
The Anatomy of High-Performance 2D Similarity Calculations

Imran S. Haque†, Vijay S. Pande†,‡, and W. Patrick Walters¶

Department of Computer Science, Department of Chemistry, Stanford University, Stanford, CA, 
and Vertex Pharmaceuticals Inc., Cambridge, MA

W. Patrick Walters: pat_walters@vrtx.com

Abstract

Similarity measures based on the comparison of dense bit-vectors of two-dimensional chemical 

features are a dominant method in chemical informatics. For large-scale problems, including 

compound selection and machine learning, computing the intersection between two dense bit-

vectors is the overwhelming bottleneck. We describe efficient implementations of this primitive, as 

well as example applications, using features of modern CPUs that allow 20-40x performance 

increases relative to typical code. Specifically, we describe fast methods for population count on 

modern x86 processors and cache-efficient matrix traversal and leader clustering algorithms that 

alleviate memory bandwidth bottlenecks in similarity matrix construction and clustering. The 

speed of our 2D comparison primitives is within a small factor of that obtained on GPUs, and does 

not require specialized hardware.

Introduction

A large variety of methods in chemical informatics, including compound selection,1,2 

clustering, and ligand-based virtual screening, depend on pairwise compound similarities as 

a critical subroutine. Continuing increases in the size of chemical databases (e.g., 35 million 

nominally-purchasable compounds in ZINC3 or nearly one billion possible compounds 

under 13 heavy atoms in GDB-134) create immense demands on computer power to run 

these algorithms. Consequently, there has been significant interest in the development of fast 

methods to compute chemical similarity. Previous work has focused on the use of 

specialized hardware,5–7 clever data structures,8 or approximation techniques9 to accelerate 

large-scale pairwise similarity comparison using a variety of similarity methods.

So-called “two-dimensional” bit-vector Tanimoto similarities are particularly interesting by 

virtue of their dominant position in terms of similarity metrics used in the field. These 

similarity measures represent molecules by long (hundreds to thousands of bits long) binary 
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vectors representing the presence or absence of chemical features and compute pairwise 

compound similarity as a similarity coefficient between pairs of such vectors.

Past work has examined high-level algorithmic strategies to perform large-scale searches in 

sublinear time, using complex data structures or bounds on the similarity measure to 

eliminate many comparisons.8,10–12 However, in some cases these algorithms must still 

evaluate the underlying similarity measure a large number of times, motivating fast direct 

calculation of the 2D Tanimoto. Liao, Wang, and Watson recently reported that graphics 

processing units (GPUs), a type of massively-parallel specialized hardware, achieved 

73-143× speedup on common 2D Tanimoto-based compound selection algorithms, relative 

to the same methods running on a conventional CPU.5 However, the reference CPU method 

used in their work was not properly optimized.

In this paper, we discuss methods for the optimal implementation of 2D similarity 

computations on modern CPUs. We combine architecture-specific fast implementations of 

the population count primitive and architecture-agnostic algorithms for reducing memory 

traffic that enable 20-40× speedup relative to traditional CPU methods and achieve 65% of 

the theoretical peak machine performance. We demonstrate the performance of our methods 

on two model problems, similarity matrix construction and leader clustering. Without using 

specialized hardware, we achieve performance that is, at worst, within 5× that of GPU-based 

code, and that at best beats the GPU. We include implementations of our high-speed 

algorithms under a permissive open-source license.

Overview of 2D Similarity

“Two-dimensional” chemical similarity measures define the similarity between a pair of 

compounds in terms of substructural similarities in their chemical graphs. Typical similarity 

measures of this type (e.g., MDL keys and path-based fingerprints like Daylight 

fingerprints)13,14) represent molecules as binary vectors of a user-defined length. In simple 

fingerprints, such as MDL keys,13 each bit represents the presence or absence of a particular 

chemical feature. Hashed fingerprints, such as the ECFP family,14 first compute a large 

number of features (such as circular paths around each atom), hash these features, and then 

“fold” the (potentially-large) hashed values into a fixed-length fingerprint by binary OR15 

(sparse fingerprints like ECFP may be represented as a list of integers rather than a bit-

vector). The same fingerprint approach can also be used for 3D similarity measures; Haigh 

and colleagues have described a “shape fingerprint” approach in which bits represent 

similarity to particular reference shapes, allowing the machinery of 2D fingerprint 

comparison to be used for shape comparison.16

Given fingerprint representations of a pair of molecules A and B, a number of different 

similarity measures can be computed; popular examples include the Tanimoto, cosine, and 

