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Abstract
Efficient and sufficient incorporation of protein flexibility into docking is still a challenging task.
Docking to an ensemble of protein structures has proven its utility for docking, but using a large
ensemble of structures can reduce the efficiency of docking and can increase the number of false
positives in virtual screening. In this paper, we describe the application of our new methodology,
Limoc, to generate an ensemble of holo-like protein structures in combination with the relaxed
complex scheme (RCS), to virtual screening. We describe different schemes to reduce the
ensemble of protein structures to increase efficiency and enrichment quality. Utilizing
experimental knowledge about actives for a target protein allows the reduction of ensemble
members to a minimum of three protein structures increasing enrichment quality and efficiency
simultaneously.
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Introduction
Protein flexibility plays a key role in molecular recognition between a ligand and its target
receptor.1 Levels of protein flexibility range from small scale changes such as side-chain
rotamer changes to large scale changes such as hinge-bending motions and conformational
changes in loop regions.2-5 Recent approaches for improving docking methods have focused
on incorporating both small and large scale protein flexibility in search and scoring
procedures.4, 6-12 One widely used methodology aims to include backbone and side-chain
flexibility into docking by using an ensemble of protein structures (EPS) as docking
templates.7 The templates are generated using methods such as molecular dynamics (MD),
Monte-Carlo (MC), elastic network model (ENM)13, 14 simulations, or normal-mode
analysis (NMA).
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Ensemble docking studies15 have found that using an EPS with only a few protein
conformations can increase the enrichment in virtual screening, but using a very large EPS
often hurts docking performance. The drop in virtual screening performance is due to the
inherent inaccuracy of the simplistic scoring methods used in docking. With an increasing
number of protein conformations, the potential to generate non-native protein-ligand
conformations also increases. Thus, using inaccurate scoring methods in virtual screening
may result in an increased potential to generate high ranked decoys and thereby reduce the
enrichment quality. Thus, in ensemble docking it is important to consider how many and
which protein conformations should be used.

Different strategies have been developed to identify a subset of protein structures that
provides a compromise between the amounts of protein flexibility incorporated into docking
and the number of structures considered. Amaro et al.16 used methods such as hierarchical
clustering based on pairwise root-mean square-deviations (RMSD) between different EPS
members to reduce the initial EPS generated by MD simulations to a structurally diverse
subset of protein structures. Armen et al.17investigated different strategies to limit the
modeled protein flexibility to the fewest degrees of freedom necessary to adequately
represent the experimentally observed flexibility (i.e. binding-site side chains and two
flexible loops in the studied test case). Bolstad et al.18 developed a selection strategy based
on the conservation of the relative orientations of a core of amino acids critical for ligand
binding. Atoms of binding site residues that have a conserved relative position in
experimentally determined complex structures of the same protein with different bound
ligands were manually identified. Distances between the identified atoms were computed for
all MD snapshots and compared with the conserved distances in the various X-ray
structures. Only MD snapshots that approximately preserve the interatomic distances
between the selected protein atoms were chosen as members of the EPS used for docking.
This procedure allowed the reduction of the size of the initial EPS, increasing the e ciency
and ranking accuracy of ensemble docking.

The relaxed complex scheme (RCS)19, 20 can be viewed as an extension of ensemble
docking where MD simulations of the apo form of the protein are used to generate an EPS.
Sequential docking to the EPS is performed, and for each ligand, similar binding poses are
clustered across all EPS protein templates. The scores of all members of a cluster are
averaged to approximate the thermodynamic states of ligand binding. Compared to using
individual scores, the average produces a more accurate estimation of the free energy of
binding.19, 20

We recently performed docking studies utilizing RCS to an EPS generated by MD
simulations on protein systems that involve small-scale conformational changes between the
apo and holo structures (RMSD < 1 Å).21 Although the apo form of the protein is typically
used to generate the EPS for the RCS scheme, we observed that docking to an EPS
generated by short MD simulations with bound ligands outperformed docking to the EPS
generated by long MD simulations on the apo form of the protein. We concluded that there
are either too many alternative protein conformations generated by the long MD simulations,
making the identification of the holo-like structures relevant for docking difficult, or that
ligand binding was required to induce the holo conformation of the protein.

These results led us to the development of the ligand-model concept (Limoc), a method that
is capable of sampling protein conformations that are relevant for binding structurally
diverse ligands.21 In this method, MD simulations are performed with a dynamically
changing set of restrained functional groups in the binding site of the protein, essentially
representing a large hypothetical ensemble of different chemical species binding to the same
target protein. Starting from an apo structure, the ligand-model approach is used to derive an
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EPS used for docking. The combination of Limoc and RCS has been successfully applied to
the prediction of binding modes and affinities of structurally diverse compounds. However,
ensemble docking using large EPS and RCS analysis requires significantly more
computational resources compared to virtual screening performed on a single static protein
structure.

