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Abstract
Applications in structural biology and medicinal chemistry require protein-ligand scoring
functions for two distinct tasks: (i) ranking different poses of a small molecule in a protein binding
site; and (ii) ranking different small molecules by their complementarity to a protein site. Using
probability theory, we developed two atomic distance-dependent statistical scoring functions:
PoseScore was optimized for recognizing native binding geometries of ligands from other poses
and RankScore was optimized for distinguishing ligands from nonbinding molecules. Both scores
are based on a set of 8,885 crystallographic structures of protein-ligand complexes, but differ in
the values of three key parameters. Factors influencing the accuracy of scoring were investigated,
including the maximal atomic distance and non-native ligand geometries used for scoring, as well
as the use of protein models instead of crystallographic structures for training and testing the
scoring function. For the test set of 19 targets, RankScore improved the ligand enrichment
(logAUC) and early enrichment (EF1) scores computed by DOCK 3.6 for 13 and 14 targets,
respectively. In addition, RankScore performed better at rescoring than each of seven other
scoring functions tested. Accepting both the crystal structure and decoy geometries with all-atom
root-mean-square errors of up to 2 Å from the crystal structure as correct binding poses, PoseScore
gave the best score to a correct binding pose among 100 decoys for 88% of all cases in a
benchmark set containing 100 protein-ligand complexes. PoseScore accuracy is comparable to that
of DrugScoreCSD and ITScore/SE, and superior to 12 other tested scoring functions. Therefore,
RankScore can facilitate ligand discovery, by ranking complexes of the target with different small
molecules; PoseScore can be used for protein-ligand complex structure prediction, by ranking
different conformations of a given protein-ligand pair. The statistical potentials are available
through the Integrative Modeling Platform (IMP) software package (http://salilab.org/imp/) and
the LigScore web server (http://salilab.org/ligscore/).
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INTRODUCTION
Molecular recognition between proteins and ligands plays an important role in many
biological processes, such as membrane receptor signaling and enzyme catalysis. Predicting
the structures of protein-ligand complexes and finding ligands by virtual screening of small
molecule databases are two long-standing goals in molecular biophysics and medicinal
chemistry.1, 2 Solving both problems requires the development of an accurate and efficient
scoring function to assess protein-ligand interactions.

Much effort has been devoted to developing scoring functions for modeling protein-ligand
interactions.3–12 These scoring functions can be divided into three categories13: potential or
free energy functions based primarily on a molecular mechanics force field14–26,
knowledge-based statistical potentials based on distributions of intermolecular features in
large databases of protein-ligand complex structures27–40, and empirical-regression
functions fitted to experimental binding constants of a training set of protein-ligand
complexes.41–50

Energy functions based on molecular mechanics force field generally estimate the binding
affinity by summing van der Waals, electrostatic, desolvation, and/or entropy terms. The
weights for various terms are sometimes obtained by fitting the energy function to
experimental binding constants for a training set of protein-ligand complexes. Because of
the rugged energy landscape, minimization is often required prior to energy evaluation. The
identification of the global minimum in the energy landscape generally requires extensive
conformational and configurational sampling.

Statistical potentials are based on distributions of intermolecular structural features extracted
from large databases, such as Protein Data Bank (PDB)51 and Cambridge Structural
Database (CSD).52 Statistical potentials have been widely used because of their relative
simplicity, accuracy, and computational efficiency.53–98 During the last decade, several
statistical potentials have been developed to describe protein-ligand interactions, such as
PMF,27 SMoG2001,33 and DrugScore.30, 35 Still, many aspects of statistical potentials for
protein-ligand interactions have not yet been systematically explored.

Here, we are interested in the following questions. First, can a statistical potential be used
for distinguishing between ligands and nonbinding molecules, in addition to recognizing
native binding modes? Second, can the accuracy of a statistical potential be improved by
adding “negative” information, such as geometric decoys of the true ligands? Third, what is
the accuracy of scoring complexes with modeled protein structures relative to that with
crystallographic structures? Finally, what are the differences between the reference states for
protein-ligand and protein-protein statistical potentials?

We describe two distance-dependent atomic statistical potentials derived from PDB - one for
predicting the binding pose of a known ligand (PoseScore), and the other one for identifying
ligands through virtual screening (RankScore). We proceed in three steps. First, distance
distributions for the protein-ligand atom-type pairs were calculated from a sample of native
complex structures (structures in the training and testing sets are excluded). Second, the
distance-dependent atomic potential was derived from these distance distributions, and
trained to find the optimal set of parameters for binding pose prediction (PoseScore) and
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ligand enrichment (RankScore), respectively. Third, PoseScore and RankScore were
evaluated with the aid of two widely used docking benchmarks.11, 99 The performance of
PoseScore and RankScore was compared to that of a number of other scoring functions.

We begin by describing the theory used to derive PoseScore and RankScore, criteria to
evaluate the accuracy of each statistical potential, as well as the procedures and data sets
used to derive, train, and test the statistical potentials (Methods). We then describe the
accuracy of PoseScore and RankScore for docking against crystal structures of proteins in
comparison to 14 and 7 other scoring functions, respectively (Results). We proceed by
describing (i) the effect of including both native and non-native conformations of small
molecules in the derivation of the statistical potentials, (ii) the accuracy of scoring against
modeled protein structures, as well as (iii) the distribution of atomic protein-ligand
distances. Finally, we discuss the implications of the results, relative successes and failures,
and answer the questions raised above (Discussion and Conclusions).

METHODS
Theory

From joint pdf to distance pdf—An atomic distance-dependent, statistical potential for
protein-ligand complexes can be defined as the negative logarithm of the joint probability
density function (pdf) of the atomic Cartesian coordinates, as suggested in a previous
study100:

(1)

where m is the number of atoms in the protein and x⃗i are the Cartesian coordinates of protein
atom i ; n is the number of atoms in the ligand and y⃗j are the Cartesian coordinates of ligand
atom j. p (x⃗1, x⃗2, …, x⃗m, y⃗1, y⃗2, …, y⃗n) is the probability that the structure defined by the
Cartesian coordinates (x⃗1, x⃗2, …, x⃗m, y⃗1, y⃗2, …, y⃗n) is the native structure. The joint pdf can
be approximately modelled by a normalized product of pair pdfs:

(2)

where p (x⃗i) and p(y⃗j) are single-body pdfs of protein atom i and ligand atom j; a pair pdf
p(x⃗i, y⃗j) depends only on the types and positions of the two atoms.

