorder within the modeling results - a situation that can
be enumerated using the concepts of information entropy. Shannon entropy, as described in
literature, is characterized by its measurement of information entropy through examination
of the distribution of a set of values over a domain.6 Evaluating model stability using the
Shannon entropy of Kendall Tau requires the characterization of the range of Kendall Tau
over the set of data set reductions.3 In order to accomplish this, 40 bins of 0.05 width were
created to allow for some minor variation within Kendall Tau during the Shannon entropy
evaluation. Rank Order Entropy is determined by the population distribution of Kendall Tau
across these bins. Rank Order Entropy analysis examines the variance in rank within a
model as a data truncation analysis (DTA) is performed. This process corresponds to
removing information from the training data by removing cases in a regular fashion, akin to
taking a derivative of the behavior of the modeling results with respect to information loss.
To reduce bias, training data removals are random and performed multiple times. The data
truncation analysis performed within ROE analysis is represented in Figure 1.

The goal of Rank Order Entropy analysis is to evaluate whether a particular combination of
data, descriptors, and modeling method can make robust predictions in the face of fewer
data points, representing a decrease in training information. Stable combinations of
descriptors, modeling method, and data result in models that retain the same level of rank
order prediction even without the majority of the training data. The application of rank order
metrics therefore provides a means for determining the reliability of a particular
combination of data, descriptors, and modeling method. A stable rank order is the key
outcome in determining whether a model can be trusted for a given task.

Materials and Methods
There are multiple steps involved in performing a ROE assessment: data truncation, model
creation, rank order evaluation, and stability evaluation. ROE evaluation is available as an
online toolkit at http://reccr.chem.rpi.edu/Software/ROE/ROE-index.html.

Data truncation begins by creating initial training and testing sets from the original data set.
This training/testing split is produced by first sorting the cases within the data set by
activity, and then splitting every other entry into either training or testing. This sorting and
splitting is done in an effort to create a test set that is highly representative of the training
set. There is an option to repeat the splitting process by performing it randomly, which
creates another training/testing set pair considered separately from the original even/odd
split. The test set remains constant after the initial splitting for modeling with the
corresponding training sets to provide a stable test set for model performance evaluation.
Once the test set is created, the training set truncation process can begin. At this point, the
training set is randomly reduced in size by ten percent per iteration for ten iterations. This
cycle is repeated fourteen times, creating 151 training sets, as shown in Figure 1.

The 151 models created by these training sets are applied to the test set obtained during the
first splitting of the original data. This provides a consistent performance reference for the
model. In ROE evaluation, the modeling is performed using the Rensselaer Exploratory
Center for Cheminformatics Research Online Modeling System, or ROMS. ROMS is based
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on the Analyze PLS/KPLS software package version 6.96 (M. J. Embrechts, 2006). The
functionalities of ROMS utilized by ROE evaluations include partial least-squares (PLS) and
kernel partial least-squares (KPLS) regression modeling.7,8 Models created for ROE
evaluation utilize 100 bootstraps, where the validation set for each bootstrap is ten percent of
the training set size. To reduce computational time, parameter optimization was omitted for
each truncation and a set of standard model parameter values was used throughout. In this
case, the standard values were 5 latent variables and 85 percent cousin threshold for both
PLS and KPLS modeling, and a sigma value of 10 for KPLS kernels.

The ROMS modeling process involved calculating r2, Q2, and RMSE metrics for each
model. Calculation of rank order metrics was then performed across all 151 prediction
results after ROMS modeling was complete, based on ranks derived from regression
predictions. Kendall Tau for each model was calculated by comparing the predicted activity
ranks to the actual activity ranks of the test set. The values of Kendall Tau for the ten models
at each truncation stage are averaged, and then Shannon entropy was computed as a metric
of Kendall Tau stability over the truncations.