In this manuscript, we want to address the question whether the reduction of ensemble size
can improve efficiency and enrichment quality of virtual screening using the Limoc-RCS
scheme. We investigated three different strategies to select a subset of protein structures
from the original EPS. First, we clustered similar frames based on their pair-wise RMSD.
Second, we developed a training process in which protein structures are selected based on
their performance to reproduce the experimentally known binding mode of a small set of
diverse ligands. Third, frames are selected based on their performance to distinguish actives
and decoys using a small training set of ligands.

Material and Methods
Datasets and target proteins

We selected five protein systems as targets for the virtual screening studies: Thrombin (PDB
code: 2UUF), estrogen receptor alpha (ERa, 1GWR), cyclin-dependent kinase 2 (CDK2,
1HCL), acetylcholine esterase (AchE, 1EA5) and Pneumocystis carinii dihydrofolate
reductase (DHFR, 1DAJ). The protein structures chosen represent the apo (ligand-free) form
for thrombin, CDK2, and AChE. As there is no apo structure for ERa and Pneumocystis
carinii DHFR in the PDB available, we used a holo structure for our screening studies. The
side-chain conformations, tautomers and protonation states of ASN, GLN and HIS were
adjusted using the Reduce program.22 Protein structures were subsequently minimized using
Amber 10.23 The dictionary of useful decoys (DUD)24 was used to perform the virtual
screening studies. For each active in DUD a set of decoys with similar physical properties
but dissimilar topology is added to the dataset of compounds used for screening. To reduce
computational time, a subset of DUD DHFR ligands was used in this study by randomly
selecting one fourth of the total number of actives and decoys. For AChE the dataset used in
our study contains 107 actives and 3892 decoys, for CDK2 72 and 2072, for ERa 67 and
2570, for DHFR 102 and 2100, and for thrombin 72 and 2456.

Docking
All docking simulations were performed using AutoDock Vina.25 Protein and ligand
preparation for docking was performed using our in-house PyMOL plugin that automatically
calls the programs prepare_receptor4.py and prepare_ligand4.py that are part of
AutoDockTools.26 To define the search volume for AutoDock Vina, the apo form of a
protein is aligned to several holo forms of the same protein and then a cubic box of 25 Å x
25 Å x 25 Å is placed around the co-crystallized ligands of the associated holo forms.
Standard docking settings were used and the ten energetically most favorable binding poses
were outputted.

Limoc
MD simulations with Limoc21 were used to generate an EPS for ensemble docking and RCS
analysis. In this study, we started from the apo protein structure (except for ERa and
DHFR). First, the binding site is defined in Limoc by specifying residues within a given
radius (default is 5Å) of any atom of the chosen ligand. Then the solvent accessible surface
(SAS) of the binding site is computed. Physical-chemical probes representing the ligand
model are evenly distributed onto the SAS with properties that are complementary to the
nearest binding pocket residue. In the current version of Limoc, we consider three types of
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probes: hydrogen-bond donor, acceptor and hydrophobic group. To sample the interactions
of protein residues with different hydrogen-bonding groups from different ligands, we
employed the local enhanced sampling (LES) method.27 To simulate the protein adapting to
ligands differing in size and shape, we use locally steered MD simulations to enlarge or
decrease the size of the ligand model. The size and direction of movement of the binding
pocket residues is determined by the first principle component derived from analyzing the
covariance matrix of a 50ps ligand free simulation trajectory. The positions of the ligand
model probes are harmonically restrained with a force constant four times greater in the
direction parallel to the SAS than perpendicular to the SAS. The steered MD is performed in
both directions (locally expanding and reducing the size of the ligand model). The total
simulation length (including all induced fit scenarios) was 20 ps using a time step of 1 fs.
The Amber03 force field was used and solvation was modeled by a water cap of 25 Å
radius. For additional details on Limoc and its default settings we refer to our recent
publication on this method.21

Relaxed complex scheme
The MD trajectories using Limoc were clustered using quality threshold (QT) clustering.28

The RMSD criterion was adjusted automatically to generate 180–250 distinct protein
conformations, defining the initial EPS. Based on this EPS, different frame selection
methods were used to derive sub-ensembles with 1, 2, 3, 5, 10, 20, 50 protein structures.
AutoDock Vina was used to perform docking to the full initial ensemble and each sub-
ensembles. The top-10 ranked binding poses from each individual docking simulation were
outputted and considered for subsequent clustering. The binding poses were clustered using
QT clustering (1 Å cluster radius). For the full ensemble (180-250 frames) and the 50-, 20-
sub-ensembles, clusters with less than 15, 5, 3 members were discarded, respectively. The
predicted score for a binding-mode cluster i, ⟨Gi⟩, was calculated based on the scores of all
binding modes j of a cluster i, ΔGj, using

(1)

where pi,j is the probability of identifying a pose j in cluster i, and ΔGj is the score of
binding pose j. As an alternative scheme to rank the docked ligands, we used the overall
lowest score of any binding pose of a ligand.