Next, we relate the pair pdf p (x⃗i, y⃗j) for an atom pair between a protein atom i of atom type
P and a ligand atom j of atom type L to the distance pdf:

(3)
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where  is the distance distribution for the atom-type pair (P,L), derived directly
from a sample of native complex structures. We define a “reference state” as uncorrelated
positions of atoms of types P and L in a finite sphere of an appropriate size and centered at
L. Combining Equations 1–3, we obtain:

(4)

In this formulation, the statistical potential for the protein-ligand complex is a sum of three
terms, corresponding to the protein, ligand, and protein-ligand atomic distances. Here, we
focus only on the protein-ligand term:

(5)

Distance distribution from native structures—Given a sample of native complex
structures, the distance distribution for a pair of atom types (P,L) can be estimated as:

(6)

where N (rP,L) is the number of observations of the pair (P,L) in a particular distance bin (r,
r + Δr]. rmin and rmax are the minimal and maximal distance bounds of the distribution,
respectively. To minimize the impact of the finite sample size on the accuracy of pnat (rP,L),
we obtain a more accurate estimate of the distance distribution for a pair of atom types (P,L)
by linearly combining pnat (rP,L) with the reference state pref (rP,L)101, 102:

(7)

where wref is an adjustable parameter to be optimized by training. For a pair of atom types
(P,L), the reference state is the distance distribution derived from all conformations of a
protein-ligand complex.

Reference state—The calculation of pref (rP,L) is not straightforward, because it is not
possible to enumerate all conformations of the protein-ligand complex. We approximated
the reference state by deleting atom type labels in native complex structures:

(8)
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where  is the number of all pairs of atom types in a particular distance bin (r, r +
Δr]. Because the reference state in Equation 8 is based on the native complex structures, it
may still be different from the distribution for the native and all non-native structures.
Therefore, we also adjust the reference state by linearly combining it with the uniform
distribution:

(9)

where wuni is an adjustable parameter to be optimized by training, and Nbin is the total
number of distance bins between rmin and rmax. Considering Equation 5, 7, and 9, the
statistical potential for protein-ligand interactions is:

(10)

Parameters of the statistical potential—The bin size Δr is set to 0.1 Å. The minimal
distance boundary rmin is set to 2 Å. The protein-ligand score for distances of less than 2 Å
is calculated by a linear interpolation between Smax = 20.0 and S (rP,L) in the distance bin
(2.0,2.1]. rmax is an adjustable parameter to be optimized by training.

Atom types for proteins and ligands—The protein atom types were adapted from the
DOPE scoring function,100 resulting in 158 residue-dependent atom types for non-hydrogen
atoms . 26 atom types were used to represent non-hydrogen atoms in small molecules,
derived from the SYBYL software (Tripos, Inc.) (Table 1).

Assessment of the scoring accuracy
Ligand pose—The geometric accuracy of a ligand pose was measured by its all-atom
root-mean-square-deviation (RMSD) from the crystal structure. The correct binding pose of
a ligand was considered successfully recognized if the all-atom RMSD value of the best-
scored pose is less than 2 Å.11, 30, 35, 39, 40

Ligand rank—The accuracy of ranking ligands in molecular docking screens was
evaluated by the enrichment for the known ligands among the entire docking library, as
quantified by the area under the curve (logAUC) of the enrichment plot.103 A random
selection of compounds from the mixture of actual ligands and decoys yields a logAUC of
14.5; a mediocre selection that picks twice as many ligands as a random selection has
logAUC of 24.5; a highly accurate enrichment that produces ten times as many ligands than
a random selection has logAUC of 47.7. For each compound, the DOCK-produced complex
model104, 105 was re-ranked by the tested scoring function. The ligand enrichment was
quantified using the area under the enrichment curve with the x-axis on the logarithmic scale
(logAUC),103, 106 For each protein target, the ligand enrichment for the DOCK-produced
ranking was compared to that generated by re-ranking the DOCK list with the statistical
potential. A difference larger than 3 logAUC units between the two enrichment values was
defined to be significant; otherwise the enrichment values were considered to be
comparable. The value for this significance cutoff was chosen subjectively, based on a
previous study.103
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PoseScore and RankScore
Native complex structures—8,885 X-ray structures of protein-ligand complexes used
for the calculation of PoseScore and RankScore were selected from the dataset used in
previous automated docking screens.51, 106 Five conditions were applied: 1) only
crystallographically determined complexes with a resolution better than or equal to 2.5 Å
were used; 2) the protein receptor had to contain more than 50 non-hydrogen atoms; 3) the
ligand had to contain at least one carbon or nitrogen atom; 4) at least one pair of protein-
ligand non-hydrogen atoms had to have a distance between 2.0 and 4.0 Å; 5) no overlap
between the complex structures (PDB entries)in the training and testing sets was allowed.

Training and testing of PoseScore—The training set used for PoseScore was
constructed from the Astex diverse set that contains 85 crystallographically determined
protein-ligand complexes.107 DOCK was employed to generate ligand poses for all
complexes. In 70 out of the 85 cases, 100 poses were generated for the ligand, containing at
least one pose with an all atom RMSD error of less than 2.0 Å (near-native solution). The
training set (Astex_DOCK, Table S1) was formed by these 70 complexes. For each
complex, Astex_DOCK included the crystal structure of the protein, the crystal binding pose
of the ligand, and the 100 docking poses of the ligand (geometric decoys).

The Astex_DOCK training set was used to find optimal values for the three adjustable
parameters in PoseScore, including the maximal distance boundary rmax, and the two
smoothing parameters wref and wuni. rmax was optimized over 6 discrete values, including 4,
6, 8, 10, 12, and 14 Å. The search for optimal values of wref and wuni ranged from 0.0 to 0.9
with an increment of 0.1. First, we fixed wuni at 0.0 and scanned rmax and wref. The
statistical potential was most accurate when rmax was 6 Å and wref was 0.4 (Figure 1a). The
correct binding pose of the ligand, either the crystal structure or a docking pose with an all-
atom RMSD error ≤ 2.0 Å, was detected for 64 (91%) targets. When the crystal structures of
ligands were excluded from the training set, we were able to identify the correct binding
pose for 53 (76%) targets. Second, the value of rmax was set to the optimized value of 6 Å,
while the values of wref and wuni were explored. The statistical potential was most accurate
when wref and wuni were both 0.3 (PoseScore). The correct binding pose was detected for 67
(96%) and 56 (80%) targets when the crystal structures of ligands were included and
omitted, respectively.