Dice similarity coefficients.17 Typically, the terms involved in the computation of such 

similarity coefficients are the number of 1-bits set in either fingerprint, the number of 1-bits 

in common between the two fingerprints, and the number of 1-bits present in either 

fingerprint. In this paper we will specifically consider the computation of the bit-vector 

Tanimoto, defined by the following equation:
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(1)

However, the techniques described here are applicable to all of the typical similarity 

coefficients used on bit-vectors. In the next section we discuss two strategies that 

dramatically improve performance on 2D similarity computation relative to typical existing 

code, without the use of GPUs or other specialized hardware.

Fast Computation of the 2D Tanimoto

We describe two techniques for accelerating 2D Tanimoto calculations. The first method is 

to accelerate the population count primitive (the |A∩B| term in equation 1), which is the 

computational bottleneck in 2D similarity code) using features of modern CPUs; this is 

useful even for single Tanimoto computations. Secondly, we show that careful optimization 

of memory access patterns is necessary to achieve maximum performance.

Fast Population Count

Most of the computational expense of 2D similarity comparison comes from the need to 

count the number of 1-bits set in a given bit-vector, the so called population count, popc, or 

Hamming weight function. In the Tanimoto equation, this appears in two forms: |x|, the 

number of 1s set in vector x (where x is A or B), and |A∩B|, the number of 1s set in the 

binary-AND of vectors A and B.

A common way of computing the population count of a long bit-vector is to use a small 

lookup table (LUT) to “compute” the population count of short subsections of the full vector 

(e.g., 8 bits for a 256-entry table or 16 bits for a 65,536 entry table) and then sum all of these 

values. The LUT contains at address i the population count of i represented in binary. This 

method is conceptually simple, but a poor choice on modern hardware, especially for large 

bit-vectors such as those encountered in 2D chemical fingerprints. The LUT lookup requires 

one memory access for every table lookup; even if serviced from cache, these are an 

inefficient use of CPU resources.

Modern CPUs have multiple parallel instruction pipelines per core, allowing them to 

evaluate multiple independent logic instructions simultaneously, but usually only dedicate 

one pipeline to memory reads (e.g., the Intel Nehalem architecture has 3 instruction issue 

ports for logic, but only one for memory reads).18 Therefore, only one memory read 

instruction can be processed per cycle (implying a peak population-count throughput of 8 or 

16 bits per cycle, depending on LUT size). Furthermore, these LUT lookups must contend 

for pipeline resources with reads of the actual fingerprints, meaning that throughput must be 

lower than this upper bound. Thus, a memory-lookup-based algorithm will become quickly 

bottlenecked by memory access, and will perform poorly; logic-based solutions are 

preferable.

Very recent x86 CPUs (Intel processors since Nehalem; AMD processors since K10) support 

a population count instruction (PoPCNT) in hardware with single-cycle throughput. This 

allows computation of a population count on an entire 32- or 64-bit word in one instruction: 
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a clear win over a small lookup table, which would require 4-8 lookups to process 64 bits. 

However, a significant installed base of processors lack such an instruction, motivating other 

fast population count algorithms. The two logic-based methods presented below rely on the 

SSE (Streaming Single-instruction, multiple-data Extensions) vector extensions to x86, 

implemented by both Intel and AMD. SSE exposes a set of 128-bit registers, which can be 

interpreted (for our purposes) as vectors of four 32-bit, eight 16-bit, or sixteen 8-bit integers; 

as well as vector arithmetic and logic instructions operating on these registers. We present 

fast implementations of population count based on the SSE2 (SSE version 2) and SSSE3 

(Supplemental SSE 3) versions of SSE, at least one of which is available on essentially any 

x86 processor manufactured in the last decade.

Vectorized Lookup Table Method—Many processors that do not support the PoPCNT 

instruction support the SSSE3 instruction set, including Intel CPUs since the Core 2 

generation (still in widespread use in clusters). SSSE3 supports a byte-shuffle instruction 

which selects bytes from one vector register based on half-bytes (4-bit nibbles) from another. 

