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Abstract
The SCISSORS method for approximating chemical similarities has shown excellent empirical
performance on a number of real-world chemical data sets, but lacks theoretically-proven bounds
on its worst-case error performance. This paper first proves reductions showing SCISSORS to be
equivalent to two previous kernel methods: kernel principal components analysis and the rank-k
Nyström approximation of a Gram matrix. These reductions allow the use of generalization
bounds on these techniques to show that the expected error in SCISSORS approximations of
molecular similarity kernels is bounded in expected pairwise inner product error, in matrix 2-norm
and Frobenius norm for full kernel matrix approximations, and in RMS deviation for
approximated matrices. Finally, we show that the actual performance of SCISSORS is
significantly better than these worst-case bounds, indicating that chemical space is well-structured
for chemical sampling algorithms.

Introduction
The SCISSORS method is a technique for accelerating chemical similarity search by
transforming Tanimoto similarity scores to inner products, computing a metric embedding
for a small “basis set” of molecules that optimally reconstructs the given inner products, and
then projecting remaining non-basis “library” molecules into this vector space.1 SCISSORS
similarities are then computed as Tanimotos on these embedded vectors. Significant
speedups can be achieved for certain similarity measures (those which are expensive to
compute, and have highly concentrated eigenvalue spectra) for repeated queries into a static
database: the work done to compute vector projections for each database molecule can be
amortized easily across a large number of queries. In the original SCISSORS paper, Haque
and Pande report that for a database of approx. 57,000 molecules, a basis set of 1,000
molecules and embedding dimension of 100 was sufficient to accurately reproduce the shape
similarity over the whole database.

The embedding used in SCISSORS is computed by first calculating the pairwise inner
product matrix G between all pairs of basis molecules. G is then decomposed into
eigenvectors V and eigenvalues along the diagonal of a matrix D; the vector embedding for
the basis molecules lie along the rows of matrix B in the following equation:

(1)
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The rank of the approximation can be controlled by ordering the eigenvalues in order of
decreasing value, setting all eigenvalues below a certain desired count to zero, and
truncating these zero dimensions in the resulting vectors.

Figure 1 shows an example of SCISSORS applied to a molecular similarity kernel. In this
example, SCISSORS is used to approximate the intersection size (SMILES overlap), as used
for the LINGO similarity measure,2 between two molecules from the Maybridge Screening
Collection: (S)-mandelate (molecule 1) and (2R)-3-(4-chlorophenoxy)propane-1,2-diol
(molecule 2). The true intersection sizes, as computed by the SIML implementation of
LINGO,3 are shown in the first row: between molecule 1 and itself, molecule 2 and itself,
and the two molecules against each other. We then constructed a basis set of molecules from
3,072 isomeric SMILES strings drawn at random from the Maybridge Screening Collection,
and embedded molecules 1 and 2 into SCISSORS vector spaces of varying dimensionalities:
64, 256, and 1,024. The three SCISSORS data rows in the table show the approximated
values of each intersection, as a function of embedding dimension. As the dimension grows,
the approximation error (difference between LINGO true value and SCISSORS-
approximated value) decreases. Our objective in this paper is to derive theoretical bounds on
the magnitude of this error.

A number of methods used in chemical informatics are mathematically similar to
SCISSORS. In particular, the “molecular basis set” approach taken by Raghavendra and
Maggiora4 is very similar. The Raghavendra and Maggiora (RM) method skips Tanimoto-
to-inner product conversion (treating Tanimotos as inner products directly), does not restrict
the dimensionality of the vector expansion, and is derived using a different justification, but
otherwise is very similar. In particular, both this method and SCISSORS are variants of
kernel principal components analysis.

While the RM method and SCISSORS in particular seem to have good empirical
performance, they lack theoretically-rigorous guarantees on their approximations. In this
paper, we derive theoretical guarantees on the SCISSORS approximation error by reducing
SCISSORS to previously-described kernel methods from machine learning.