Frame selection using RMSD
To test the impact of reducing the size of the EPS on virtual screening results using the
Limoc-RCS scheme, we used three different methods to select frames from the full
ensemble of 180–250 protein structures. In the first scheme, QT clustering is performed on
the full EPS using the g_cluster program which is part of the Gromacs 4.5 software suite.
The heavy atom RMSD was adjusted to generate 1, 2, 3, 5, 10, 20, 50 clusters. The centroid
of each cluster was used as representative structure in the resulting sub-ensemble.

Frame selection by training on experimentally known binding modes
In the second scheme for reducing the size of the original EPS, several holo forms of each
protein system were retrieved from the PDB and up to three structurally diverse ligands are
chosen based on visual comparison for subsequent training purposes. The selected ligands
were docked to the original EPS using AutoDock Vina and ten poses were retrieved from
docking to each member of the EPS. RMSD between the predicted docking poses and the
experimentally known binding mode was calculated and the docking pose with the smallest
RMSD was identified for each EPS member. The sum of lowest RMSD values over all
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utilized ligands (one to three ligands in our study) was computed and used to rank protein
structures in the original EPS. Sub-ensembles were generated from the top ranked structures.
As an example, assume that three ligands A, B, and C are docked to two different protein
structures, yielding smallest RMSD values among the top-10 ranked poses for the two
protein structures of 1.4 Å, 2.4 Å, 2.7 Å, and 1.8 Å, 1.7 Å, 2.3 Å, respectively. Taking the
sum of those RMSD values (6.5 Å vs. 5.8 Å) ranks the second protein structure before the
first one.

Frame selection by training on enrichment of small subsets
In the third scheme for reducing the size of the full EPS, structures are selected based on the
degree of separation achieved between actives and decoys in a virtual screen.
Experimentally known actives are mixed with a set of decoy ligands to build a training set;
10, or 20 actives and a corresponding number of decoys were randomly selected from the
DUD dataset to construct the training subsets for each protein system. The active:decoy ratio
of subsets was kept the same as the ratio of the complete DUD set for each protein system.
Mini-enrichment of each ligand training subset was performed using ensemble docking and
RCS. The lowest docking score of all binding pose clusters, k, for a ligand, l, was identified
for each protein structure, p:

(2)

Third, the average score over all actives and decoys is computed for each protein
conformation p:

(3a)

(3b)

Finally, the difference between  and  was calculated. The different members
of the EPS are ranked according to those differences, and the structures with largest negative
difference are selected for inclusion in a sub-ensemble.

Measures of virtual screening success
The following standard descriptors for enrichment are utilized to measure the success of our
virtual screening studies: The enrichment factors of actives at 1% (EF1), 10% (EF10) and
20% (EF20) of ranked decoys, and the area-under-the-curve (AUC) of the ROC curve
displaying fraction of ranked actives at a given fraction of ranked decoys. A slight
modification of the AUC value is computed to emphasize the importance of early
enrichment in datasets that typically contain a majority of decoys: The logAUC value is the
area-under-the-curve using a logarithmic scale of the x-axis (fraction of ranked decoys).

Results and Discussion
Enrichment using full ensemble

Introducing protein flexibility by ensemble docking can enhance correct prediction of native
binding poses and quantification of ligand binding affinities,7, 12 but can also result in an
increased number of false positives in virtual screening.15 The latter can result in a poor
enrichment performance compared to using a single static structure for virtual screening.
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RCS attempts to mitigate this drawback by clustering similar poses and averaging their
scores.

Testing RCS with our Limoc-generated EPS on five protein systems (Figure 1 and Table 1)
revealed that, compared to virtual screening using a single protein structure, using the full
EPS resulted in improved enrichment for two protein systems (thrombin and DHFR) and
gave comparable results for the other three systems (AChE, ERa, CDK2). The AUC is
similar for AChE (EPS: 0.58, single structure: 0.61), CDK2 (0.56, 0.56), and ERa (0.82,
0.82), but significantly larger if utilizing the full EPS for DHFR (0.85, 0.71) thrombin (0.71,
0.40).

