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Abstract
RS-Predictor is a tool for creating pathway-independent, isozyme-specific site of metabolism
(SOM) prediction models using any set of known cytochrome P450 substrates and metabolites.
Until now, the RS-Predictor method was only trained and validated on CYP 3A4 data, but in the
present study we report on the versatility the RS-Predictor modeling paradigm by creating and
testing regioselectivity models for substrates of the nine most important CYP isozymes. Through
curation of source literature, we have assembled 680 substrates distributed among CYPs 1A2,
2A6, 2B6, 2C19, 2C8, 2C9, 2D6, 2E1 and 3A4, which we believe is the largest publicly accessible
collection of P450 ligands and metabolites ever released. A comprehensive investigation into the
importance of different descriptor classes for predicting the regioselectivity of each isozyme is
made through the generation of multiple independent RS-Predictor models for each set of isozyme
substrates. Two of these models include a DFT reactivity descriptor derived from SMARTCyp.
Optimal combinations of RS-Predictor and SMARTCyp are shown to have stronger performance
than either method alone, while also exceeding the accuracy of the commercial regioselectivity
prediction methods distributed by StarDrop and Schrödinger, correctly identifying a large
proportion of the metabolites in each substrate set within the top two rank-positions: 1A2(83.0%),
2A6(85.7%), 2B6(82.1%), 2C19(86.2%), 2C8(83.8%), 2C9(84.5%), 2D6(85.9%), 2E1(82.8%),
3A4(82.3%) and merged(86.0%). Comprehensive datamining of each substrate set and careful
statistical analyses of the predictions made by the different models revealed new insights into
molecular features that control metabolic regioselectivity and enable accurate prospective
prediction of likely SOMs.

Introduction
The cytochrome P450 (CYP) enzymes are a family of ubiquitous heme-thiolate proteins that
catalyze the metabolism of a large number of xenobiotic and endobiotic compounds.
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Members of three CYP families alone, CYP1, CYP2, and CYP3, account for the metabolism
of over 90% of clinical drugs.1,2 Nine of the most prevalent isoforms within these families
are CYPs 1A2, 2A6, 2B6, 2C19, 2C8, 2C9, 2D6, 2E1 and 3A4; the percentage of drugs
metabolized by each isozyme are: 1A2(15%), 2A6(3%), 2B6(8%), 2C19(12%), 2C8(8%),
2C9(20%), 2D6(25%), 2E1(4%) and 3A4(50%), respectively.2–9 The P450 phase I mediated
metabolism of orally administered drugs occurs primarily in the human liver, where CYP
isozymes are expressed at different levels: 1A2(13%), 2A6(4%), 2B6(10%), 2C19(unk.),
2C8(7%), 2C9(20%), 2D6(2%), 2E1(7%), 3A4(30%).6,10 Importantly, P450-mediated
metabolism may not be limited to the liver, as the genes that express specific CYP isoforms
have been found in many different tissues throughout the human body, allowing for tissue-
specific pharmacokinetic profiles to emerge that may vary between individuals.5,6,8,10–17

It is clear that lead compound PK and ADME/Tox optimization efforts would benefit greatly
through knowledge of the regiochemical location where any given compound would be
susceptible to metabolism by specific CYP isozymes. For example, such information would
allow susceptible regions of a lead molecule to be modified in ways that retain potentcy,
while optimizing PK properties and moderating hepatotoxicity. Unfortunately, using
experimental means to determine the exact location that a xenobiotic compound may be
susceptible to P450-mediated metabolism is both time and resource intensive. A solution to
this problem lies in the availability of reliable in silico models of CYP-mediated metabolic
regioselectivity that are applicable at all stages of the drug-discovery process. A number of
such models have been developed in recent years, but most have not yet achieved a desirable
level of predictive accuracy.