Preliminaries
SCISSORS as a kernel method

The key insight of the SCISSORS technique is that molecular similarity measures, after
appropriate transformation, can be treated as “kernel functions” taking pairs of molecules to
scalar values that can be interpreted as inner products. Kernels are mathematical objects
widely used in machine learning which can be used to adapt linear machine learning models
(e.g., support vector machines) to nonlinear spaces. Informally, a kernel function is one
taking two “objects” (often vectors, but in the chemical context molecules, strings, or
fingerprints) and returning a non-negative real scalar satisfying particular properties of the
real dot product (including symmetry and positive-semi-definiteness). While molecular
similarity scores such as Tanimotos are not in themselves inner products or the result of
kernel functions, they are often constructed from intermediate quantities which are. For
example, the set intersection in LINGO2 is a kernel function, and the shape overlap volume
from Gaussian shape overlay5 is approximately a kernel (non-negative and symmetric, but
not positive-definite).

The advantage of interpreting SCISSORS as working on kernel functions or inner products
is that it allows leveraging the body of machine learning literature on kernel methods. The
SCISSORS pipeline can be roughly segmented into the following operations:

1. Convert Tanimotos to inner products (basis-vs-basis or library-vs-basis)
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2. Compute a vector embedding on the inner products (by eigendecomposition or
least-squares)

3. Compute vector-space inner products (standard dot product in ℜN)

4. Convert vector-space inner products to Tanimotos using standard vector Tanimoto
equation

Steps 1 and 4 in this pipeline involve ratios of inner products (or kernel values), and as such,
introduce nonlinearities into the analysis. However, if one assumes that exact kernel values
are given or easily obtained (as demonstrated for the shape overlap volume in1), and that the
goal is to directly approximate these kernel values rather than the Tanimoto, then
SCISSORS directly resembles a typical kernel method. Therefore, in this paper, we will
consider only the error in these inner-product-space stages, rather than error introduced at
the Tanimoto stages. Accordingly, we replace the notion of a “molecular similarity
function” with that of a “molecular similarity kernel”, which can be thought of as the
composition of a similarity function with the Tanimoto-to-inner-product operation from
SCISSORS.

The following lemma will be useful in demonstrating the equivalence of SCISSORS to
various other kernel methods. Proof is provided in the Supplemental Information.

Lemma 1 (SCISSORS library vectors are projections onto eigenvectors of the
basis inner product matrix)—Given an N × N SCISSORS basis inner product matrix
(that is, a similarity matrix post-Tanimoto-to-inner-product conversion) K. Let the
eigenvalues (resp. eigenvectors) of K be denoted λi and Vi, with eigenvalues sorted in
descending order of value. Let the matrix of all eigenvectors be named V = [V1V2 ··· VN].
The SCISSORS vector w for a new molecule with library-vs-basis inner product vector L, in
d dimensions, is defined by the expression:

(2)

Note that Lemma 1 suggests a method to compute SCISSORS vectors that is distinct from,
but equivalent to, the least-squares calculation specified by Haque and Pande.1 Given a
vector L of basis-vs-library inner products and a matrix M = VD1/2 of basis SCISSORS
vectors, the original SCISSORS calculation suggested solving the least-squares equation Mx
= L for the SCISSORS vector x of the new molecule. This lemma shows that the same
problem is solved by the matrix multiplication D−1/2VT L. This provides a computational
shortcut for the projection of large numbers of library molecules: the projection matrix
D−1/2VT can be computed once for a basis set; after library-vs-basis Tanimotos have been
computed and converted to inner products, the SCISSORS vector can be computed by a
simple matrix multiplication rather than least-squares.

Assumptions
The analysis in this paper rests on the following assumptions:

• SCISSORS is given molecular similarity kernel values, not Tanimotos, to analyze.
While the conversion from Tanimoto to inner product will introduce distortion
(particularly if different molecules x and y have very different values of κ(x, x) and
κ(y, y) for similarity kernel κ, we will not consider this distortion here.
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• It is assumed that the similarity kernel κ is symmetric positive semidefinite (SPSD).
Similarity kernels that are not SPSD are not Mercer kernels and some proofs will
fail in the presence of negative kernel eigenvalues. However, given non-SPSD κ,
the results of this paper can still be applied to a modified kernel κ′, the nearest
SPSD approximation to κ. If κ is symmetric but indefinite, then certain divergence
terms can be easily calculated between the kernel matrices K and K′ induced by κ
and κ′:

– ||K − K′||2 = absolute value of the negative eigenvalue with largest
magnitude

–
, where λ<0 are the negative eigenvalues

• It is assumed that kernel values are exactly computable. In particular, the case in
which kernel values themselves are subject to noise or inexactitude is not
considered here.