The performance of the trained PoseScore was tested using the previously constructed data
set of 100 protein-ligand complexes11 (Wang_AutoDock). For each complex, 100 docked
conformations were generated using AutoDock.26 In 91 out of 100 cases, there is at least
one near-native solution. The accuracy of PoseScore on Wang_AutoDock was compared to
accuracies of 14 other scoring functions that were previously tested using the same data
set 11, 35, 38–40,(Table 2).

Training and testing of RankScore—38 crystallographically determined protein-ligand
complexes were taken from “A Directory of Useful Decoys” (DUD) benchmark set99 and
divided into two equally sized subsets. 19 complexes (DUD-1) were used in the training of
RankScore (Table S2a), while the rest (DUD-2) were used to test RankScore (Table S2b).
All compounds in DUD (annotated ligands and screening decoys) were screened against the
38 holo X-ray structures.103 The generated docking poses in DUD-1 and DUD-2 were used
to train and test RankScore, respectively.

The DUD-1 training set was used to find optimal values for rmax, wref, and wuni. The training
process used for PoseScore was employed, except that 3 values were explored for rmax,
including 6, 10, and 14 Å. The statistical potential showed the highest accuracy in the
rescoring of the DUD-1 training set when rmax, wref, and wuni were 6 Å, 0.4, and 0.0
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(RankScore), respectively (Figure 1b). For 14 targets, enrichment against the entire DUD
library (logAUC) was improved by rescoring, compared to the original enrichment by
DOCK. For 1 target, the rescoring enrichment was comparable to that by DOCK. For the
remaining 4 targets, lower enrichment was obtained after the rescoring procedure. Rescoring
improved the average logAUC by 6.9.

The accuracy of the trained RankScore was tested using the DUD-2 set. We also rescored
DUD-2 with 7 other scoring functions, including ITScore38, 39, DrugScorePDB 30, FlexX108,
PMF27, PLP109, ScreenScore32, and the all-atom energy function in PLOP30, 32, 38, 39, 110.
We did not test ITScore/SE and DrugScoreCSD because they are not publicly available.
However, ITScore and DrugScorePDB should perform similarly as ITScore/SE and
DrugScoreCSD, in terms of ligand enrichment (personal communication with XQ. Zou and
G. Klebe, respectively). FlexX, PMF, PLP, and ScreenScore were calculated by a re-
implementation of the original scoring functions (kindly provided by M. Stahl).32

Statistical potentials computed from docking-produced ligand poses
For each of the 8,885 native complex structures, the crystal ligands were docked to the
binding site using DOCK 3.6.104, 105 Overall, ligand docking poses were generated for 7,215
targets (the remaining 1670 targets did not produce any ligand docking pose during the fully
automated docking). Out of these 7,215 cases, 4,059 produced at least one near-native
solution, while 6,895 produced poses with all-atom RMSD errors of more than 2 Å (random
solutions).

The influence of incorporating geometric decoys into deriving a protein-ligand statistical
potential111–113 was investigated (Table S3). The near-native complex structures and the
random complex structures were considered during the evaluation of Eqn. 5, in three
different ways: (i) keeping pref unchanged, the near-native structures were combined with
the native structures and used to calculate pnat ; (ii) keeping pnat unchanged, the random
structures were used to represent the reference state and used to calculated pref ; and (iii)
using pnat from (i) and pref from (ii). Each resulting statistical potential was subjected to the
same training process that was used for PoseScore and RankScore.

Statistical potentials applied to modeled structures
PoseScore and RankScore were derived, trained, and tested for target protein structures
determined by crystallography. In realistic applications, comparative models are often used
to represent the receptor structure in both docking and virtual screening.114–117 Thus, we
also investigated the accuracy of statistical potentials on docking and screening against
models of target proteins (Table S3).

Training and testing sets—The 170 protein structures from Astex_DOCK and
Wang_AutoDock were structurally perturbed using MODELLER118 in the absence of the
crystal ligand. For each protein, binding site residues that have atoms within 10 Å from the
bound ligand were simulated by 100 steps of molecular dynamics with simulated annealing
(MD-SA) in which the temperature was reduced from 400 K to 100 K, and 100 steps of
conjugate gradient minimization (CG). All-atom RMSD errors of the resulting models
ranged from 0.5 to 1.5 Å. These perturbed structures have been used in the past as proxies
for comparative models.119 Next, ligand poses were generated in the modeled binding site
for each of the 170 structures. Of the 70 structures in Astex_DOCK and the 100 structures in
Wang_AutoDock, 60 (Astex_DOCKmodel) and 85 (Wang_AutoDockmodel) produced 100
ligand docking poses including at least one near-native solution, respectively.
Astex_DOCKmodel and Wang_AutoDockmodel were used as the training set and the testing
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set, respectively. The optimal values of the three adjustable parameters rmax, wref, and wuni
were determined as 6 Å, 0.7, and 0.1, with the aid of the Astex_DOCKmodel training set.

The 38 protein structures from DUD-1 and DUD-2 were perturbed using the same approach
as described above (DUD-1model and DUD-2model, respectively). All-atom RMSD errors of
38 resulting models also ranged from 0.5 to 1.5 Å. All compounds in the DUD library were
docked against each of the 38 models. DUD-1model and DUD-2model were used as the
training set and testing set, respectively. The optimal values of rmax, wref, and wuni were
determined as 6 Å, 0.5, and 0, respectively, with the aid of the DUD-1model training set.

Reference state
To investigate the reference state for a protein-ligand statistical potential, an additional
protein-ligand statistical potential was derived from the same sample of complex structures
that were used for PoseScore, employing the formula described for the DFIRE potential83:

(11)

where Nobs (i, j,r) is the number of (i, j) pairs within the distance shell (r, r + Δr] observed in
the X-ray structures used to generate PoseScore. Two approximations similar to those in
DFIRE were made. First, the number of pairs of ideal gas points in a finite protein-ligand
sphere is proportional to rα in Eqn. 11. Second, the potential has a finite interaction range
rcut fixed at 14 Å. That is, for r > rcut, ū(i, j, r) ≡ 0. Differently from DFIRE, we set the bin
width Δr to 0.1 Å. We then generated a statistical potential with distinct values for the
exponent α including 1, 2, 3, 4, 5, and, 6. To exclude the influence of distance boundary, for
each α value, 5 different values (6, 8, 10, 12, 14 Å) for the maximal boundary rmax, beyond
which atom pairs were not considered during scoring, were tested on the Astex_DOCK set.