Calculating 151 models for each data set, descriptor set, and modeling method combination
is a computationally intensive process. During the investigation, it was observed that the
behavior of a given data set, descriptor set, and modeling method combination could be
assessed using only a portion of the 151 training sets. As shown in Figure 2, the original
training set and the first four truncations convey the behavior of the majority of truncations.
As the most change is often seen in the last few truncations, only the original training set,
the first four truncations, and the last truncation are used in ROE evaluations to streamline
the process.

Large, negative Kendall Tau values were observed in initial tests of some combinations of
data, descriptor, and modeling method. While such values of Kendall Tau usually indicate a
negative correlation with true rank order, it is possible that some data sets contain activity
values with experimental errors large enough to cause confusion in true rank order. To
accommodate this, an ε-insensitive modeling provides a dead band within response values
so models do not end up representing noise. Kendall Tau can be applied in an ε-insensitive
way to explore the behavior of some of the outlying models using a sensitivity test, where
the value of ε was varied based on the range and value of the activities of the molecules
predicted by the model as well as an estimate of the experimental error.

The data sets used to test the ROE metric were selected from QSAR data sets in literature,
curated online data sets, and industry databases. The 71 data sets used in the present study
are shown in Table 1, and vary widely in size and type of target. Preparing the data sets for
modeling and evaluation involved preprocessing molecular structures and setting reasonable
ionization states, as well as performing descriptor calculations. Both the preprocessing and
descriptor calculation steps were performed using MOE version 2008.10 (Molecular
Operating Environment. Chemical Computing Group Inc., Montreal, Canada). Six sets of
descriptors were calculated for each data set, including MOE 2D (moe2d) descriptors, MOE
orientation-independent 3D (moei3d) descriptors, reconstructed electron charge densities
and electron density-derived (RECON) 2-dimensional autocorrelated (ra2d) descriptors,
RECON 3-dimensional autocorrelated (ra3d) descriptors, Transferable Atom Equivalent
(TAE) descriptors, and ultra-fast shape recognition (USR) descriptors.9–12 Each
combination of data, descriptor, and modeling method is considered separately in the
examination of the ROE evaluation process.
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Results and Discussion
Comparing rank order and traditional metrics on all 71 data sets yielded the results shown in
Figures 3 and 4. Most data set, descriptor set, and modeling method combinations show a
rough correlation between Kendall Tau and r2, as expected, indicated by the dashed red
trend line in Figures 3 and 4. However, a handful of combinations behaved differently than
expected. Figures 5 and 6 show the behavior of many combinations, including those that
have unexpected values of Kendall Tau boxed in pink, green, or gold.

Of particular significance are the ROE evaluations boxed in pink; these have high r2 values
and very low Kendall Tau values. High r2 values indicate high correlation between predicted
and actual activities, and low Kendall Tau values indicate that predicted rank order does not
correlate with actual rank order. Unfortunately, these models are often used when they
should be discarded, or at minimum, examined in greater detail. The evaluations boxed in
green have r2 values greater than 0.6 and Kendall Tau values that indicate a lack of
predictive ability for rank order. In many design applications, models with r2 values greater
than 0.6 are considered acceptable or ”predictive” models. The third set of evaluations,
boxed in gold, have r2 values at or near zero, implying little or no correlation between
predicted and actual activity values, but still have high Kendall Tau values. These gold
boxes contain models that would usually be discarded based on r2 values, but are examined
here in more detail due to high Kendall Tau values.

The data sets used to create the models that fall within the outlying ranges are shown in
Table 2 and Table 3. It was expected that different data sets might appear in each of the
outlying sections when PLS and KPLS regression models were compared, since it was
considered possible that the KPLS models would capture nonlinear relationships between
descriptors and activity that were not captured in PLS models. However, when tested, PLS
and KPLS modeling produced similar results in Kendall Tau over all data sets. This suggests
that any nonlinear relationships within these data sets were not particularly significant.
Examples from each set of outliers for each modeling method were then examined in greater
detail in an attempt to understand the evaluations, including analysis of the modeling output
through the comparison of actual versus predicted activity.