Under these assumptions, it is possible to bound the additional error made by SCISSORS in
choosing a small random basis rather than using the eigendecomposition of the full kernel
matrix over the entire library. Two different types of bounds will be shown in this paper,
arising from reductions to two different kernel methods: kernel principal components
analysis, and the rank-k Nyström approximation.

Reduction of SCISSORS to Kernel PCA
Overview of Kernel PCA

Kernel principal components analysis6,7 is a generalization of traditional principal
components analysis from the data space to a feature space defined by a Mercer kernel
function κ. Given a sample of N data points, kernel PCA computes up to N directions of
maximum variance of the data, in the kernel’s feature space. Points can then be projected
into this N-dimensional subspace by a projection of their kernel values against the original
(training) data points; thus, kernel PCA can be considered to perform a metric embedding of
data points into a subspace of the feature space defined by a given kernel.

Similar to traditional (linear) PCA, kernel PCA can be preceded by a centering step, in
which the data are centered in feature space; this ensures that the data mean is not reflected
in the recovered coordinates. However, the uncentered case has relevance to SCISSORS, so
we now proceed to derive the kernel PCA algorithm without data centering (following the
approach of Scholköpf6).

Derivation of kernel PCA
Given a set of data points xi, i ∈ [1, ···, ℓ], and a Mercer kernel κ(x, y), defined by κ(x, y) =
〈Φ(x), Φ(y)〉 for some feature-space projection Φ. Consider the feature covariance matrix C̄:

Let the eigenvalues and eigenvectors of C̄ be named λk and Vk respectively such that ∀k λV
= C̄V. All such Vi must lie in the span of Φ(x1) ··· Φ(xℓ). Thus the following system is
equivalent:
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and there exist a1 ··· aℓ such that

Defining matrix Ki j = 〈Φ(xi), Φ(xj)〉 and vector α = [a1 ··· an]T we get ℓλKα = K2α, so we
solve the eigenvalue problem ℓλα = Kα. Solutions λk, αk correspond to eigenvalues/vectors
of the kernel matrix.

We normalize the resulting solutions by requiring that the feature-space eigenvectors (Vk) be
unit magnitude. This implies:

We can compute the projection of a new data point x onto the feature-space correlation
matrix eigenvectors Vk by:

So for d eigenvectors, the projected KPCA coordinate vector w is:

Equivalently:

Reduction Proof
We now demonstrate that SCISSORS is equivalent to kernel PCA performed without data
centering.

As proven in Lemma 1, the SCISSORS vector w corresponding to a library molecule is
defined by weighted inner products between the eigenvectors of the kernel matrix and the

library-versus-basis inner product vector L. Define new vectors . Recall that the
kernel matrix and vector L are already identical between methods, and both  and αi are
defined to be eigenvectors of the kernel matrix. To prove equivalence, all that is left to prove
is that the SCISSORS projection vectors  have the same normalization as the KPCA αi;
KPCA requires λk 〈αk, αk〉 = 1.
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Proof—We hypothesize that . Then:

Reduction of SCISSORS to the Nyström Rank-k Approximation
Overview of the Nyström Method

In many large-scale machine learning methods, the computation and eigendecomposition of
very-large scale kernel matrices is a bottleneck, as the time complexity of
eigendecomposition scales as O(N3). Williams and Seeger introduced a method, based on
the Nyström approximation from integral equation theory, to compute a low-rank
approximation to a large kernel matrix, based on computing approximate eigenvectors for
the entire matrix based on a random sample of a small number of points.8 Precisely, using
notation from Drineas et al.,9 given an n × n kernel matrix K, a desired rank k, and a number
of basis elements ℓ, the Nyström approximation computes K̃k, a rank-k approximation to K
by the following procedure:

Algorithm Sketch 1 (Nyström approximation)—Given a kernel matrix K ∈ ℝn× n,
choose ℓ columns (equivalently, ℓ basis/landmark input points) [b1, b2, ···, bℓ] to obtain
matrices C and W:

Let Wk be the best rank-k approximation to matrix W and  be the Moore-Penrose
pseudoin-verse of Wk. Then the rank-k Nyström approximation to matrix K is defined by

.