This instruction (PSHUFB, packed shuffle bytes) can be used to implement a 16-element 

lookup table, where each table element is at most one byte. This can be used to implement a 

parallel 4-bit population count in logic: 4 bits are sufficient to index into a sixteen-element 

LUT, and each LUT element stores the number of set bits for that element's LUT index. This 

leads to a parallel population count method.19 The input bit-vector to be counted is read in 

128-bit chunks into a vector register, interpreted as a set of sixteen bytes. This is then split 

into two registers: one containing the low nibble of each byte, and one containing the high 

nibble, shifted to the right. These nibbles are then used as indices into a 16-byte register 

containing a population count lookup table, using PSHUFB. Finally, adding the two shuffled 

results produces a population count for each byte in the input chunk. This can be 

accumulated over multiple input chunks, with some bookkeeping to avoid overflow of the 

individual byte counters by occasionally accumulating byte counters into wider 16- or 32-bit 

counters. Conceptually, this method is similar to the lookup-table based approach; however, 

it is able to count sixteen bytes in parallel and is able to do so with no memory accesses in 

the inner loop except the unavoidable loads of the input string.

Vectorized Parallel Reduction Method—If hardware or compiler support for SSE4 

PoPCNT or SSSE3 PSHUFB are not available or are slow, it is possible to implement a fast 

vectorized population count using a parallel bit reduction technique.20 Given instructions 

that are atomic on N-bit words (i.e., up to 32- or 64-bit words on typical modern integer 

hardware), this algorithm is able to count the number of set bits in an N-bit word in o(log N) 

steps using a divide-and-conquer strategy. At each stage in the recurrence, the algorithm 

sums up the population counts for two half-size chunks into one larger chunk. Figure 1 

shows the operation of the algorithm on an 8-bit byte. The base case for the recurrence is a 

single bit, which is its own population count. The first reduction step takes adjacent bits and 

sums them to get a 2-bit population count for a set of two bits. Next, adjacent 2-bit chunks 

are summed into a 4-bit result; finally, the same is done on each 4-bit half to get the 

population count for the entire byte. While CPUs do not typically have sub-byte arithmetic 

operations, these can be emulated using bit masks and shifts, as shown in the figure. To 

achieve maximum performance, we implement this parallel reduction algorithm at the byte-
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level, vectorized over sixteen simultaneous bytes in an SSE register. This reduces the 

operation count per SSE register (3 reduction stages for an 8-bit PoPCNT, versus 4 or 5 for 

16/32-bit), at the expense of requiring occasional external reduction stages to avoid 

overflowing individual byte counters.

Cache-Efficient Methods for Large Similarity Matrices

The previous section discussed logic-efficient techniques for the population count operation 

itself, to accelerate individual Tanimoto computations. However, large-scale similarity 

problems often have memory bandwidth as a bottleneck, rather than logic performance. As 

an example, consider the problem of taking the population count of a 2048-bit fingerprint 

(typical in size for Daylight fingerprints) using the SSE4 hardware PoPCNT instruction. 

Ignoring loop overhead, this would take 3 instructions (1 load, 1 PoPCNT, and 1 add into an 

accumulator) per 64-bit chunk. However, assuming perfect superscalar instruction 

scheduling by the CPU based on logic pipeline availability, these instructions can be issued 

in parallel, for a total latency of 32 clock cycles. A four-core, 2.5GHz CPU (a typical mid-

range CPU of today) could thus compute over 312 million such population counts per 

second (4×2.5 ×109/32) if arithmetic-limited. However, CPUs typically have memory 

bandwidth only on the order of 20GB/s per socket; only 78 million fingerprints per second 

could be read from memory at this rate. Thus, in the absence of data reuse, Tanimoto 

computation will be memory-bound. Note that this applies even more strongly for GPUs: 

while GPUs typically feature peak arithmetic performance 30-fold or more higher than the 

peak performance of a CPU, their memory bandwidth advantage is typically only on the 

order of 5-10×. Thus, on both CPUs and GPUs, making efficient use of caches to reuse data 

is essential to high-performance Tanimoto computation. We describe methods of data reuse 

in two algorithms to illustrate this principle.