We also compared the enrichment plots using the EPS with and without clustering similar
poses and averaging their scores (see Supporting Information, Figure S1). Interestingly, only
a slight improvement in enrichment for DHFR (0.85 compared to 0.82 for using lowest
overall score) and thrombin (0.71 compared to 0.69) is observed after clustering and
averaging the scores of similar poses. No differences could be identified for the other three
protein systems. In summary, averaging seems to have only a small effect on the enrichment
quality for the five protein systems studied.

The improved enrichment for thrombin is consistent with the increased binding pose
prediction quality previously observed using Limoc-RCS.21 However, the same trend was
not observed for AChE, where increased binding pose prediction quality21 didn’t translate
into improved enrichment. Importantly, no significant reduction in enrichment performance
was observed for any of the five protein systems.

Frame selection using RMSD
Although the inclusion of protein flexibility in the Limoc-RCS scheme shows some benefit
for enrichment in virtual screening, it is computationally demanding, requiring several hours
per ligand using AutoDock Vina on a dual quad-core-machine. Thus, it is impractical to use
a large EPS for virtual screening of tens to hundreds of thousands of ligands. Reducing the
number of protein structures in the ensemble is essential for efficient ensemble docking. The
most naive way is to generate sub-ensembles by clustering the full EPS based on their pair-
wise RMSD values and use the resulting cluster centers as the sub-ensemble for virtual
screening.

Figure 2 displays the enrichment using the most diverse ensemble members by QT
clustering. With the exception of DHFR and for very small number of frames in the
thrombin system, there is no significant drop in enrichment in comparison with the full EPS
(Figure 3, green lines). This is consistent with the results in the previous section, where no
significant difference in enrichment between static docking and docking using Limoc-RCS
was observed for AChE, ERa, and CDK2.

Frame selection by training on experimentally known binding modes
Although clustering for EPS generation is promising, in some protein systems this method
resulted in reduced enrichment quality. Motivated by the studies of Anderson and co-
workers18 who used visual inspection of experimentally known holo structures of DHFR to
guide the ensemble selection process, we hypothesized that automatic selection using a
small set of experimental data may increase the accuracy of Limoc-RCS screening. In a first
scheme, we used a training set composed of 1-3 holo structures for structure selection. The
training set ligands were docked to all members of the EPS and the members that are in best
agreement with the experimentally determined binding mode were selected for sub-
ensembles. Figures 3 and 4 display the results for using a training set of three ligands.
Results using one or two ligands are shown in Supporting Information, Figure S2. Similar to
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the enrichment results for using the diversified sub-ensembles (see previous section) no
significant change in enrichment was observed for AChE, CDK2 and ERa. For DHFR the
decrease in enrichment quality was reduced compared to the diversified subsets but
remained the same for thrombin. In summary, no significant improvement in enrichment
was observed between the RMSD based selection scheme and selection scheme based on
binding-pose training.

Frame selection by training on enrichment of small subsets
Although no significant improvement in enrichment was observed for docking to selected
members of the EPS using training of known binding modes, we question whether utilizing
training data that is strongly related to the real experiment, i.e. virtual screening, will
increase enrichment of the full DUD dataset. Sometimes medicinal chemists gather
experimental knowledge about several actives before performing a full (virtual) high
screening study. However, this useful information is seldom included in the virtual
screening procedure. We tested if selecting structures from the EPS based on a mini-
enrichment study using only a few actives, might improve the overall virtual screening
quality utilizing sub-ensembles. 10 or 20 actives with the same ratio of actives to decoys,
both randomly picked from the DUD dataset, were used in an initial enrichment experiment.
Members of the EPS were selected based on their ability to separate actives from decoys
using scoring. These sub-ensembles were used for virtual screening of the full ligand dataset
not including the actives and decoys utilized in the training process. Figures 3, 5 and
Supporting Information, Figure S3 show a general positive trend in using those sub-
ensembles, increasing or at least not reducing enrichment compared to the virtual screening
results on the full EPS. As expected intuitively, utilizing a larger set of compounds for frame
selection (20 vs. 10 actives) typically resulted in a more stable increase of enrichment. For
AChE, the AUC value increases with decreasing size of sub-ensemble with the larger
training set producing a stronger trend. For DHFR the same positive trend of reducing
ensemble size was observed for both training set sizes. For CDK2 and ERa no significant
decrease or increase in AUC with reducing ensemble size was observed. For thrombin, using
a training set containing 20 actives results in a stable AUC vs. ensemble-size curve.
Although the AUC values of a training set with 10 actives decrease for very small ensemble
sizes (one or two frames), the curve demonstrates stability for sub-ensembles with 3-50
frames. This displays a significant improvement over the previously tested frame-selection
schemes. In general, using 20 actives yields stable enrichment for small number of selected
protein structures and with some limitations this observation can also be extended to the use
of 10 actives. For several systems, the AUC values are even increasing with number of
frames.