Results
PoseScore and RankScore

Ligand pose—The trained PoseScore in which rmax, wref, and wuni were set to 6 Å, 0.3,
and 0.3, respectively, was assessed by the Wang_AutoDock testing set of 100 protein-ligand
complexes. The correct binding pose was detected for 88 (88%) targets, of which 70 were
crystal structures (Table 2). Furthermore, a correct binding pose was ranked the best, top 5,
and top 10 by PoseScore for 88 (88%), 97(97%), and 99 (99%) targets in the testing set,
respectively (Table 3). To mimic realistic applications, only the geometric decoys of the
ligands were scored, resulting in the correct binding pose identification for 63 (69%) targets.

Among all the scoring functions under test, ITScore/SE, PoseScore, and DrugScoreCSD

performed better than other scoring functions, showing the success rate of 91%, 88%, and
87% in the identification of the correct binding pose, respectively. When the crystal
structures of ligands were excluded from the test, PLP, PoseScore, and F-Score were the
three best performing scoring functions, with the success rate of 70%, 69%, and 68%,
respectively.

Ligand pose example—PoseScore detected the correct binding pose for 88 (88%) targets
in the testing set: four examples are shown in Figure 2. The 12 failures were investigated in
detail. Out of the 12, 9 and 11 cases had correct binding poses ranked in top 5 and top 10,
respectively (Table 3). The 12 targets can be divided into four classes: (i) water molecules
play an important role in ligand binding, including five targets 1cla, 3cla, 4cla, 1rgl, and
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3tmn; (ii) the ligand and the receptor forms a transition-state complex, including three
targets 1tlp, 1zzz, and 2sns; (iii) the ligand is located in the neighborhood of a cofactor or
another ligand, including two targets 1dr1 and 1tha; and (iv) no particular feature in the
binding site is found to be responsible for the failure, including two targets 1tni and 1tnj.
Next, we discuss one example from each class.

1cla is the crystal structure of chloramphenicol acetyltransferase, determined at the
resolution of 2.34 Å.120, 121 The binding pocket accommodates the substrate
chloramphenicol and several ordered water molecules (Figure 3). The residues lining the
pocket are predominantly hydrophobic. The substrate adopts an eclipsed conformation and
forms direct hydrogen bonds only with the water molecules. These water molecules were
not included during the generation of docking solutions of the substrate. As a consequence,
the crystal structure of chloramphenicol was only ranked 9. The best ranking pose is in a
staggered conformation and has an all-atom RMSD error of 10.3 Å.

1zzz is the crystal structure of trypsin with a peptidyl aldehyde inhibitor CVS1694,
determined at the resolution of 1.90 Å.122 In the crystal complex, the guanidinopiperidyl
group of CVS1694 makes water-bridged hydrogen bonds with Asp189 and Gly219. The
carbonyl oxygen of the aldehyde group is hydrogen bonding with Gly193N and Ser195N,
while the carbonyl carbon forms a tetrahedral intermediate with Ser195OG. A consequence
of the latter interaction is the covalent-bonding distance for C-Ser195OG (1.8 Å). The
glycine residue and the six-member lactam ring of the inhibitor make hydrogen bonds with
Ser214-Gly216, holding this part of the inhibitor close to trypsin. This crystal structure of
CVS1694 was ranked 2. The best ranking pose has an all-atom RMSD error of 3.10 Å,
deviating from the crystal structure in its aldehyde and lactam groups.

1dr1 is the crystal structure of dihydrofolate reductase (DHFR), solved as a complex with
NADP+ and biopterin at the resolution of 2.20 Å.123 The closely packed cofactor and the
substrate interact at an angle of 45º. Water molecules also hydrogen bond to both hydroxyls
in the dihydroxypropyl and the pteridine group of biopterin. The cofactor and these water
molecules were not included during the generation of docking solutions of the substrate. A
near-native solution of biopterin (RMSD 1.02 Å) was ranked 2, while the crystal structure
was ranked 3. The best ranking pose has an all-atom RMSD error of 4.17 Å. The pteridine
ring of the best ranking pose connects the substrate and the cofactor binding sites, and is
perpendicular to the plane of the pteridine ring in the crystal structure. The 2-amino group of
the pteridine ring still hydrogen bonds to Glu30, as it does in the crystal structure.

1tni and 1tnj are crystal structures of bovine trypsin, solved with phenylbutylamine (PBA)
and phenylethylamine (PEA) at the resolution of 1.90 Å and 1.80 Å, respectively.124. The
binding affinity of PEA to trypsin (Ki 11.0 mM) is higher than that of PBA (Ki 20.0 mM).
In the crystal complexes, the amine group in both inhibitors forms a salt-bridge with Asp189
and a hydrogen bond to Gly219. The difference in the binding affinity between the two
compounds could be due to the position of the benzene ring, which is more solvent exposed
in PBA than in PEA. In the case of 1tni, the crystal structure was ranked 22. The best
ranking pose has an all-atom RMSD error of 5.72 Å. The benzene ring of the best ranking
pose was close to the equivalent group of PEA in 1tnj structure. However, the amine group
in the best ranking pose pointed in the direction opposite to the crystal structure and failed to
form a hydrogen bond to Gly219. Interestingly, in the case of 1tnj, the crystal structure was
ranked 2 while the all-atom RMSD errors of the 1st and 3rd ranking poses are 2.29 and 1.51
Å, respectively (poses not shown). The best ranking pose was in the same orientation as in
the crystal structure and formed a hydrogen bond to Gly219.
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Ligand rank—The trained RankScore was assessed by the DUD-2 testing set of 19 targets.
For 13 (68%) targets, the rescoring enhanced the enrichment against the entire DUD library
(logAUC), with respect to the original enrichment by DOCK (Table 4). Rescoring improved
the average logAUC by 6.8. Another enrichment indicator - the enrichment factor at 1% of
the ranked docking library (EF1)99 - was also measured because the early enrichment is
particularly important in realistic applications. RankScore significantly improved EF1 for 14
(74%) targets (of which 12 had an increased logAUC, Table 5). In particular, the rank of the
best-scored ligand was enhanced by RankScore for 16 (84%) targets.