Speculative computation in the leader algorithm—The leader clustering 

algorithm,21 given a set of molecules, a similarity distance, and a threshold, clusters the data 

set according to the following procedure:

1. Choose an unassigned molecule to be a cluster center

2. Compare all remaining unassigned molecules to the new center chosen in step 1

3. Assign to that center any molecules above the threshold similarity

4. If any molecules are still unassigned, return to step 1

Note that in the second step of the algorithm, all unassigned molecules must be streamed 

from memory through the processor to be compared against the current cluster center. If the 

similarity threshold is very high, then on most iterations, very few molecules will be 

removed from the active data set (most molecules will not be assigned). For large data sets 

(those which do not fit entirely within the cache) this means that almost the entire set of 

fingerprints will have to be streamed from memory into the processor on every iteration, 

making the caches useless and making memory bandwidth the limiting factor. In this case, a 

strategy which we call speculation can produce a significant speedup. The speculative leader 

clustering algorithm is parameterized by a degree of speculation D; for D = 1, it reduces to 

the standard leader method described above:
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1. Choose at most D unassigned molecules as candidate cluster centers

2. Compute all pairwise similarities among the ≤ D candidates; if any candidates are 

within threshold similarity to another candidate, assign them to the first candidate 

to which they are within threshold and remove them from the current pool of 

centers

3. Compare all unassigned molecules to the pool of centers chosen in step 2

4. For each molecule, if it is above the similarity threshold to any center in the pool, 

assign it to the first center for which it is above threshold

5. If any molecules remain unassigned, return to step 1

The speculative leader algorithm is optimized for the case in which most clusters will be 

small, so that on average, most molecules will end up being compared to many centers. It 

guesses (speculates) that given two centers, the database will have to be compared to both 

anyway. Thus, in step 3, when each database molecule is read in from memory, it is 

compared to all candidate centers in the pool. Because (given a reasonable size for D) the 

candidates can be stored in cache over the entire iteration, the cost of loading database 

fingerprints from memory is effectively amortized over the pool size. We have implemented 

and benchmarked the speculative leader algorithm for D = 2 to illustrate the performance 

benefit from reduced memory traffic relative to non-speculative (D = 1) leader clustering.

Cache-oblivious algorithms for similarity matrix construction—Large similarity 

matrix construction faces the same bandwidth limitation as the leader algorithm, but the 

greater regularity of its computational structure admits a more elegant solution to optimizing 

cache utilization. The family of methods known as cache-oblivious algorithms rely on 

recursive subdivision of a large problem into a hierarchy of smaller problems such that, at 

some level in the recursion, each small problem will fit completely into the processor cache. 

Careful design of the recursion order can then optimize cache usage between recursive 

subproblems (to prevent or delay eviction between subproblem evaluations). These 

algorithms are described as cache-oblivious because they are intended to reduce hardware-

specific parametrization: rather than having to be reoptimized for processors with 4MB vs 

2MB caches, the cache-oblivious method will naturally take advantage of a differing cache 

size through its recursive structure.

The computational structure of fingerprint matrix construction is similar to that of standard 

(cubic-complexity) matrix multiplication. Specifically, multiplication of M×K and K × N 
matrices takes o(MNK) time: one o(K) dot product must be computed for each of the M × N 
output elements. Similarly, computing an M × N similarity matrix on fingerprints of length 

K also takes o(MNK) time: o(K) work must be done for each output location to compute the 

Tanimoto on K words of fingerprint. Since K ≪ M and K ≪ N for typical large-scale 

similarity computations, similarity matrix construction is analogous to the multiplication of 

rectangular matrices.

Certain self-similar space-filling curves provide a natural hierarchy and iteration order to 

optimize locality in a cache-oblivious algorithm. In particular, Morton ordering, based on the 
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hierarchical Z-order curve, has been previously used to optimize cache locality in matrix 

multiplication,22 suggesting that it may also be useful for similarity matrices. Figure 2 

contrasts the order in which similarity matrix elements are computed in Morton order versus 

standard row-major order. The Z-shaped order in which each sub-block is computed ensures 

that at some level of recursion, the fingerprints for an entire tile will fit in memory. Other 

space-filling curves, such as the Hilbert curve, also have excellent cache-locality properties; 

however, the calculations required to implement the Z-order curve are particularly simple. 

Given a linear index i along the curve, the X and Y coordinates of the point are given by, 

respectively, the odd and even bits of the binary representation of i.

To understand the memory bandwidth impact of Morton ordering, consider Figure 2 and a 

hypothetical machine with enough cache space to store eight fingerprints (in actual usage, 

the cache would be much larger, but the similarity matrix would also be larger than 8×8). In 

row-major order, the machine would achieve no benefit from its cache between rows of the 

matrix: one cache slot would be used to store the row fingerprint; additional slots would be 

allocated for each column fingerprint in order, but since there are eight of these and only 

seven free slots in the cache, they will evict each other before they are reused in the next 

row. In contrast, in Morton order, each 4×4 block (e.g., the highlighted red block) could be 

processed entirely within the cache. Furthermore, this ordering is cache-oblivious. If the 

algorithm were instead run on a machine with half the cache size, 2×2 blocks would still 

benefit from having their fingerprints entirely within cache (e.g., the blue block). We have 

implemented a Morton/Z-ordered method to compute a similarity matrix and demonstrate its 

performance in the results.