In the PLS modeling portion of the ROE evaluation, the pink outliers with high r2 and
negative Kendall Tau values included a solubility data set using moe2d descriptors and a
steroid data set using moe2d descriptors.24,25 The solubility data set is very large, including
over 1100 molecules. Using traditional wisdom, it might be assumed that models created
using large data sets with high r2 values should be highly predictive, though this is not
always the case. Figure 7 demonstrates that the rank orders of the molecules in this data set
are not predicted well even though a clear regression line exists. In fact, the Kendall Tau
value for this particular evaluation was below −0.2, indicating a net reversal of order.
Perhaps this is evidence that no more than a classifier model should be used for data sets of
this type.

Though the steroid data set is much smaller than the solubility data set, this same problem is
visible in terms of vastly different predicted rank order with some reversal of segments of
rank ordering. The steroid data set with moe2d descriptors shown in Figure 7 has a second
problem: the range of predicted values for each of the molecules varies a great deal over
different bootstraps. This may be due to the small size of the data set, as it contains only 36
molecules.25 Future analysis could include evaluation of the distribution of molecular
clusters across the training and testing sets to ascertain if the distribution of molecules has
more of an effect than the information content of the descriptors.
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The same range of predicted values is seen in the KPLS model outliers: the solubility data
set with TAE descriptors and the steroid data set with moe2d descriptors as shown in Figure
8. Though the TAE descriptors have a strong monotonic relationship with molecular
solubility in terms of r2, the rank order prediction using these descriptors is surprisingly
ineffective. Regardless of data set size or the use of linear or nonlinear modeling, these data
sets exhibit negative Kendall Tau values. If these four apparently good outlying models
were used to predict the behavior of molecules with unknown activities, the rank order
predictions would be unexpectedly poor.

The second set of outliers includes models with r2 values approaching traditionally
acceptable levels, but with Kendall Tau values near zero. Shown in Figure 9 are two PLS
model outliers: the antiprotozoals data set using moe2d descriptors and the volume
distribution data set using moei3d descriptors.35,79 The antiprotozoal/moe2d modeling data
shows both complete reordering of predicted activity as well as varying sizes of prediction
error bars. Further examination of the behavior of the model data shows a negative Q2 value,
indicating a high degree of overfitting. Both models shown in Figure 9 show negative Q2

values. Though the volume distribution/moei3d model contains more molecules than the
antiprotozoal/moe2d model, the volume distribution/moei3d model predictions incorporate
more variance, as shown by the larger negative Q2 value. Again, no sections of rank order
are retained within the predicted activity values from this model.

The KPLS model outliers for r2 values between 0.3 and 0.5 and Kendall Tau values near
zero are shown in Figure 10. These include the melting point data set using moe2d
descriptors and the dehydrosqualine data set using ra3d descriptors.23,63 The melting point/
moe2d model contains more molecules than the dehydrosqualine/ra3d model, but only the
dehydrosqualine/ra3d model exhibits a negative Q2 value. Though the Q2 value of the
melting point/moe2d model is positive, it is tiny. The differing Q2 performances could be
due to the smaller range of scatter on the melting point/moe2d model data shown in Figure
10. Neither model retains segments of rank order, unlike the first set of outliers. These
outliers demonstrate the necessity of using additional metrics when examining models with
r2 approaching acceptable values.

The third set of outliers include models with r2 values near zero and large, positive Kendall
Tau values. Figure 11 shows two such PLS model outliers: the COX-2 data set using ra2d
descriptors and the acetylcholinesterase data set using TAE descriptors.14,22 Q2 values for
each of these models are well below zero, indicating that the models are highly overfitted.
The graphs show that segments of rank order are retained within the activity predictions,
despite the lack of linear correlation between predicted and actual molecular activities.
Though the KPLS models shown in Figure 12 contain fewer molecules than the PLS
models, it is clear that the hERG 4 data set using TAE descriptors and the oral absorption
data set using ra3d descriptors models have the same problems.31,39 The Q2 values for both
KPLS models are negative, though not as large as the Q2 values for the PLS models. The
small subsets of rank order that are retained within these KPLS models are also visible.
While it is tempting to utilize the rank predictive power present in these models, the poor r2

and Q2 performance emphasize the necessity of utilizing more than one metric. Models with
r2 values near zero and large, positive Kendall Tau values should not be utilized in
prediction.