Comparison of three frame-selection methods
In the previous sections, we have qualitatively compared the results of three methods for
reducing the number of structures in the EPS. Figure 3 provides the first quantitative
assessment how the AUC changes as a function of sub-ensemble size. To extend this
analysis additional quantitative descriptors for enrichment quality are discussed in this
section: EF1, EF10, EF20, logAUC. Graphs for each descriptor as a function of sub-
ensemble size were plotted similar to Fig. 3 and linear regression was derived for all
quantitative descriptors of virtual screening performance. Slopes of the linear regression
models are displayed in Table 2 and Supporting Information, Table S4. It should be noted
that the graphs of descriptor versus sub-ensemble size doesn’t necessarily always follow a
linear functional form as can be easily observed in Fig. 3. It is not our aim in this analysis to
derive optimal regression models but rather to provide trends for how the descriptors change
as a function of sub-ensemble size for the three different frame-selection methods. Table 2
demonstrates that among the three selection methods, training on known actives yields the
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strongest trend for increasing enrichment performance when reducing the number of
structures in the sub-ensemble (negative sign), whereas for the other two selection schemes
(diversification and training on binding modes) a negative trend (reduced enrichment with
reducing sub-ensemble size) was observed for several protein systems.

Structural and energetic analysis
In this section we aim to further discuss two observations made throughout our studies:
First, why do DHFR and thrombin in particular show improved enrichment quality using the
Limoc ensemble compared to docking to a single apo or holo structure? Second, using the
scheme in which protein structures are chosen that are able to separate actives from decoys
in pre-screening enrichment studies on a small sub-set of ligands, why do DHFR and AChE
show most consistent improvement among all protein systems using a small number of
selected protein structures (cf. Table 2).

To address the second question, we computed the difference between  and 
for all protein structures p. The cumulative probability over all protein structures is shown in
Figure 6. Negative values in the plot correspond to protein structures for which, on average,
actives are better ranked (more negative score) than decoys. DHFR (Figure 6, green dashed
line) displays a large tail towards negative score differences, and using virtual screening of a
subset of actives for protein structure selection, we were able to select protein structures
from this tail (Figure 6, green shaded region). By selecting protein structures within the tail
region, there is a larger separation distinguishing actives from decoys which ultimately leads
to higher enrichment. ERa (cyan) also displays a long tail with negative score differences,
however, it should be noted that all structures have a score difference smaller than -0.75.
Thus, any selection of protein structures results in an overall good enrichment performance,
and selecting few ERa protein structures doesn’t improve enrichment quality with the same
significance as for DHFR. The reason why AChE shows significant improvement, when
selecting a few protein structures, is that only about 10% of all protein structures display a
slightly negative score difference (Figure 6, blue dashed line). Thus, the whole Limoc
ensemble includes many structures which actually favor decoys over actives. Consequently,
we observe poor enrichment for AChE using the whole Limoc ensemble (Figure 1), but
selecting the few protein structures with a negative score difference (Figure 6, blue shaded
region) can actually results in increased enrichment performance (Figure 5 and Table 2).

To address the question, why DHFR and thrombin display improved enrichment when
docking to the Limoc ensemble compared to docking to a single static protein structure, we
performed a detailed analysis characterizing the structural changes of the protein relevant to
ligand binding by comparing distances between residues of the binding site. This analysis is
similar to that used in our previous paper on Limoc RCS docking.21 In detail, the backbone
of each amino acid is represented by the Cα atom and one atom represents the side-chain of
each residue (except glycine): Cβ for Ala, Nε for Arg, Cγ for Asn, Cγ for Asp, Sγ for Cys,
Cδ for Gln, Cδ for Glu, Cγ for His, Cγ1 for Ile, Cγ for Leu, Cε for Lys, Sδ for Met, Cγ for
Phe, Cγ for Pro, Oγ for Ser, Cβ for Thr, Cδ2 for Trp, Cζ for Tyr, and Cβ for Val. Distances
dij are computed between all those representing atoms of the residues that directly interact
with a diverse set of ligands in their bioactive conformations. In the thrombin system, for
example, residues His57, Tyr60A, Trp60D, Lys60F, Leu99, Ile174, Asp189, Ala190,
Cys191, Glu192, Ser195, Val213, Trp215, Gly216, Glu217, Gly219, and Gly226 were
considered to directly interact with the ligands of the three selected PDB structures used for
training on known binding modes. We then identified the ten protein structures for each

system that displayed the largest negative difference between  and . From
these ten structures, we computed the range of distances for dij; the minimum dij,min and
maximum dij,max value for each distance is identified. Two variables describing the
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deviations from the optimal range of  in positive and negative direction
were computed:

(4a)

and

(4b)

.