Results

To demonstrate our high-performance CPU 2D similarity methods, we have implemented 

serial and parallel versions of similarity matrix construction and leader clustering.21 our 

similarity matrix code is derived from internal code developed at Vertex. Both our serial and 

parallel leader clustering programs are based on the serial leader code written by Liao and 

colleagues.5 We diverge from Liao et al. by using openMP, a multi-vendor standard for 

language-level parallelism in C and FoRTRAN, to parallelize the similarity matrix and 

leader methods, rather than Intel's Threading Building Blocks. Additionally, we have 

changed the representation of fingerprints in memory by coalescing all fingerprints into one 

large memory allocation and keeping counts of number of bits set in arrays separate from the 

fingerprint array to enhance memory locality. We tested the original Liao et al. serial CPU 

code on selected examples and found no significant performance difference versus our code 

using one thread with their 8-bit lookup table population count; thus, our results using the 

“LUT” method without the speculative algorithm stand in for comparison with the earlier 

CPU code.

Benchmarking Methodology

To compare performance between the CPU and GPU, we have also measured the 

performance of the Liao et al. GPU leader code on a pair of GPUs: an NVIDIA GeForce 

GTX 480 and a GeForce GTX 260. We made one change to the Liao code: standard CUDA 
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floating-point division (the ‘/’ operator) was replaced with IEEE 754-compliant round-to-

nearest floating-point division (__fdiv_rn). This change resolves the slight discrepancy 

between CPU and GPU Tanimotos noted by Liao and colleagues and had negligible 

performance impact in informal benchmarks.

Our test data for leader clustering are 100,000, 500,000, and 1,000,000-molecule subsets of 

the PubChem compound database,23 drawn uniformly at random. We generated 2048-bit 

path fingerprints using the oEGraphSim toolkit version 1.7.2.4 from openEye Scientific 

Software (Santa Fe, NM) using a maximum path distance of 5 and default atom and bond 

typing. For similarity matrix construction, we drew random sets of 32,768 and 131,072 

molecules from PubChem and used 1024-bit path fingerprints generated using the same 

settings as for the leader clustering.

Our benchmark machine was equipped with an Intel Core i7-920 CPU (2.66-2.93 GHz, 4 

cores, Nehalem architecture), 12 GB of DDR3-1066 memory, and two GPUs: an Nvidia 

GeForce GTX 480 (480 SP @ 1.40GHz, GF100/Fermi architecture) and a GeForce GTX 

260 (192 SP @ 1.08 GHz, GT200 architecture). CPU code was compiled using gcc and g+

+ 4.3 with the following performance-relevant compiler options: -fno-strict-aliasing -

fopenmp -o3 -ffast-math. We built GPU code using CUDA toolkit version 4.0 release 

candidate 2 and Thrust 1.3.0, using NVIDIA driver version 270.40.

Similarity Matrix Construction

To measure raw Tanimoto throughput, we benchmarked the performance of similarity matrix 

construction on 1024-bit fingerprints on the GPU vs the CPU, using the SSE4 algorithm 

both with and without Morton-order-based cache blocking. The benchmark program, 

modeling a compound selection exercise, took two sets of molecules: the “database” and 

“vendor” sets. It computes the database × vendor Tanimoto matrix and counts for each 

vendor molecule how many database molecules are within a threshold Tanimoto similarity. 

The threshold has a negligible effect on runtime; calculation of the Tanimotos dominates the 

computational expense. For the GPU code, only the count of molecules-within-threshold is 

transferred back to the CPU, not the entire Tanimoto matrix. We used the same set of 

molecules for both vendor and database sets in this benchmark.

Table 1 shows the result of the Tanimoto matrix benchmark. The GPU code, processing over 

one billion 1024-bit Tanimotos per second, is only around five times faster than the best 

CPU code, which uses SSE4 64-bit population count and Morton ordering on the matrix 

blocks.