RankScore was more accurate in the rescoring than 7 other tested scoring functions (Table
4). Of these 7 scoring functions, only rescoring by ITScore and FlexX improved the
enrichment relative to DOCK (the average logAUC increased by 3.6 and 0.9, respectively).
For the 19 targets, increased enrichment was observed in 9, 8, 6, 9, 7, 7, and 8 cases with
ITScore, DrugScorePDB, FlexX, PMF, PLP, ScreenScore, and PLOP, respectively.

Ligand rank example—Rescoring by RankScore worsened both logAUC and EF1 for 4
targets, including thrombin, cyclooxygenase-2 (COX-2), AmpC β-lactamase (AmpC) and
hydroxymethylglutaryl-CoA reductase (HMGR). In 3 Of the 4 cases, including thrombin,
AmpC and HMGR, the best rank of ligands produced by RankScore is better than that by
DOCK. For COX2, the crystal structure at 3 Å resolution (PDB code: 1cx2) was determined
with SC-558, a selective COX-2 inhibitor. However, the sulfonamide group in SC-558 is
only 1.3 Å away from the guanidinium ion of Arg513. Many docking poses of ligands were
close to that of the crystal ligand but deviated from the position of the sulfonamide. For the
other three targets, we discuss AmpC in detail.

In the DUD benchmark, the A chain in the dimeric structure of AmpC (1xgj) was
used.125, 126 Ligand enrichments in logAUC are 47.4 and 10.3 units by DOCK and the
rescoring method proposed here, respectively. However, the H10 helix and the α-helix close
to the binding site are unstructured in the A chain, potentially explaining poor accuracy of
RankScore in this case. We tested this hypothesis by using the B chain structure, in which
these two helices are well defined. As a result, both the enrichment by DOCK and that by
rescoring were improved, reflected in logAUC of 53.8 and 19.3, respectively. The B chain
structure was solved as a complex with a thiophene-carboxylate derivative (HTC). The
docking pose of HTC was ranked 628 and 14 by DOCK and by RankScore, respectively.
Another ligand CTC differs from HTC in the 4-carboxylate benzene ring on which HTC has
a 2-hydroxyl group but CTC has a 3-chloride group (Figure 4a). The binding affinity of
HTC to AmpC (Ki 1.0 μM) is higher than that of CTC (Ki 1.9 μM). As shown in Figure 4b,
the thiophene-carboxylate in HTC hydrogen bonded to Thr316, Asn346 and Arg349 in the
primary carboxylate binding site. The sulfonamide oxygen hydrogen bonded to Ser64,
Tyr150, and Ala318 in the oxyanion hole and the hydroxyl binding site. The hydroxyl group
on the benzene-carboxylate ring hydrogen bonded to other active site residues (Lys67 and
Asn152). However, another AmpC ligand CTC with similar chemical structure and docking
pose as HTC, was ranked 786 by DOCK but only 52,978 by RankScore. In CTC, the 2-
hydroxyl on the carboxylate benzene ring of HTC was replaced by the 3-chloride, which
forced this part of CTC to move away from the neighboring residue Tyr221, resulting in
weaker thiophene-carboxylate and sulfonamide hydrogen bonds.

Statistical potentials computed from docking-produced ligand poses
The near-native and random solutions were considered in the derivation of protein-ligand
statistical potential. The resulting statistical potentials were subjected to the same training
process as PoseScore and RankScore.
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For ligand enrichment, the trained potentials still improved the enrichment with respect to
the original result by DOCK, but performed worse than RankScore (the average logAUC
improved by 6.8): (i) keeping pref unchanged but incorporating the near-native structures in
pnat, the trained potential with the three adjustable parameters rmax, wref, and wuni optimized
to be 6 Å, 0.2, and 0 improved the average logAUC by 6.0; (ii) keeping pnat unchanged but
computing pref from random structures, the trained potential with rmax, wref, and wuni
optimized to be 6 Å, 0, and 0 improved the average logAUC by 2.2; and (iii) using pnat from
(i) and pref from (ii), the trained potential with rmax, wref, and wuni optimized to be 6 Å, 0,
and 0 improved the average logAUC by 2.8.

In contrast, for ligand pose prediction, the trained potential (PoseScoredock) that was
computed with the same adjustable parameters as PoseScore but incorporated random
docking solutions in pref, showed better accuracy than PoseScore. Of the 100 proteins in the
testing set, PoseScoredock detected the correct binding pose for 90 (90%) targets, among
which 70 (70%) are crystal structures (88% and 70% by PoseScore, respectively). When the
crystal structures were omitted, the near-native solution was identified for 67 (74%) targets
(69% by PoseScore). The results of PoseScore and PoseScoredock are probably robust
because both potentials were trained and assessed based on decoys constructed by different
docking programs.

Statistical potentials applied to modeled structures
The trained potential (PoseScoremodel) detected the near-native solution for 66 (78%) targets
in the Wang_AutoDockmodel testing set (69% by PoseScore for Wang_AutoDock). In
comparison to Wang_AutoDock, more near-native solutions were included for 60 targets, 48
of which (80%) had the correct binding pose detected. Equal and less near-native solutions
were included for 2 and 23 targets, respectively, among which the correct binding pose was
detected for 18 (72%) targets. Clearly, the improvement in the accuracy is partially due to a
better sampling of near-native solutions. Meanwhile, the perturbation applied to the original
X-ray structures also contributed to the higher success rate. As an example, in both
Wang_AutoDock and Wang_AutoDockmodel testing sets, the target 1bra contained 15 near-
native solutions among 100 geometric decoys with the minimal RMSD error of 0.6 and 1.2
Å, respectively. In the crystal structure, the acetamidine group in the ligand benzamidine
hydrogen bonded with Ser190 backbone, Gly219 backbone, and Asp226 sidechain. A
docking pose of 1.8 Å RMSD was ranked the best when scoring against the crystal structure
of 1bra, because many near-native poses were in different orientations favoring hydrogen
bonds with Asp226 and/or Ser190. In the modeled structure of 1bra, the Asp226 sidechain
became closer to the binding site, associated with the Ser190 backbone moving away. The
ligand could form hydrogen bonding network with this binding site configuration, in an
orientation close to that in the crystal structure. The docking pose with the minimal RMSD
of 1.2 Å was selected.