In the current state of the art, P450-regioselectivity models fall into two broad categories:
ligand-based, where putative sites of metabolism (SOMs) on the substrate are ranked
according to their respective reactivity scores, and enzyme structure-based, where the
reactivity of potential SOMs are weighted by the quality and number of poses that place
those SOMs close to the oxidizing heme of the CYP isozyme. Hybrid methods that utilize
signal from both sources have also been proposed. Some of regioselectivity models are
isoform-specific while others are not, but all are data-driven in that they require training
from existing substrate sets to form predictive models. Of the few 1A2, 2B6, 2C8, and 2E1
regioselectivity models proposed in the literature, all but two of them are purely based on
docking methods that were validated using fewer than than 20 substrates.18–23 One of the
exceptions is the commercial application MetaSite, a hybrid method which was successfully
applied in 2005 to 135 substrates of 1A2 and 125 substrates of 2C19, as well as substrates
sets of CYPs 2C9, 2D6 and 3A4.24 These last three are the most promiscuous P450
isoforms, and each has had a number of regioselectivity models proposed in the literature.
The majority of solutions for 2C924–29 and 2D624,30–37 are docking-based, while 3A4
models are primarily ligand-based,27,38,39 with some reactivity/docking hybrids,24,40,41 and
one docking-based solution.42 The proposed rationale for why reactivity is more relevant for
3A4 regioselectivity prediction is that the binding pocket is relatively large, allowing
substrates a high degree of orientational freedom, thereby giving each site equal access to
the catalytic heme.38 This theory may hold for other CYPs as well, as recently disclosed
crystal structures of other isozymes indicate that the large binding pocket of 3A4 is not
unique — other isozymes also posess binding sites with significant volumes: 1A2(375Å3),
2A6(260Å3), 2B6(no xtal), 2C19(no xtal), 2C8(1438Å3), 2C9(1667Å3), 2D6(540Å3),
2E1(190Å3), 3A4(1386Å3).6 Another explanation for why reactivity plays a greater role in
3A4-mediated metabolism is that the backbone of 3A4 is much more flexible than those of
other P450 isozymes;43 this provides explanations for both the high number of drugs
metabolized by 3A4 and why only one purely docking-based 3A4 regioselectivity solution
has been proposed. The electronic environment around each potential SOM of a substrate,
and how that environment reacts in proximity to a CYP catalytic heme are extremely
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important factors that have been used successfully by multiple isozyme non-specific
regioselectivity prediction methods.44–47 The majority of these models utilize AM1-derived
descriptors to approximate SOM reactivity, which other groups have shown to be useful in
estimating CYP regioselectivity.38,48 One of the more innovative approaches, published by
the Sheridan group at Merck in 2007, quantified putative SOMs with local substructure
information derived from 2D molecular topology, and then used random-forest machine
learning to determine which oxidative pathways were most likely to be utilized for a given
set of substrates.27 The benefit of this algorithm described by Sheridan et al. is that isozyme-
specific models could be trained from a large set of isozyme substrates and quickly be
applied to new substrates without explicitly calculating either the local SOM electronic
reactivity or the orientation of each ligand within the enzyme binding pocket. Another
valuable contribution of this work was the release of structures and metabolites of 324
substrates of 3A4, 134 substrates of 2D6 and 101 substrates of 2C9 — the largest public
release of P450 metabolites made up to that time.

Our recently published method, RegioSelectivity-Predictor (RS-Predictor), expands on the
work of Sheridan et al. by encoding putative SOMs with 148 topological descriptors that
capture local structural information, while characterizing local electronic reactivity through
392 quantum chemical descriptors derived by MOPAC49 2007 AM1 calculations on the
candidate substrate.50 Regioselectivity models are then created using MIRank, a customized
implementation of support vector machines (SVMs) technology that was specifically
designed to optimized the ranking of observed sites of P450-mediated oxidation over non-
observed sites on a substrate by substrate basis.51,52 RS-Predictor models may be built from
any sufficiently diverse set of substrates, such as those released by Sheridan et al., and were
proven to be highly effective at identifying the regioselectivity of a set of 394 substrates of
3A4. This set of substrates was originally used as the validation set for SMARTCyp, an
isozyme-blind method that differs from other reactivity-based methods in that high quality
DFT calculations are used to estimate the SOM reactivity of specific substructures rather
than using theoretically less sound AM1-derived charges.47 In SMARTCyp, the transition
state energies between a generic CYP heme and individual molecular fragments were
encoded as a SMARTS reactivity look-up table which collectively represents a large range
of known CYP-mediated reactions.53 The recorded reactivity of each putative SOM is
weighted slightly by the site’s span, a quantity that reflects its relative location to the middle
or end of the molecule. The strength of SMARTCyp lies in the encoding of a high quality,
first-order reactivity signal that is quickly accessible, while its weakness is the lack of
isozyme-specific signal that represents the different propensities of each P450 isozyme to
mediate specific pathways. RS-Predictor was specifically designed to capture this type of
information from any set of isozyme-specific substrates, but was originally dependent upon
a suboptimal reactivity signal from AM1-derived quantum chemical descriptors. The
weakness of each method is the corresponding strength of the other, which suggested that a
synthesis of the two methods would yield highly predictive isozyme-specific regioselectivity
models. This supposition proved to be correct, resulting in enhanced prediction quality of
RS-Predictor models described later in this report.