Due to the number of ROE evaluations that showed negative Kendall Tau values, ε-
insensitive Kendall Tau was chosen to examine five ROE evaluations. Applying this variant
of Kendall Tau as a sensitivity test to the ROE evaluations involved examining the ranges of
molecular activities and the size of expected experimental error for each of the data sets to
determine the range of values of ε to apply to each ROE evaluation. ε-insensitive Kendall
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Tau was used to examine representatives of all three sets of outliers as well as evaluations
with Kendall Tau values that correlated with r2 values. All five evaluations were chosen
based on data set size, with a preference for larger data sets that had a greater probability of
containing molecules with similar activities. The hypothesis was that ε-insensitive Kendall
Tau results would reveal whether experimental error had a noticeable effect on Kendall Tau
performance.

The ROE outlier evaluations selected for ε-insensitive testing were: 1) the solubility set
using moe2d descriptors, 2) the volume distribution set using moei3d descriptors, and 2) the
COX-2 set using ra2d descriptors. In Figure 13, Figure 14, and Figure 15, the sensitivity
tests of ε-insensitive Kendall Tau show minimum change over varying ε values. The non-
outlier evaluations selected were the ACE inhibitors set using moe2d descriptors and the
boiling point set using TAE descriptors. Figures 16 and 17 show more change in Kendall
Tau over ε values than the outlier ε-insensitive Kendall Tau sensitivity tests. The difference
in behavior indicates that experimental error in data collection did not cause the outlying
values of Kendall Tau.

Since one of the goals of the ROE project was to determine the relationship between ranking
accuracy and the stability of rank order, evaluation of ROE required the definition of a
suitable stability metric, involving the behavior of Kendall Tau over multiple data set
truncations. Stability was measured using the Shannon entropy of Kendall Tau over the
truncations.

Examining the relationship between rank order stability and rank order performance is
possible when Shannon entropy is plotted against Kendall Tau. Figures 18 and 19
comparing Shannon entropy and Kendall Tau show a lack of correlation for both PLS and
KPLS models. This lack of a relationship between stability and rank order emphasizes the
value of ROE evaluation as an independent means for assessing the behavior of a data set,
descriptor set, and modeling method in prioriting cases.

In practice, ROE evaluation requires a defined threshold that distinguishes between stable
and unstable evaluations. To discern what value would be appropriate, Figure 20 illustrates
the more stable behaviors of Shannon entropy of Kendall Tau for sets of six Kendall Tau
values. Each of these Kendall Tau values represents the evaluation of a combination of data,
descriptors, and modeling method at a different truncation. Based on the values in the figure,
only evaluations with a very small amount of change within Kendall Tau values would be
classified as stable combinations of data set, descriptor set, and modeling method. For this
reason, the threshold for stability was set at 0.2, with stable evaluations falling below and
unstable evaluations falling above this value.

The many combinations of data set, descriptor set, and modeling methods were classified
using Kendall Tau and Shannon entropy of Kendall Tau, resulting in the contents of Table 4.
The behavior of the combinations in each of the classifications was examined and yielded
the results shown in Table 5. Regardless of Kendall Tau values, if r2 values for models do
not meet minimum acceptable values, the model should be discarded. Due to the similarity
in performance of combinations of data sets and descriptors within PLS and KPLS, the
recommendations are presented as a set of general recguidelines, which are applicable to any
modeling method.