An improved enrichment (logAUC) was observed for 10 targets in the DUD-2model testing
set. For 3 and 6 targets, the rescoring enrichment was comparable to and lower than that by
DOCK, respectively. Rescoring by RankScoremodel improved the average logAUC by 1.6.
Interestingly, for three targets, dihydrofolate reductase (DHFR), glycinamide ribonucleotide
transformylase (GART), and thrombin, the logAUC by DOCK using the modeled structure
was significantly higher by 40.1, 21.5, and 24.1 than that using the ligand-bound crystal
structure, respectively.

Reference state
The protein-ligand statistical potential with the DFIRE reference state showed the best
accuracy when rmax was 6 Å and α was 3 (Figure 5). The correct binding pose of the ligand,
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either the crystal structure or a docking pose with an all-atom RMSD error ≤ 2.0 Å, was
detected for 54 (77%) targets. When the crystal structures of ligands were excluded from the
training set, the correct binding pose was detected for 49 (70%) targets. For the 5 rmax
values tested, the statistical potential always showed the maximal accuracy with an α value
of 3 and/or 4.

Discussion
Two key results emerge from this study. First, two different statistical potentials can be
derived by statistical analysis of a database of known protein-ligand complex structures:
PoseScore for ligand pose prediction, and RankScore for ligand discovery in virtual
screeing. Second, PoseScore is as accurate as DrugScoreCSD and ITScore/SE in detecting
the native structure of a protein-ligand complex, and superior to 12 other scoring functions
tested; RankScore is more accurate than 7 other scoring functions in discriminating between
true ligands and nonbinders.

We address three points here. First, we compare the distance distributions of atom pairs in
protein-ligand complexes to those in proteins, and discuss the dataset used to derive the
reference state. Second, we discuss the optimal parameters used in PoseScore and
RankScore, including the maximal distance boundary rmax and the atom types. Finally, we
suggest possible improvements of PoseScore and RankScore.

Reference state
Proteins are finite systems. For a folded protein in the ligand-free state, the reference
distribution should not increase in r2 as in an infinite system, but in rα, where α is smaller
than 2. The optimal value of α was found empirically to be approximately 1.6 for protein
structures.83 In protein-ligand complexes, however, each ligand atom is partly surrounded
by other ligand atoms. As a result, the protein-ligand distance distributions are expected to
be different from those for protein structures alone. In Figure 6, the protein is approximated
as the outer sphere (solid line) and the ligand is completely embedded inside the protein as
the inner sphere with a radius r. All protein-ligand pairwise interactions within the maximal
distance Rcutoff of the ligand atom only occur inside the protein sphere. Thus, for the ligand
atom positioned at distance d from the ligand center, the number of protein-ligand atom
pairs within distance R (R ≤ Rcutoff ) is proportional to the partial volume V of the sphere
with a radius R centered on the ligand atom that is not taken by the ligand:

(12)

The expected number of protein-ligand atom pairs in the distance bin (R, R + ΔR] is
proportional to the derivative of V with respect to R. For distance R not larger than d + r, the
distribution of atom pairs increases faster than R3. Clearly, there are additional geometrical
arrangements, depending on the size of the protein, the size of the ligand, and the location of
the ligand relative to the protein. Furthermore, the shapes of both protein and ligand are
generally not ideal spheres. Nevertheless, this simplified example suggests that the number
of protein-ligand atom pairs could increase much faster with distance R than the number of
protein atom pairs does. The reference distributions observed in the X-ray and docking-
generated structures of protein-ligand complexes (Figure 7) are better approximated by the
distribution in eqn. 11 with an α value of 3 (not 2), thus supporting our hypothesis. Our
approach to defining a reference state might be applicable for other multi-component
systems, such as protein-peptide, protein-nucleotide, and even protein-protein interfaces.
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In general, the goal of scoring functions for structure prediction is to distinguish the native
from non-native states. The reference state used in a statistical potential should maximize
this discrimination. Therefore, the choice of the optimal reference state depends on the
native and non-native states. In particular, we hypothesize that a protein-ligand statistical
potential for distinguishing ligand poses with an RMSD error of less than 2 Å (correct
binding pose) from other poses (random solutions) should depend on a reference state that is
maximally different from the native state and maximally similar to random solutions. For
ligand pose prediction, a reference state computed from random solutions should improve
the accuracy of the statistical potential, in comparison to the reference state computed from a
sample of native complex structures with the same approach. PoseScoredock is more accurate
than PoseScore, thus supporting our hypothesis. Similarly, for ligand discovery by virtual
screening, a reference state including information about non-binders should improve a
statistical potential relative to the reference state from true ligands alone. Therefore, it was
not surprising that RankScoredock using the reference state derived from docking poses of
true ligands did not show better accuracy than RankScore.

Parameters of the statistical potentials
Different values had been used for the maximal distance boundary in previously developed
protein-ligand statistical potentials. A distance bound of 12 Å was used in the potential of
mean force (PMF) compiled from 697 complex structures in PDB, in conjunction with a
correction term regarding the volume occupied by the ligand to incorporate solvent effects in
the pairwise potential.27 In comparison to PMF, a shorter distance cutoff of 6 Å was used in
several recently developed protein-ligand statistical potentials, including DrugScorePDB 30,
DrugScoreCSD 35, ITScore38 and ITScore/SE40 that were based on distinct structure samples
and solvation models. In this study, the distance cutoff was subjected to the optimization
with the aid of a training set, for both ligand pose prediction and virtual screening. In both
cases, the optimal value was found to be 6 Å. This distance cutoff is much smaller than
those used in protein statistical potentials (e.g., 20 Å for RAPDF70, 14.5 Å for DFIRE83, and
15 Å for DOPE100). This result may indicate that non-covalent protein-ligand interactions
are dominated by the specific interactions formed between a ligand and the first shell of the
protein residues outlining the binding site pocket; examples of such interactions include
hydrogen bonds and salt bridges.127

An atom type classification is needed for generating atom pair distributions. 16 protein atom
types and 34 ligand atom types were employed in PMF. 17 and 18 atom types for both
protein and ligand were employed in DrugScorePDB and DrugScoreCSD, respectively. 26 and
27 atom types for both protein and ligand were employed in ITScore and ITScore/SE,
respectively. These atom types reflect both the type of an atom as well as its environment,
similar to the Sybyl atom type.