Prior to this publication, RS-Predictor results were only reported using 3A4 data, where it
was shown to outperform the state of the art methods that existed at the time. The main
focus of this work then is to establish the versatility of the RS-Predictor modeling paradigm
through the creation of robust SOM prediction models for all nine important CYP isozymes.
A fundamental part of this endeavor was the gathering and curation of CYP data from public
sources. In total 680 unique substrates were collated and then distributed into newly
assembled substrate sets for CYPs 1A2, 2A6, 2B6, 2C19, 2C8, 2C9, 2D6, 2E1 and 3A4. The
structures and metabolites within each of these sets may be found within the Supporting
Information and represent the largest collection of P450 substrates ever made publicly
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available. A comprehensive investigation into the utility of different classes of descriptors
towards accurate identification of CYP-mediated metabolism is made, which includes the
enhancement of the RS-Predictor framework through the incorporation of SMARTCyp
reactivities as a new descriptor. Optimal combinations RS-Predictor and SMARTCyp are
shown to outperform both methods individually, as well as the commercial methods
available through StarDrop54 and Schrödinger55 for 2C9, 2D6 and 3A4 substrate sets.
Meanwhile, regioselectivity QSARs representing the first ligand-based SOM prediction
models ever created for substrates of 1A2, 2A6, 2B6, 2C8, 2C19, and 2E1 were prepared
and shown to have high levels of predictive accuracy. To ensure that the RS-Predictor
method was producing valid results, another set of models were trained using only the
substrates of 2C9, 2D6 and 3A4 that had previously been released by Sheridan et. al. The
models created from these older datasets were used to make blind predictions on the newly
assembled sets of substrates for each isozyme, while treating the new compounds as blind
external sets. This approach allowed us to make fair comparisons of the predictive
accuracies of RS-Predictor, SMARTCyp, StarDrop and Schrodinger on identical external
datasets, providing a way for medicinal chemists to identify which method might be best for
use on their in-house compounds.

Results and Discussion
Complete details of the RS-Predictor algorithm have been described in our earlier published
work; a high level flowchart of the algorithm is given in Figure 1.50 To train an isozyme-
specific regioselectivity model, a set of known isozyme substrates are represented as
individual competitions between candidate SOMs, each of which is characterized by a
specified set of descriptors. SOM prediction models are then trained through the application
of MIRank to 10 independent substrate set partitions using a 10-fold cross-validation
scheme. Each compound then has 10 separate SOM rankings obtained from a collection of
models, each trained on 90% of the compounds in the dataset. Rank aggregation is then
employed to merge these independent rank predictions into a single consensus ranked list of
putative SOMs.

During the course of this investigation multiple RS-Predictor models were created for each
isozyme substrate set using different sets of descriptors. In this way we were able to
investigate the relative importance and contribution of each descriptor type for predicting
susceptable SOMs. The descriptor sets that were chosen represent an exhaustive
combination of 148 topological descriptors (TOP), 392 quantum chemical descriptors (QC),
and the SMARTCyp reactivity descriptor (SCR). One combination of descriptor types was
omitted: QC SCR. The complete definitions of the descriptors in each set may be found in
our prior work; some examples of TOP descriptors include whether a given SOM is in a
ring, the size and nature of the ring (aromatic or not), and the distribution of different atom-
types (C, O, N, etc.) up to four bond-lengths away from the given SOM. Examples of QC
descriptions include the AM1 partial charge, nucleophilicity, and σ – σ, σ –π, and π – π
bond orders.

To simplify overall presentation, only results for the stand-alone TOP QC RS-Predictor
model and the two incorporations of the SCR descriptor as TOP SCR and TOP QC SCR
models are given in this section. Results for TOP and QC models may be found in
Supporting Information. Predictions accuracies for independent RS-Predictor models are
compared with those of SMART-Cyp(V1.5), and the commercial methods available from
StarDrop(V4.3) and Schrödinger(V1.0) in Table 1. At the time of submission, results for
RS-Predictor and SMARTCyp had only been reported for substrates of 3A4.
SMARTCyp(V1.5) has not been calibrated towards any specific isoform, though post-
submission a separate 2D6 SMARTCyp model has been released.37 At the time of
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publication, neither StarDrop nor Schrödinger possess 1A2, 2A6, 2B6, 2C19, 2C8 or 2E1
regioselectivity models.