Many of the recommendations in Table 5 were determined based on the performance of the
models created using the data sets listed in Table 4. There are some sections in Table 4 that
are not populated, despite efforts to the contrary. These sections have no representative data
within the combinations of data set, descriptor set, and modeling methods tested because
combinations could not be found that performed in those ranges.

McLellan et al. Page 7

J Chem Inf Model. Author manuscript; available in PMC 2012 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Creating the recommendations in Table 5 began with assessing the ROE evaluations by the
Kendall Tau value of the original training set. Since Kendall Tau values roughly correlate
with r2 values, and Kendall Tau values of 0.4 align with r2 values near 0.6, a Kendall Tau
value of 0.4 was set as the minimum acceptable value. Below that Kendall Tau value, rank
order performance was observed to drop off. Above a Kendall Tau value of 0.6,
performance improved significantly over models with Kendall Tau values between 0.4 and
0.6. A similar improvement in model performance was observed when Kendall Tau
increased from 0.6 to 0.8. When Kendall Tau values fell between 0.2 and 0.4, model
performance diminished. Examining ROE results led to the recommendation that an addition
of data to the model could improve models that had Kendall Tau values between 0.2 and 0.4,
though a change in descriptors would potentially aid model performance as well. The range
of Kendall Tau from −0.2 to 0.2 appeared to contain models devoid of information. Whether
this lack of information was due to lack of representation of appropriate chemical properties
by the chosen descriptors or simply an inadequate number of cases within the data set likely
varies from combination to combination. ROE evaluations with Kendall Tau values below
−0.2 clearly need a change in the model creation process due to the reversal of rank order
prediction. It is likely that these combinations require either a new descriptor set or a new
modeling method.

When stability of Kendall Tau is added to the evaluation, the assessments for combinations
of data set, descriptor set, and modeling method become more specific. Stable combinations
receive assessments based on the Kendall Tau value of the original training set, as those
values change minimally over the truncations. Unstable combinations require more cautious
recommendations. As stated earlier, the utility of a model is directly related to the stability
of rank order prediction. The most essential recommendation provided for unstable
combinations is to obtain more information, either by changing descriptor sets or by adding
molecules to the data set. For combinations with large data sets, the data set size is likely not
the problem, making the descriptor set selection or increasing data set diversity more
relevant recommendations. Though the performance of combinations with large data sets
was not improved by applying an ε-insensitive Kendall Tau sensitivity test, combinations
with small data sets may show an improvement in performance. These results suggest that
quantitative analysis of rank order stability improves the confidence of using a particular
combination of data, descriptors, and modeling methods in prioritization schemes.

Conclusion
Development of the ROE evaluation method uncovered a relationship between rank order
and test set r2 performance, as well as other unexpected information. Kendall Tau and r2