The theoretical limit for the CPU, assuming perfect superscalar instruction scheduling to 

parallelize population counts, adds, and loads, is bound by the memory read pipeline. Every 

64 bits of fingerprint requires two memory reads (one for each fingerprint), and only one 

read may be issued per clock cycle.18 Thus, the theoretical limit (estimated using the method 

described in the section on cache optimization) is approximately 330 million Tanimotos/sec; 

we reach 65% of this limit.
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To estimate the GPU theoretical peak, we assume the inner block of the fingerprint 

calculation requires two load instructions (one for each fingerprint, because the GPU is a 

load-store architecture), a bitwise AND, a population count, and an integer add; these steps 

must be repeated 32 times for a 1024-bit fingerprint since the GPU has a 32-bit native word 

length. Based on GPU microbenchmarks,24 we estimate each operation as 1 clock cycle, 

except for population count, which takes 2 clock cycles; no operations overlap since the 

shader processor in the GTX 480 is not superscalar. The GTX 480 has 480 shader processors 

running at 1.401 GHz; the theoretical throughput is thus ≈ 3500 

million Tanimotos/sec. Therefore, the Liao GPU code (1157 million Tanimoto/sec) runs 

around 33% of theoretical peak.

Leader Clustering

To measure application-level performance of our fast Tanimoto methods, we modified the 

leader clustering code of Liao et al.5 to use openMP multithreading, several fast population 

count methods, and the speculative leader algorithm to optimize memory bandwidth.

Figure 3 shows the results of the leader clustering benchmark on representative database 

sizes and threshold values. Note that the plots show throughput (inverse runtime), 

normalized to the performance of the fastest GPU. The leftmost black bar, labeled “LUT 

(NS)”, represents the performance of the original leader algorithm reported by Liao et al., 

using the 8-bit lookup table population count and no speculation. Black and red bars show 

the performance of various CPU methods using one and four threads, respectively. The blue 

bars show the performance of the Liao GPU code on our two test GPUs.

Perhaps the most striking result is that on the small distance threshold cases (many clusters), 

the best CPU code is a factor of 20 to 40 faster than naïve single-threaded CPU code. 

Consequently, even on the faster of our GPUs, the GPU advantage in this problem versus a 

properly optimized CPU code is only a factor of two to four. This indicates that prior reports 

of over a hundredfold speedup do not accurately measure the GPU's true relative advantage. 

Indeed, on small problems (100k-500k molecules and large distance thresholds), the CPU 

methods are actually faster, as they have less overhead in GPU initialization and transfer.

The other interesting aspect of the plots in Figure 3 is the performance comparison among 

the high-speed CPU techniques. All of the methods are much faster than the LUT technique; 

the SSSE3 vectorized lookup table is competitive with the SSE4 hardware population count. 

Furthermore, the speculative leader algorithm significantly boosts performance, both for fast 

algorithms (SSE4 (S) vs SSE4 (NS)) and for slow ones (LUT (S) vs LUT (NS)): the 

performance increase for the SSE4 population count method is approximately 30-40%.

Conclusion

We have described a collection of techniques to enable high-performance 2D Tanimoto 

computation on conventional CPUs. Extensions to the x86 instruction set allow the 

computation of bit-vector Tanimotos 20-40x faster than with architecture-neutral CPU code 

used for this purpose. Additionally, we have described two algorithmic schemes to reduce 
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memory bandwidth, which is often the limiting factor (rather than logic performance) in 

large-scale similarity matrix and clustering applications. The combination of these methods 

is able to bring the 2D Tanimoto performance of a modern four-core CPU to within a factor 

of two to five of a high-end GPU for large-scale problems, and faster than a GPU for smaller 

problems. Indeed, the ready availability of six- and eight-core CPUs (rather than the 

relatively old four-core CPU used in this test) implies that GPUs and CPUs are near parity 

on this problem; perhaps within a factor of two. We have included the code used in this 

paper in the hopes that it will enable more efficient use of existing hardware for these 

industrially-significant calculations.

Our results suggest a performance/labor tradeoff in high-performance algorithms. Simple 

CPU methods (here exemplified by the lookup table-based population count) are very simple 

to code, but may have correspondingly low performance. Two possible paths for 

optimization are the use of better CPU methods or full-scale ports to the GPU, using CUDA 

or openCL. Historically, CPU optimization (in particular, parallelization) has been an 

arduous task. However, recent language-level constructs (in particular, OpenMP for 

language-level parallelism) make it much easier to exploit the performance of modern 

multicore processors.