For proteins, 158 residue-dependent atom types that were used in DOPE100 statistical
potential were tested in this study. In addition, we explored combining the 158 protein atom
types, to obtain a smaller number of protein atom classes and thus improve the statistical
robustness (and therefore accuracy) of the resulting statistical potential. Two protein atom
types could be combined without loss of information if each one of the 26 protein-ligand
atom distance distribution comparisons had a sufficiently small χ2 (tail probability p =
0.05 ).128 Surprisingly, for the maximal distance bound of 6 Å, only 16 pairs of protein
atom types were nearly identical to each other (Table S4). Therefore, we did not combine
the individual protein atom types. For ligands, 26 atom types were used, based on the Sybyl
atom type classification (Table 1). Although the chemical space of small molecules is much
more diverse than that of the 20 standard amino acid residues, we did not explore a more
fine-grained atom type classification for practical reasons.
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Future improvements
For 12 of the 100 benchmark targets, a correct binding pose was not identified by PoseScore
as the best scoring pose. For 10 of the 12 targets, the assessment of binding between protein
and ligand was affected by the lack of considering crystal water molecules, a cofactor, or the
transition state. This observation indicates that the current protein-ligand statistical potential
could be improved by considering ligand-water interactions, ligand-cofactor interactions,
and transition states. Currently, the derivation of statistical potentials that explicitly consider
ligand-water and ligand-cofactor interactions is limited by the size and accuracy of the
sample of known complex structures. The accuracy of a statistical potential that is derived
from a sample of experimental structures clearly depends on the resolution of the
experimental structures. More accurate structures result in a more accurate statistical
potential, all other things being equal. In this study, we derived the statistical potentials from
2.5 Å structures. We also tested a resolution cutoff of 2 Å. In comparison to PoseScore and
RankScore, the number of available structures decreased from 8885 to 5353, and the newly
derived statistical potentials performed worse (data not shown). Clearly, the disadvantage of
a smaller sample outweighed the advantage of more accurate structures in the sample, a
problem that would only be larger for statistical potentials for ligand-water and ligand-
cofactor interactions. This dilemma may be at least partially solved by deriving a statistical
potential from small molecule crystals in CSD, which provides a rich source of interaction
geometries for small molecules at high resolution (292,539 structures with R-factor <
0.050). One successful example of such a statistical potential is DrugScoreCSD that showed a
substantial improvement compared to DrugScorePDB in the recognition of near-native ligand
binding poses.35

As shown in eqn. 4, the statistical potential for the protein-ligand complex should be a sum
of three terms, including those for the intramolecular protein interactions, intramolecular
ligand interactions, and intermolecular protein-ligand interactions. In this study, we only
developed statistical potentials for the protein-ligand intermolecular interactions. More
accurate scoring could be achieved by combining PoseScore/RankScore with other scoring
functions such as the DOPE potential that measure the intramolecular protein interactions.

Conclusions
We conclude by returning to the four questions posed in Introduction.

Can a statistical potential be used for distinguishing between ligands and nonbinding
molecules, in addition to recognizing native binding modes?

Yes. We developed two statistical potentials from a sample of X-ray structures of protein-
ligand complexes: PoseScore was optimized for distinguish correct binding poses from
geometric decoys and RankScore was optimized for distinguishing ligands from screening
decoys. The reference states of PoseScore and RankScore are different, because of the
differences in the values of three adjustable parameters. PoseScore scored a correct binding
pose best among 100 decoys for 88% of all cases in the benchmark set containing 100
protein-ligand complexes. Furthermore, a correct binding pose was ranked the best, top 5,
and top 10 by PoseScore for 88 (88%), 97 (97%), and 99 (99%) targets in the testing set,
respectively. RankScore improved the ligand enrichment (logAUC) and early enrichment
(EF1) by rescoring the results by DOCK for 13 and 14 targets, respectively. Furthermore,
RankScore ranked at least one annotated ligand within the top 500 scored compounds for all
targets.
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Can the accuracy of a statistical potential be improved by adding “negative” information,
such as geometric decoys of the true ligands?

Yes. PoseScoredock in which the reference state was computed from geometric decoys that
had all-atom RMSD errors of more than 2 Å from crystal binding poses (random solution)
showed higher accuracy (74%) in detecting near-native solutions from geometric decoys, in
comparison to PoseScore (69%). However, the performance of RankScore was not improved
by including the geometric decoys.

What is the accuracy of scoring complexes with modeled protein structures relative to that
with crystallographic structures?

For ligand pose prediction, PoseScoremodel showed higher accuracy (78%) in detecting near-
native solutions from geometric decoys, in comparison to PoseScore (69%) and
PoseScoredock (74%). For ligand enrichment, RankScoremodel also improved the average
logAUC by 1.6, relative to DOCK. However, this improvement was less than that by
RankScore (6.8) applied to complexes with crystal structures.

What are the differences between the reference states for protein-ligand and protein-
protein statistical potentials?