were found to be correlated, but not in all cases. The outliers of this comparison have great
significance, indicating that more caution is needed when using models with high r2 values
and that use of models with near-acceptable r2 values require caution. For ROE with large
data sets, ε-insensitive Kendall Tau sensitivity tests reveal that the behavior of these models
are not necessarily outliers because of experimental error. When rank order stability is
compared with actual values of Kendall Tau for different models, the most striking
observation is that no correlation exists between them. Stable ROE evaluations appear
across the range of Kendall Tau, as do unstable ROE evaluations. ROE evaluations are
designed to reveal the stability of rank order prediction, and was tested using various
combinations of data sets, descriptor sets, and modeling methods. This method enables
intelligent use of QSAR models by increasing the confidence level of applying a given
QSAR model to a particular problem by providing a metric that goes beyond traditional
metrics of model quality assessment.
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Figure 1.
Data Truncation in Preparation for Modeling: Each time a data set is split, 151 training sets
are created. The test set remains constant for these 151 truncations.
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Figure 2.
Data set evaluations without reduced truncations: ACE, Arteminisin and Boiling Point
model behavior
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Figure 3.
Correlation between Kendall Tau and r2 for PLS Models. The dashed blue line follows the
rough correlation between r2 and Kendall Tau.
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Figure 4.
Correlation between Kendall Tau and r2 for KPLS Models. The dashed blue line follows the
rough correlation between r2 and Kendall Tau.
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Figure 5.
Comparing Kendall Tau and r2 for PLS Models. The boxes enclose subsets of outliers. The
gold box encloses low r2/high Kendall Tau outliers which are often discarded. The green
box encloses models on the threshold of acceptable r2 values which are sometimes
discarded. The pink box encloses models that are often used, potentially with poor results.
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Figure 6.
Comparing Kendall Tau and r2 for KPLS Models. The boxes enclose subsets of outliers
according to the same color scheme as in Figure 5.
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Figure 7.
High r2 PLS Outliers Solubility/moe2d and Steroids/moe2d
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Figure 8.
High r2 KPLS Outliers Solubility/TAE and Steroids/moei3d
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Figure 9.
Kendall Tau near zero PLS Outliers Antiprotozoals/moe2d and Volume distribution/moei3d
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Figure 10.
Kendall Tau near zero KPLS Outliers Melting point/moe2d and dehydrosqualine/ra3d
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Figure 11.
r2 near zero PLS Outliers COX-2/ra2d and Acetylcholinesterase/TAE
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Figure 12.
r2 near zero PLS Outliers hERG 4 TAE and Oral absorption ra3d
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Figure 13.
Exploring Sensitivity of ε in ε-insensitive Kendall Tau: Solubility Moe2d data.
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Figure 14.
Exploring Sensitivity of ε in ε-insensitive Kendall Tau: the Volume distribution moei3d
data.
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Figure 15.
Exploring Sensitivity of ε in ε-insensitive Kendall Tau: COX-2 ra2d data.
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Figure 16.
Exploring Sensitivity of ε in ε-insensitive Kendall Tau: ACE Moe2d data.
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Figure 17.
Exploring Sensitivity of ε in ε-insensitive Kendall Tau: BP TAE data.
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Figure 18.
Shannon Entropy as a measure of Rank Order Entropy: Kendall Tau data vs Shannon
Entropy for PLS Models
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Figure 19.
Shannon Entropy as a measure of Rank Order Entropy: Kendall Tau data vs Shannon
Entropy for KPLS Models
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Figure 20.
Shannon Entropy Values for Various Groupings of Data. This table shows the possible
combinations of different bins at the stable end of the spectrum. As can be seen, if five
Kendall Tau values fall in one bin, with only one Kendall Tau value in a different bin, the
Shannon entropy of the truncations is the smallest non-zero possibilities shown. A small
value of Shannon entropy indicates a higher stability in the modeling process. The next
largest Shannon entropy value comes from the combination of 2 Kendall Tau values in one
bin, and 4 Kendall Tau values in another bin. The third largest Shannon entropy value comes
from Kendall Tau values split evenly into two bins. The last example shown here is the
fourth highest value of Shannon entropy, caused by one Kendall Tau value in 2 different
bins, and the other 4 Kendall Tau values in one bin.13,16,24,28,83
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Table 1