This separation into smaller and larger than optimal dij values is due to the assumption that
values that are too small might not provide enough space for binding the ligand in this
particular moiety of the binding site, whereas excessively large distances might not provide
optimal interactions between ligand and protein, resulting in a shift to more unfavorable
score values.

Using all protein structures of the Limoc ensemble we correlated the difference between

 and  for each structure with  and , to characterize the relative positions
of amino acids in the binding site and their deviations from the best ten protein structures.
We performed a multi-linear regression analysis for all protein systems using SAS

software29 correlating  and  with the difference between  and :

(5)

where  are the regression coefficients. The results for all five protein systems are
presented as Supporting Information S5. For thrombin, nine descriptors are identified in the
multi-linear regression model with an overall regression coefficient of r2 = 0.66. The single
descriptor d< (Cδ,Glu192 – Cα,Trp215) explains about 30% of the total variance in the
score-difference data. This particular distance varies between 12.3 Å and 14.7 Å for the ten
selected structures with the largest average score difference between actives and decoys. The
same distance in the apo thrombin structure is 1.5 Å smaller than dij,min. This is the largest
difference to dij,min or dij,max of any descriptor for any of the five protein system and may
strongly contribute to the large difference in enrichment quality between docking to the
Limoc ensemble and docking to the static apo structure.

In the context of the X-ray structure in two of the three selected protein structures of
thrombin (1a4w, 1d3t; see Figure 7), the side-chain of Glu192 is oriented closer to the
opposite site of the binding pocket (here represented by Trp215) and prevents certain classes
of thrombin ligands from binding in their native conformation. This inward-pointing
conformation of Glu192 is identified in the apo structure, whereas outward-pointing
conformations are identified for the ten protein structures with largest difference between

 and . Thus, docking to the apo structure of thrombin will result in poor
enrichment performance (cf. Figure 1).

Conclusions
We have presented three different schemes to automatically select protein structures as
alternative templates for ensemble docking. The initial ensemble of protein structures was
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generated using our Limoc concept which is able to generate holo-like protein structures. In
combination with AutoDock Vina and the RCS concept, we demonstrate that this
methodology is capable of enriching datasets of compounds using virtual screening.
Furthermore, we found that a balance can be achieved between the amount of protein
flexibility incorporated into docking and the increased potential to generate false positives if
too many template structures are considered in docking. If the protein structures optimal for
virtual screening are selected by a feasible training process on experimental data, ensemble
docking can be successfully performed on a very small number (3-5) of protein structures.
The most successful selection method in our studies has been to choose protein structures
that are able to separate actives from decoys in pre-screening enrichment studies on a small
sub-set of ligands. As a consequence of selecting a small number of protein structures for
ensemble docking, the efficiency of the screening process can be significantly improved. In
the most successful scheme, 10-20 active ligands have to be identified experimentally, but
no exact affinity data or knowledge on binding modes of these actives is necessary.

It should be noted that the scoring function of AutoDock Vina, used in our study, was
optimized for the correct prediction of binding poses and not for enrichment experiments.
Thus, scoring functions that are optimized for virtual screening might increase the observed
enrichment rates. We further speculate, if a scoring function optimized in the context of the
RCS scheme, considering protein flexibility and dynamics, has the potential to further
improve enrichment quality. Research in this direction is ongoing in our lab.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank Laura Kingsley for critical reading of the manuscript. M.A.L. thanks the National Institutes of Health
(GM085604 and GM092855) for funding the present research.