Proteins are finite systems. Therefore, for a folded protein in the ligand-free state, the
reference distribution should not increase in r2 as in an infinite system, but in rα where α is
smaller than < 2. The optimal value of α was found empirically to be approximately 1.6. In
contrast, in protein-ligand complexes, each ligand atom is partly surrounded by other ligand
atoms. As a result, the number of protein-ligand atom pairs should increase faster with the
distance r than the number of protein atom pairs. Correspondingly, the optimal value of α
was found empirically to be around 3.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The performance of the statistical potential affected by the distance cut-off, showed on
the training sets
(a) Two parameters of the potential were fixed ( wref = 0.4, wuni = 0 ), the potential showed
the highest accuracy in ligand pose detection when the other parameter rmax is set to 6 Å,
selecting correct binding mode for 64 (91%) targets in the training set of 70 proteins. (b)
Two parameters of the potential were fixed ( wref = 0.4, wuni = 0 ) the potential showed the
highest accuracy in the rescoring when the other parameter rmax is set to 6 Å, improving
enrichment (logAUC) for 14 targets in the DUD-1 training set.
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Figure 2. Four examples of accurate ligand pose prediction from the PoseScore test set
For each target, the crystal structure of the protein binding site and the co-crystallized ligand
(solid stick, green) as well as the best-ranked ligand geometric decoy (solid stick, yellow)
are shown. (a) Thrombin (1a46). The crystal structure of the ligand was ranked 1. A
geometric decoy with the 1.39 Å RMSD error was ranked 2. (b) Carbonic anhydrase I
(1bzm). The crystal structure of the ligand was ranked 3. A geometric decoy with the 1.65 Å
RMSD error was ranked 1. (c) Elastase (1ela). The crystal structure of the ligand was ranked
1. A geometric decoy with the 1.37 Å RMSD error was ranked 2. (d) Streptavidin (1sre).
The crystal structure of the ligand was ranked 5. A geometric decoy with the 1.39 Å RMSD
error was ranked 1.
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Figure 3. Four examples of inaccurate ligand pose prediction from the PoseScore test set
For each target, the crystal structure of the protein binding site, the co-crystallized ligand,
and the highest ranking geometric decoy of the ligand are presented as in Figure 2. See
Results for more detail.
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Figure 4. Ligand poses of AmpC β-lactamase from the test set of RankScore
(a) 2D images of AmpC ligands HTC and CTC (b) Docking poses of HTC (yellow stick)
and CTC (blue stick) generated by screening against the B chain of AmpC structure (PDB
code: 1xgj).
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Figure 5. The effect of the parameter α on the performance of statistical potential derived using
DFIRE formula, showed on the training set
α value was set to 1, 2, 3, 4, 5 and 6 in the calculation of the potential independently. For
each α value, 5 different values were chosen for the maximal boundary rmax including 6 Å
(black solid line), 8 Å (black dotted line), 10 Å (red solid line), 12 Å (red dotted line), 14 Å
(blue solid line) respectively. The generated potentials were tested on the training set
containing 70 proteins. The potential was the most accurate when α was set to 3 and rmax set
to 6 Å.
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Figure 6. Schematic presentation of a protein-ligand complex
The protein is approximated as the outer sphere (solid line) and the ligand is completely
embedded inside the protein as the inner sphere with a radius r. For the ligand atom
positioned at a distance of d to the ligand center, the amount of protein-ligand atom pairs
within certain distance R ( R ≤ Rcutoff ) is calculated by equation 12.
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Figure 7. The probability distribution of protein-ligand atom pairs, assuming no difference
between atom types
Five distributions are plotted. First, the distribution derived using eqn. 8, from the sample of
X-ray structures of protein-ligand complexes (black solid line). Second, the distribution
derived using eqn. 8, from the sample of docking poses that had RMSD error of larger than
2 Å with respect to the X-ray structures (black dashed line). Third, the distribution derived
using eqn. 11 in which the parameter α was set to 2 (red solid line). Fourth, the distribution
derived using eqn. 11 in which the parameter α was set to 3 (blue solid line). Fifth, the
distribution derived using eqn. 11 in which the parameter α was set to 4 (brown solid line).
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Table 1

List of 26 atom types in small molecules

Atom type Description

C1 carbon sp

C2 carbon sp2

C3 carbon sp3

Car carbon aromatic

Ccat carbocation (C+) used only in a guanidinium group

N1 nitrogen sp

N2 nitrogen sp2

N3 nitrogen sp3

N4 nitrogen sp3 positively charged

Nar nitrogen aromatic

Nam nitrogen amide

Npl3 nitrogen trigonal planar

O2 oxygen sp2

O3 oxygen sp3

Oco2 oxygen in carboxylate and phosphate groups

Oar oxygen aromatic

S2 sulfur sp2

S3 sulfur sp3

So sulfoxide sulfur

So2 sulfone sulfur

Sar sulfur aromatic

P3 phosphorous sp3

F fluorine

Cl chlorine

Bra bromine

I iodine
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Table 2

Success rates of scoring functions on the test set containing 100 protein-ligand complexes

Scoring function Success rate (%)a

Native RMSD < 2 Å (Native/Decoy) RMSD < 2 Å (Decoy)b

PoseScore 70 88 69

PoseScoredock 70 90 74

ITScore/SEc 91

ITScore 82

DrugScoreCSD 77 87 66

DrugScorePDB 49 72 65

Cerius2/PMF 32 52 48

Cerius2/PLP 52 76 70

Cerius2/LigScore 48 74 60

Cerius2/LUDI 23 67 64

AutoDock 8 62 66

X-Score 25 65 64

SYBYL/F-Score 38 74 68

SYBYL/G-Score 13 42 43

SYBYL/D-Score 3 26 29

SYBYL/ChemScore 7 35 34

a
The success rate of each scoring function was evaluated by three different criteria and given as a percent with respect to the complexes analyzed.

Native, the crystal conformation of the ligand received a better score than the 100 docking solutions of the ligand. RMSD < 2 Å (Native/Decoy),
the crystal conformation of the ligand or a docking solution with RMSD < 2 Å from the crystal conformation received the best rank. RMSD < 2 Å
(Decoy), a docking solution with RMSD <2 Å from the crystalconformation received the best rank among the 100 docking solutions.

b
There is one or multiple docking solutions with RMSD < 2 Å from the crystal conformation for 91 complexes.

c
There are no data in literature for ITScore/SE and ITScore for the criteria Native and RMSD < 2 Å (Decoy).
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Table 5

The rank of best scored ligand by DOCK and RankScore

Protein targets Ligand screens by DOCK Ligand rescoring by RankScore

EF1
a Rank of the best scored ligand EF1 Rank of the best scored ligand

ADA 0.0 2989 34.8 74

DHFR 1.5 166 47.3 2

GART 9.5 123 23.8 72

Thrombin 15.4 21 6.2 1

AChE 6.7 304 10.5 107

AmpC (A chain) 0.0 1098 0.0 27680

AmpC (B chain) 19.0 628 4.8 14

COX-2 22.1 12 0.9 74

HIVPR 0.0 5200 13.2 24

HMGR 34.3 19 17.1 3

NA 40.8 15 42.9 1

PARP 0.0 15976 12.1 292

HSP90 0.0 2967 4.2 108

EGFr 1.1 257 2.9 103

SRC 0.0 7536 5.6 2

TK 50.0 319 54.6 40

ERagonist 28.4 3 41.8 4

GR 7.7 9 10.3 1

PPARg 0.0 16898 1.2 462

RXRa 30.0 1 30.0 5

a
The enrichment factor EF1 is the percent of actual ligands found in the top 1% ranked subset of all database compounds.

b
The ligand binding site in chain A structure of AmpC β-lactamase is partially broken while fine in the chain B structure.
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