Data sets Used in ROE Evaluation

Dataset Shorthand Num. Mols. Target

Angeotensin-converting enzyme ACE 114 High blood pressure 13

Acetylcholinesterase AChE 60 Alzheimer’s/Dementia 14

arteminisin analogs art 179 malaria 15

boiling point bp 298 - 16

HIV-RT hivrt 64 HIV 17

Lombardo lombardo 70 many 18

BBB bbb 60 many 19

Benigni (mouse) benigni.mouse 316 predicting toxicity 20

Benigni (rat) benigni.rat 375 predicting toxicity 20

Comsia comsia 88 blood clotting 21

COX-2 cox2 305 pain relief 22

Melting point mp 277 - 23

Solubility sol 1144 - 24

Steroids steroids 31 depression 25

Caco-2 caco2 45 intestinal transport 26

Ether-a-go-go ether 126 long QT syndrome 27

Intestinal absorption intabs 100 intestinal transport 28

Jejunum permeability jperm 22 intestinal transport 29

Minnow toxicity mintox 322 toxicity 30

Oral absorption oabs 23 intestinal transport 31

Oral bioavailability obio 275 intestinal transport 32

P-glycoprotein pgly 113 intestinal transport 33

Plasma binding plasma 273 effective blood conc 34

Volume distribution.fu lom.fu 120 effective blood conc 35

Volume distribution.vd lom.vd 120 effective blood conc 35

hERG herg 86 long QT syndrome 36

hERG 2 herg2 34 long QT syndrome 37

hERG 3 herg3 65 long QT syndrome 38

hERG 4 herg4 22 long QT syndrome 39

hERG 5 herg5 67 long QT syndrome 40

hERG 6 herg6 31 long QT syndrome 41

hERG 7 herg7 76 long QT syndrome 42

hERG 8 herg8 101 long QT syndrome 43

glucocorticoid receptor gluc 35 inflammatory/autoimmune 44,45

Melanocortin-4 ag/antag mel 82 obesity/cachexia 46,47
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Dataset Shorthand Num. Mols. Target

PDGFR pdgfr 77 cell proliferation 48

5-lipoxygenase 5lip 41 inflammation 49

α4β2 nicotinic acetylchonline receptor a4b2 55 analgesic 50

Acid blockers acid 38 stomach acid 51

Adenosine A1 receptor ad 32 heartrate 52

Nicotine acetylcholine agonist agac 57 analgesic 53

Androgen androgen 24 hormone replacement 54

Bradykinin brady 34 chronic pain 55

B-Raf braf 37 cancer 56

Cannabinoid-1 receptor cb1r 57 obesity 57

Cyclin-dependent kinase 4 cdk4 52 cancer 58

Carboxylesterase cester 49 drug metabolism 59

3-hydroxy 3-mythyglutaryl CoA reductase coared 26 heart disease 60

Corticotropin-releasing factor receptor 1 crf1 44 depression/anxiety 61

Cyanoguanidine P2X7 cyano 59 pain relief 62

Dehydrosqualine synthase dhsqual 37 inhibit Staphylococcus aureus 63

Factor Xa fxa 49 anticoagulant 17

Glycerol 3-Phosphate Acyltransferase g3pat 36 obesity 64

Hepatitis C virus NS3 serine protease hepc 34 Hepatitis 65

Hepatitis C virus NS3 helicase helicase 38 Hepatitis 66

Histamine H3 receptor hish3 35 CNS disorders 67

HIV1 Reverse Transcriptase DABO analogues hiv1 33 or 27 HIV 68

Interleuken 8 il8 35 inflammation 69

Ketopiperidinens Histamine H3 ketopip 51 hay fever 70

Hormone-selective lipase inhibitors hsl 30 insulin resistance 71

Human monoamine oxidase A and B mao 37 or 51 depression/oxidative stress 72

Mitogen-Activated Protein Kinase Kinase mapkk 26 cancer 73

MAPK-Activated Protein Kinase 2 mkapk2 31 arthritis 74

Antimycobacterials mycobac 35 Tuberculosis 75

Nek2/Hec1 nek2hec1 27 cancer 76

Procollagen C proteinase pcp 37 topical antiscarring 77

Integrin α2/β1 platad 26 cancer/clotting 78

Antiprotozoals pzoan 37 African sleeping sickness 79

Stearyl-CoA Desaturase 1 scd 48 obesity 80

Signal transducer/activation of transcription 3 stat3 49 cancer 81

Vasopresin V2 receptor vaso 45 water balance 82
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Table 2