Consistent with previous regioselectivity investigations, each substrate was evaluated on the
basis of whether one or more of the experimentally observed SOM(s) were predicted within
the top two predicted rank-positions of the given method.24,27,38–40,44–47,50 This metric is
used because the source experimental data comes from a large number of different sources
and groups with potentially different motivations and techniques for the determination of
CYP-mediated metabolism, and so each putative SOM is given a binary response value,
metabolized or not-metabolized by the given CYP. Each entry in Table 1 gives the
percentage of known substrates of the column CYP that had an experimental SOM identified
within the top two predicted rank-positions by the given row method, with the performance
of the optimal model being shown in bold. If no evidence was found that the proportion of
correctly to incorrectly predicted compounds by the optimal method is greater (using a right-
tailed alternative hypothesis) than the proportion of another non-optimal method (i.e.
accepting the null hypothesis at a 5% significance level) then the performance of that non-
optimal method is also bolded. Fisher’s exact test of independence was invoked for this
purpose.73

The overall results clearly demonstrate the ability of RS-Predictor to capture the
regioselectivity propensities of any set of substrates regardless of the metabolizing isozyme,
provided that the dataset is large enough. The models that were produced were in fact
isozyme-specific, despite the fact that no enzyme structure was used during model
construction. An example of this is shown in Figure 2 through the metabolism of
cinnarizine, one of the few substrates that undergoes completely different 2B6, 2C9 and
2D6-mediated pathways. Isozyme-specific RS-Predictor models identify the observed sites
of oxidation for each isozyme, and the predictions were found to change from CYP model to
CYP model, just as the metabolism of the ligand changes from isozyme to isozyme.
SMARTCyp was able to identify the both sites of 2C9-mediated N-deaklylation, but neither
the 2B6 nor 2D6-mediated sites of aromatic hydroxylation. Both StarDrop and the
Schrödinger method identify the primary site of 2C9-mediated N-dealkylation, but miss the
secondary oxidation site, while only StarDrop was found to be able to identify the observed
site of 2D6-mediated metabolism. Neither of the commercial methods have 2B6 models,
though the 2C9 and 2D6 Schrödinger models both identify the observed 2B6-mediated
reaction in the primary predicted rank-position.

As hypothesized, the incorporation of SMARTCyp reactivities into the RS-Predictor
modeling framework yields a set of highly predictive regioselectivity models. On average,
TOP SCR and TOP QC SCR success rates surpass those of TOP QC models by 2.8% and
3.3% respectively, thereby illustrating the high quality signal of SMARTCyp reactivities and
the complementary information contained within different SCR and QC representations of
electronic reactivity. Further analysis revealed that the relative proportion of correctly to
incorrectly predicted compounds by SCR models were not statistically different to the
proportions of non-SCR models for a majority of the substrate sets. This disparity is likely
due to the small sizes of the majority of the assembled sets. Indeed for the two largest sets,
3A4 and merged, prediction rates between TOP QC models and optimal SCR models differ
by ~4.5%, and SCR models were found to return a statistically higher proportion of
correctly-predicted compounds than non-SCR models. But for the smaller sets, such as 2A6
and 2C8 where optimal SCR model rates are respectively 6.7% and 6.3% higher than non-
SCR model rates, the proportions of correctly to incorrectly predicted compounds between
the SCR and non-SCR models were found to be statistically equivalent. We hypothesize that
as more and more metabolite data becomes available for each isozyme, the performance of
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SCR models will not just be greater than those of non-SCR models, but greater by a
statistically significant measure.