REFERENCES
1. Teague SJ. Implications of protein flexibility for drug discovery. Nat.Rev.Drug Discov. 2003; 2(7):

527–541. [PubMed: 12838268]

2. Bossart-Whitaker P, Carson M, Babu YS, Smith CD, Laver WG, Air GM. Three-dimensional
Structure of Influenza A N9 Neuraminidase and Its Complex with the Inhibitor 2-Deoxy 2,3-
Dehydro-N-Acetyl Neuraminic Acid. J.Mol.Biol. 1993; 232(4):1069–1083. [PubMed: 8371267]

3. Taylor NR, Cleasby A, Singh O, Skarzynski T, Wonacott AJ, Smith PW, Sollis SL, Howes PD,
Cherry PC, Bethell R, Colman P, Varghese J. Dihydropyrancarboxamides Related to Zanamivir:□
A New Series of Inhibitors of Influenza Virus Sialidases. 2. Crystallographic and Molecular
Modeling Study of Complexes of 4-Amino-4H-pyran-6-carboxamides and Sialidase from Influenza
Virus Types A and B. J.Med.Chem. 1998; 41(6):798–807. [PubMed: 9526556]

4. Carlson HA. Protein flexibility and drug design: how to hit a moving target. Curr.Opin.Chem.Biol.
2002; 6(4):447–452. [PubMed: 12133719]

5. Cavasotto CN, Abagyan RA. Protein flexibility in ligand docking and virtual screening to protein
kinases. J.Mol.Biol. 2004; 337(1):209–225. [PubMed: 15001363]

6. Teodoro ML, Kavraki LE. Conformational flexibility models for the receptor in structure based drug
design. Curr.Pharm.Des. 2003; 9(20):1635–1648. [PubMed: 12871062]

7. Totrov M, Abagyan R. Flexible ligand docking to multiple receptor conformations: a practical
alternative. Curr.Opin.Struct.Biol. 2008; 18(2):178–184. [PubMed: 18302984]

8. Beier C, Zacharias M. Tackling the challenges posed by target flexibility in drug design. Expert
Opin.Drug Discovery. 2010; 5(4):347–359.

Xu and Lill Page 10

J Chem Inf Model. Author manuscript; available in PMC 2013 January 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



9. Rao C, Subramanian J, Sharma SD. Managing protein flexibility in docking and its applications.
Drug Discov.Today. 2009; 14(7-8):394–400. [PubMed: 19185058]

10. Sotriffer CA. Accounting for Induced-Fit Effects in Docking: What is Possible and What is Not?
Curr.Top.Med.Chem. 2011; 11(2):179–191. [PubMed: 20939789]

11. Lin JH. Accommodating Protein Flexibility for Structure-Based Drug Design.
Curr.Top.Med.Chem. 2011; 11(2):171–178. [PubMed: 20939792]

12. Lill MA. Efficient incorporation of protein flexibility and dynamics into molecular docking
simulations. Biochemistry. 2011; 50(28):6157–6169. [PubMed: 21678954]

13. Bahar I, Lezon TR, Yang LW, Eyal E. Global Dynamics of Proteins: Bridging Between Structure
and Function. Ann.Rev.Biophys. 2010; 39:23–42. [PubMed: 20192781]

14. Chennubhotla C, Rader AJ, Yang LW, Bahar I. Elastic network models for understanding
biomolecular machinery: From enzymes to supramolecular assemblies. Phys.Biol. 2005;
2(4):S173–S180. [PubMed: 16280623]

15. Barril X, Morley SD. Unveiling the full potential of flexible receptor docking using multiple
crystallographic structures. J.Med.Chem. 2005; 48(13):4432–4443. [PubMed: 15974595]

16. Amaro RE, Baron R, McCammon JA. An improved relaxed complex scheme for receptor
flexibility in computer-aided drug design. J.Comput.Aided Mol.Des. 2008; 22(9):693–705.
[PubMed: 18196463]

17. Armen RS, Chen J, Brooks CL. An Evaluation of Explicit Receptor Flexibility in Molecular
Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics.
J.Chem.Theory.Comput. 2009; 5(10):2909–2923. [PubMed: 20160879]

18. Bolstad ES, Anderson AC. In pursuit of virtual lead optimization: pruning ensembles of receptor
structures for increased efficiency and accuracy during docking. Proteins. 2009; 75(1):62–74.
[PubMed: 18781587]

19. Lin JH, Perryman AL, Schames JR, McCammon JA. Computational drug design accommodating
receptor flexibility: the relaxed complex scheme. J.Am.Chem.Soc. 2002; 124(20):5632–5633.
[PubMed: 12010024]

20. Lin JH, Perryman AL, Schames JR, McCammon JA. The relaxed complex method:
Accommodating receptor flexibility for drug design with an improved scoring scheme.
Biopolymers. 2003; 68(1):47–62. [PubMed: 12579579]

21. Xu M, Lill MA. Significant enhancement of docking sensitivity using implicit ligand sampling.
J.Chem.Inf.Model. 2011; 51(3):693–706. [PubMed: 21375306]

22. Word JM, Lovell SC, Richardson JS, Richardson DC. Asparagine and glutamine: Using hydrogen
atom contacts in the choice of side-chain amide orientation. J.Mol.Biol. 1999; 285(4):1735–1747.
[PubMed: 9917408]

23. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr. Onufriev A, Simmerling C,
Wang B, Woods RJ. The Amber biomolecular simulation programs. J.Comput.Chem. 2005;
26(16):1668–1688. [PubMed: 16200636]

24. Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J.Med.Chem. 2006;
49(23):6789–6801. [PubMed: 17154509]

25. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new
scoring function, efficient optimization, and multithreading. J.Comput.Chem. 2010; 31(2):455–
461. [PubMed: 19499576]

26. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4
and AutoDockTools4: Automated docking with selective receptor flexibility. J.Comput.Chem.
2009; 30(16):2785–2791. [PubMed: 19399780]

27. Elber R, Karplus M. Enhanced sampling in molecular dynamics: use of the time-dependent Hartree
approximation for a simulation of carbon monoxide diffusion through myoglobin.
J.Am.Chem.Soc. 1990; 112(25):9161–9175.

28. Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: identification and analysis of
coexpressed genes. Genome Res. 1999; 9(11):1106–1115. [PubMed: 10568750]

29. The multilinear regression data analysis for this paper was generated using SAS software, Version
9.2 of the SAS system for Windows, Copyright ©2002-2008, SAS Institute Inc. SAS and all other

Xu and Lill Page 11

J Chem Inf Model. Author manuscript; available in PMC 2013 January 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc., Cary, NC, USA. 2010.

Xu and Lill Page 12

J Chem Inf Model. Author manuscript; available in PMC 2013 January 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Docking enrichment plots for five protein systems using DUD. The fraction of actives
ranked by docking score (y-axis) is plotted against the fraction of ranked decoys (x-axis;
logarithmic scale). Both, results derived from docking to the Limoc ensemble (LE; blue line)
and a static apo/holo (red) structure, are shown. Theoretical results from random selection
(black dots) are shown for comparison.
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Figure 2.
Docking enrichment plots for five protein systems using DUD. The fraction of actives
ranked by docking score (y-axis) is plotted against the fraction of ranked decoys (x-axis;
logarithmic scale). Results docking to the full Limoc EPS (LE; red) and most diverse sub-
ensembles with 20 (yellow), 5 (green), and 2 (purple) members are shown.
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Figure 3.
AUC as a function of the number of members in the sub-ensembles of protein structures.
The results for three different selection schemes are presented: Selection by diversifying the
EPS using pairwise RMSD values (yellow line), by training using binding-pose reproduction
of three different co-crystallized ligands (red), and by optimizing the difference in scores
between a small set of known actives and decoys (using 20 actives: blue; 10 actives: green).
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Figure 4.
Docking enrichment plots for five protein systems using DUD. The fraction of actives
ranked by docking score (y-axis) is plotted against the fraction of ranked decoys (x-axis;
logarithmic scale). Results docking to the full Limoc EPS (LE; red line) and sub-ensembles
with 20 (yellow), 5 (green), and 2 (purple) members are shown. Members of the sub-
ensembles were selected based on their potential to predict known binding poses correctly.
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Figure 5.
Docking enrichment plots for five protein systems using DUD. The fraction of actives
ranked by docking score (y-axis) is plotted against the fraction of ranked decoys (x-axis;
logarithmic scale). Results docking to the full Limoc EPS (LE; red line) and sub-ensembles
with 20 (yellow), 5 (green), and 2 (purple) members are shown. Members of the sub-
ensembles were selected based on their potential to actives from decoys of a small sub-set of
ligands from the DUD dataset. The results for using 20 actives are displayed.
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Figure 6.

Cumulative distribution of protein structures as a function of the difference between 

and . Distributions of all structures of a Limoc ensemble are displayed as dashed
lines, the corresponding subpopulations of ten structures selected by training on subsets of

actives are displayed as solid lines with transparent fillings. The difference between 

and  for docking to a single apo or holo structure is displayed as vertical arrows
below the x-axis including exact values.
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Figure 7.
Comparison of the conformations of Glu192 and Trp215 in the apo structure of thrombin
(carbon atoms colored in orange) and in the ten structures chosen from the Limoc ensemble
with the largest deviation between average scores of actives and decoys (carbon atoms in
green). Two representative thrombin ligands in their native binding pose from the PDB
databank (1a4w, 1d3t) are displayed with carbon atoms colored in light and dark blue,
respectively. Glu192 in the apo structure sterically overlaps with the two ligands. The
distance between Cδ of Glu192 and Cα of Trp215 in the apo form of thrombin is shown as
yellow dashed line.
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