PLS Datasets of Interest

High r2 and Low KT KT Near Zero r2 Near Zero

sol/moei3d24 cester/ra3d59 cox2/ra2d22

sol/moe2d24 hepc.ec90/moe2d65 cox2/ra3d22

steroids/moei3d25 hish3/TAE67 oabs/ra3d31

steroids/moe2d25 jperm/moe2d29 herg4/moe2d39

jperm/moei3d29 ache/TAE14

lom.vd/moei3d35

nek2hec1/TAE76

pzoan/moe2d79

pzoan/ra3d79
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Table 3

KPLS Datasets of Interest

High r2 and Low KT KT Near Zero r2 Near Zero

sol/moei3d24 g3pat/TAE64 bbb/moei3d19

sol/tae24 g3pat/ra3d64 hish3/moe2d67

sol/moe2d24 dhsqual/ra3d63 oabs/ra3d31

steroids/moei3d25 cester/ra3d59 herg4/TAE39

g3pat/ra2d64

pzoan/ra3d79

hepc.ec90/moe2d65

cester/TAE59

mp/moe2d23

lom.vd/moei3d35

hish3/moei3d67
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Table 4

PLS and KPLS Data classified using Kendall Tau and Shannon entropy.

PLS Datasets KPLS Datasets

KT range Stable Unstable Stable Unstable

0.6–0.8 bp/moei3d 16

hivrt/ra2d 17
ketopip/ra3d 70

bp/tae 16

hivrt/ra3d 17

herg4/moe2d 39

ace/moe2d 13

bp/moei3d 16 bp/tae 16

ketopip/ra3d 70

hivrt/ra2d 17

herg4/moe2d 39

0.4–0.6 mintox/moe2d 30

ace/usr 13

cox2/ra2d 22

mintox/tae 30

hivrt/moei3d 17

lombardo/tae 18

ache/tae 14

mintox/moe2d 30

cox2/ra2d 22
ache/tae 14

mintox/tae 30

ace/moe2d 13

ace/usr 13

lombardo/tae 18

0.2–0.4 comsia/ra3d 21

hish3/ra2d 67

intabs/tae 28

art/tae 15

5lip/moe2d 49

art/moe2d 15

comsia/ra3d 21 5lip/moe2d 49

intabs/tae 28

oabs/moe2d 31

art/tae 15

hish3/ra2d 67

il8/moei3d 69

0.0–0.2 oabs/moe2d 31

il8/moei3d 69

dhsqual/ra2d 63

pgly/tae 33

pzoan/ra3d 79

braf/moe2d 56

nek2hec1/ra3d 76

art/moe2d 15

pgly/tae 33

dhsqual/ra2d 63

braf/moe2d 56

pcp/moe2d 77

pzoan/ra3d 79

−0.2–0.0 lom.vd/moei3d 35 pcp/moe2d 77

caco2/moei3d 26

fxa/tae 17

g3pat/moe2d 64

caco2/moei3d 26 lom.vd/moei3d 35

fxa/tae 17

g3pat/moe2d 64

nek2hec1/ra3d 76

steroids/moei3d 25

g3pat/ra3d 64

−0.4–0.2 g3pat/ra3d 64

sol/tae 24
steroids/moei3d 25

sol/moe2d 24
sol/tae 24 sol/moe2d 24

J Chem Inf Model. Author manuscript; available in PMC 2012 September 26.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

McLellan et al. Page 39

Table 5

Recommendations for data sets based on KT and Shannon entropy performance.

Grade KT Range Stable Unstable

A 0.8–1.0 Use. Use with caution.

B 0.6–0.8 Use. Use with caution; ε-insensitive test recommended.
If very unstable, needs new desc.

C 0.4–0.6 Use with caution.
If possible, get more data/new desc.

Use with caution;
ε-insensitive test recommended.

D 0.2–0.4 Do not use;
needs more data.

Do not use.
Needs new desc/more data.

F −0.2–0.2 Do not use.
Needs new desc/signal missing.

Do not use.
Needs new desc/signal missing.

E below −0.2 Do not use.
Needs new descriptors/method.

Do not use.
Needs new descriptors/method.
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