Of course, as demonstrated in the population count section, reaching maximum performance 

on a CPU requires careful consideration of deep architecture-level details and significant 

work. Thus, for many problems, GPU coding is useful as a middle ground: GPUs require 

some architecture-awareness and knowledge of parallelism, but relatively simple ports can 

achieve large speedups relative to simple CPU code. GPU codes can serve as middle ground 

not only symbolically in terms of performance/labor tradeoff, but literally as well. Once a 

program has been ported to run well on the GPU (using many independent cores, coherent 

memory access, good use of shared memory caches, etc.), a direct execution of that program 

on the CPU will typically also perform better than the naïve CPU version. Language features 

make this simple: the biggest change in our parallel leader code from the Liao et al. serial 

code was a change in the memory layout of fingerprints, very similar to that used in their 

GPU code. Once this was done, making the program run over multiple cores was a single-

line change: the addition of an openMP parallel-for pragma. For GPU programs written in 

openCL, the situation is even simpler, as openCL runtimes for the CPU are widely available.

In a nutshell: GPU coding requires one to think of the hardware, but high speed CPU 

programming is the same; spending time optimizing CPU code at the same level of 

architectural complexity that would be used on the GPU often allows one to do quite well.

Algorithmic strategies based on bounding the range of possible similarity coefficients have 

been used to implement search primitives that are, in some cases, asymptotically more 

efficient than the methods implemented here (e.g., sublinear for query-vs-database 

search).10–12 This prior work does not negate the value of the methods we have presented 

here: we, like GPU implementors, focus on improvements in the constant factor hidden in 

Big-o notation. Our fast population count primitives are directly usable by codes 

implementing sublinear search (and should offer a speedup). Making sublinear search cache-

oblivious is an interesting direction for future research.
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We have included the code used in this paper in the hopes that it will enable more efficient 

use of existing hardware for the industrially-significant 2D Tanimoto calculation and serve 

as a demonstration for CPU optimization techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Parallel reduction population count of a byte in three stages. We wish to count the number of 

1-bits in the byte 11001001 (base-2). In the first reduction stage, pairs of adjacent bits are 

summed to form counts of the number of bits set in each two-bit chunk. Pairs of 2-bit chunks 

are then summed into 4-bit chunks, and the 4-bit halves are then summed into the final 8-bit 

population count 00000100 = 4 bits set (base 10). These sub-byte operations can be 

implemented in software using shifts, masks, and bytewise addition, as shown in the 

equations in the right column.
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Figure 2. 
Row-major-order versus Morton order for similarity matrix construction
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Figure 3. 
Leader clustering benchmark: throughput (1/runtime) normalized to performance of 

GeForce GTX480 GPU. Black bars are single-threaded CPU methods; red bars are CPU 

methods with 4 threads; blue bars are the Liao et al. GPU code run on a GeForce GTX 480 

or GTX 260 GPU. CPU methods suffixed with (NS) use the standard leader algorithm; those 

suffixed with (S) use the speculative leader algorithm. Key to CPU methods: LUT = Liao et 

al. 8-bit lookup table; SSE2 8b = Bytewise parallel reduction using SSE2; SSSE3 = 

Vectorized 4-bit lookup table using SSSE3; SSE4 = SSE4 hardware PoPCNT instruction.
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Table 1

Similarity matrix construction throughput for CPU (SSE4 population count algorithm with row-major and 

Morton-order) vs GPU (GeForce GTX 480), 1024-bit fingerprints. Similarity matrix for N molecules had 

shape N×N.

# molecules Method Time (s) Throughput (Tan/s * 106)

SSE4 6.36 174.3

32,768 SSE4-Morton 5.2 214.8

GPU 1.19 1088

SSE4 124.1 139.4

131,072 SSE4-Morton 79.98 217.0

GPU 15.6 1157

J Chem Inf Model. Author manuscript; available in PMC 2016 April 21.


	Abstract
	Introduction
	Overview of 2D Similarity
	Fast Computation of the 2D Tanimoto
	Fast Population Count
	Vectorized Lookup Table Method
	Vectorized Parallel Reduction Method

	Cache-Efficient Methods for Large Similarity Matrices
	Speculative computation in the leader algorithm
	Cache-oblivious algorithms for similarity matrix construction


	Results
	Benchmarking Methodology
	Similarity Matrix Construction
	Leader Clustering

	Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1