Preliminaries
Consider a SCISSORS computation of full pairwise similarity over some large set of
molecules ℳ. Partition this set, by random selection without replacement, into a basis set ℬ
and a library set ℒ. Then, the matrix W in Algorithm 1 corresponds to the SCISSORS basis
inner-product matrix on ℬ; similarly, C is an aggregation of transposed library-vs-basis
inner-product vectors. To prove the equivalence of SCISSORS and the Nyström method, we
will demonstrate that the inner-product matrix computed by the SCISSORS-approximated
vectors is identical to that computed by the Nyström method. It is sufficient to show (by
Lemma 1) that , the Nyström-approximated Gram matrix, factorizes as  where:
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(3)

Sk is the matrix with library (and basis) vectors along the rows, so  is the SCISSORS-
approximated Gram matrix. The following lemma is helpful for the proof. Proof of the
lemma is provided in the Supplemental Information.

Lemma 2 (The pseudoinverse of Wk)— , where V ̄ = [V1V2 ··· Vk], the
matrix form from the first k columns of the basis matrix eigenvectors, and

, the diagonal matrix of the reciprocals of the first k eigenvalues
of the basis matrix.

Final Reduction

We must show that  is equal to  where .

Proof

The expected error in individual SCISSORS inner products is bounded with
high probability
Statement of the theorem

Theorem 1 (Bounded expected inner product error)—Given a chemical similarity
kernel κ defined over pairs of molecules from some distribution D, such that κ(x, x) < R2 for
some positive real constant R for all x ∈ D. Construct a SCISSORS basis set from a random
sample S of ℓ molecules drawn uniformly at random from D. Denote by  the SCISSORS-
approximated kernel of k dimensions from basis set S. Then, with probability at least (1 −
δ)2, the expected error in SCISSORS approximation, over pairs of independently-chosen
molecules x, y ∈ D, is bounded:

(4)

Where si are the basis molecules and λ̂>d(S) is the sum of the eigenvalues of the basis matrix
not used in SCISSORS:
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Proof Overview
The proof of Theorem 1 relies on a bound on the generalization error of kernel PCA
projections due to Shawe-Taylor.10 This theorem bounds the expected residual from
projecting new data onto a sampled kernel PCA basis; we extend this proof to bound the
expected error in inner products from projecting two points onto a kernel PCA basis. Then,
the translation to SCISSORS follows trivially from the reduction of SCISSORS to kernel
PCA. Because the full proof is lengthy, it has been included in the Supplemental
Information; this section presents a sketch.

The proof sketch relies on the following definitions from the Shawe-Taylor work:10

• V ̂k is the space spanned by the first k eigenvectors of the sample correlation matrix

of a sample of vectors S;  is the orthogonal complement to this space.

• λk is the kth true eigenvalue of the kernel operator κ, computed over the entire
distribution generating our data.

• λ ̂k is the kth empirical eigenvalue (i.e., the kth eigenvalue, in descending order of
value, of the kernel matrix on S).

• λ>k is the sum Σi>k λk, and similarly for λ ̂>k.

•
The residual  is the projection of x onto the space .

We make use of the following theorem:

Theorem 2 (Theorem 1 from10)—If we perform PCA in the feature space defined by
kernel κ, then over random samples of points S s.t. |S| = ℓ (ℓ-samples), for all 1 ≤ k ≤ ℓ, if
we project new data onto the space V̂k, the expected squared residual is bounded by the
following, with probability greater than 1 − δ:

(5)

Where the support of the distribution is in a ball of radius R in feature space.

Using Theorem 1, it is possible to compute a bound on the projection error for each of the
two points. The proof then bounds the variance of the resulting inner product error, and uses
this to bound the overall error.

The error in SCISSORS-approximated Gram matrices is bounded in 2-norm,
Frobenius norm, and RMS deviation
Statement of Theorems

Given a chemical similarity kernel κ and a set of n input molecules drawn from some
probability distribution such that the κ(x, x) < R2 for all molecules x. Let the true kernel
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matrix be denoted K and the best possible rank-k approximation to K be denoted Kk.
Compute a SCISSORS-approximated kernel matrix K̃ based on a size-ℓ uniform random
sample of these vectors and a k-dimensional vector expansion. Then the following three
theorems hold:

Theorem 3 (Bounded error 2-norm)—With probability at least 1 − δ, the error in the
SCISSORS kernel matrix is worse than the lowest possible error from a rank k-
approximated kernel matrix by at most a bounded amount in 2-norm:

Theorem 4 (Bounded error Frobenius norm)—With probability at least 1 − δ, the
error in the SCISSORS kernel matrix is worse than the lowest possible error from a rank k-
approximated kernel matrix by at most a bounded amount in Frobenius norm:

Theorem 5 (Bounded RMS error)—With probability at least 1 − δ, the elementwise
root-mean-square (RMS) error in the SCISSORS kernel matrix is worse than the lowest
possible RMS error from a rank k-approximated kernel matrix by at most a bounded
amount:

Proof Overview
The proofs of Theorems 3, 4, and 5 rely on the following theorem, due to Talwalkar11

bounding the error of the rank-k Nyström approximation of a Gram matrix:

Theorem 6 (Theorem 5.2 from11)—Let K̃ denote the rank-k Nyström approximation of
an n × n Gram matrix K based on ℓ columns sampled uniformly at random without
replacement from K, and Kk the best rank-k approximation of K. Then, with probability at
least 1 − δ, the following inequalities hold for any sample of size ℓ:

Where:

• Kmax = maxi Kii

•  is the maximum distance implied in 

• β(ℓ, n) = 1 − (2max{ℓ, n − ℓ})−1.
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For SCISSORS, we are particularly interested in the case in which ℓ≪n, so 
and .

Proof of Theorems 3, 4, and 5
Given a kernel κ and a distribution of input vectors such that their distribution in the feature
space implied by κ is D, and that the support of D is contained within a ball of radius R in
feature space. Then, Kmax in the above equations is bounded above by R2 and .
Note that this boundedness assumption holds for any finite sample of vectors from D, as we
can construct an empirical distribution of vectors from the sample, which will be guaranteed
to be of bounded radius.

Theorems 3 and 4 immediately follow from theorem 6 by applying the reduction of
SCISSORS to the Nyström method, the definitions of Kmax and , and the assumption
above that ℓ ≪ n. Theorem 5 requires one additional step:

Lemma 3—Given an n × n matrix M, the root-mean-square value of each element of M,
RMS{M} is related to the Frobenius norm of M, ||M||F by the relationship:

Proof

Then Theorem 5 follows by multiplying each term of Theorem 4 by 1/n.

Discussion
Reduction to existing kernel methods makes it possible to prove rigorous probabilistic
bounds on the approximation error made by SCISSORS under fairly mild restrictions on the
input molecule distribution. However, because very few assumptions are made about the
input distribution, the resulting bounds end up being very loose. For example, consider the
added RMS error from basis-sampling (Theorem 5) under conditions similar to those in
Figure 1, if we were to approximate 50,000 molecules in Maybridge rather than just two.
Specifically, consider 256 dimensions, 3,000 basis molecules, and a desired confidence of 1
− e−3 ≈ 95%: n = 50, 000, k = 256, l = 3, 000, δ = e−3:

So with 95% confidence, the RMS kernel error will be less than 1.8 times the maximum
value of the kernel. Looking back at Figure 1 shows that this is clearly a very loose result:
1.8 times the largest kernel value in the source data is an RMS error of 50.4 (1.8 × 28),
whereas we achieve much smaller errors on the (randomly chosen) molecules given.
However, it is notable that this result holds with no assumptions about the distribution of
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input molecules, except boundedness in the kernel values. The performance of SCISSORS
on real-world data sets is significantly better than this worst-case estimate (see for example,
the statistics on the full Maybridge data set in the original SCISSORS paper1), indicating
that the distribution of molecules in the similarity space considered is somehow friendly to
sampling-based algorithms.

Conclusion
Sampling algorithms, both kernel PCA-based like SCISSORS and the Raghavendra/
Maggiora method4 and non-PCA based diversity selection and clustering methods are
widespread in chemical informatics. In this paper we have provided theoretical performance
guarantees on the approximation error arising from dataset sampling and rank-reduction of
chemical kernels. Our results relate chemical dimensionality reduction algorithms to well-
known methods in machine learning. In particular, the fact that the worst-case bounds are
significantly looser than the real-world performance of sampling algorithms suggests that in
practice, many chemical kernels are representable in few dimensions and that chemical
space is well-structured, such that sampling is a viable strategy.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Example of SCISSORS applied to a molecular similarity kernel (LINGO intersection size).
Table indicates LINGO true kernel value and SCISSORS-approximated kernel value for
various dimensionalities.
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