Another explanation for statistical equivalence across multiple RS-Predictor models is that
the main strength of the algorithm lies not in electronic descriptors, but in the isozyme-
specific reaction pathway propensities elucidated through robust modeling of topological
descriptors. Consequently TOP SCR and TOP QC SCR models offer a significant boost in
performance over the isozyme non-specific SMARTCyp model, having higher average rates
of 9.3% and 9.7%, respectively. The prediction rates of RS-Predictor models with
SMARTCyp reactivities surpass those of StarDrop by ~6%, ~9% and ~8% and those of
Schrödinger by ~12%, ~16.5% and ~6% for 2C9, 2D6 and 3A4 sets respectively. In
addition, the relative proportions of correctly to incorrectly predicted substrates for optimal
RS-Predictor models are statistically greater than those of both StarDrop and Schrödinger.
While the SCR descriptor improves model performances regardless of isozyme, the same
cannot be said of AM1-derived QC descriptors. For the majority of the sets, TOP QC SCR
models are optimal, though TOP SCR rates are within 2% of TOP QC SCR rates for all sets
but 2B6. This highlights an interesting phenomena, in that AM1-derived descriptors
demonstrate significant signal towards the identification of 2B6-mediated metabolism;
prediction rates for the set of 2B6 substrates represent the only case where TOP QC models
outperform TOP SCR models. In other sets however, QC descriptors contribute no signal or
even decrease overall accuracy, as demonstrated by 2A6, 2C19, 2C8 and merged results.
Differences between TOP and TOP QC models, available within the Supporting
Information, show that TOP QC rates actually fall below TOP rates for 2A6 and 2C8 sets.
To further investigate the utility of QC descriptors, as well as make additional comparisons
between different methods, we have performed pathway-based analysis of each method and
model using specialized techniques developed in our prior work.

An alternative way to access the regioselectivity performance of a given prediction method
is to analyze the numbers of true-positive (TP) and false-positive (FP) predictions made by a
given model on a pathway-by-pathway, molecule-by-molecule basis. To accomplish this,
each SOM is placed into a set based upon the CYP-mediated reaction pathway that they
have the potential to follow. Each set is then composed of a certain number of observed and
non-observed SOMs; the exact ratios of  SOMs for each pathway and substrate set may
be found in Table 6 (see Methods). Due to the unbalanced nature of CYP-mediated
metabolism, there are usually many more non-observed SOMs than observed SOMs in each
pathway set, though there are exceptions such as with sulfur-based oxidation reactions. The
number of observed SOMs in each set that are correctly predicted in the top three rank-
positions (TP), as well as the number of non-observed SOMs that are incorrectly predicted
in the top three rank-positions (FP) are shown for individual methods and models for
merged, 3A4, 2D6 and 2C9 substrate sets in Figure 3. Comparisons were only made
between SOMs that occur within the same substrate. This evaluation technique has some
inherent ambiguity in that the TPs and FPs of each set were obtained by being ranked above
members of a different set, ie. a correctly predicted N-dealkylation reaction was ranked
above a non-observed aromatic ring hydroxylation. Despite this limitation, this evaluation
technique is a powerful way to compare a large amount of disparate information on a single
informative graphic. Using this approach, users who wish to evaluate the effectiveness of a
particular prediction method may quickly identify which pathways or substrate sets are most
accurately predicted using each method. More importantly, end-users with access to limited
MS/MS data that identifies only the region but not the exact location of a CYP-mediated
reaction site can objectively decide which model is best suited to predict the regioselectivity
profile of a specific compound. As an important note, these pathway-based findings
necessarily represent only the chemical information contained within the 680 substrates
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curated for this work; when additional information becomes available, the relative
performance of each method on specific pathways may change.

Using the comparative method described above, it is clear that in general, StarDrop has a
greater preference to predict aliphatic Csp3 hydroxylation than other methods, regardless of
isoform. This means that StarDrop predicts a greater number of both TPs and FPs than other
methods for reactions of this type. Schrödinger predicts a similar number of FPs as
StarDrop, but fewer TPs. SMARTCyp identifies a similar number of TPs as Schrödinger,
but has much fewer FPs than other methods, with the exception of RS-Predictor models for
the 2C9 set. The majority of RS-Predictor models have greater TP rates than all methods
save StarDrop and lower FP rates than all methods save SMARTCyp. In this case, QC
descriptors did not contribute to the accurate identification of aliphatic hydroxylation sites.
An example case where the inclusion of QC descriptors increases RS-Predictor accuracy is
in the case of hydroxylation of ellipticine, as shown in Figure 4. In a different example
(Figure 5), TOP QC SCR models identified the secondary observed site of 2D6-mediated
hydroxylation of atomoxetine in the third rank-position, but TOP SCR models predict the
same site in the second rank position.

One of our most surprising findings was that QC descriptors add significant information
towards the correct identification of CYP-mediated aromatic ring hydroxylation sites. This
signal was identified through the visible increase in TP rates and occasional decrease in FP
rates that QC models have relative to non-QC models. The effect is most easily seen in the
second major column of Figure 3a, as well as the aromatic ring pathway analysis in the
Supporting Information. Additional analysis of the top three predicted rank-positions of
different RS-Predictor models shows that TOP QC models identify 8, 9, 12 and 30 more TPs
and −3, 2, −6 and 10 fewer FPs than TOP models for 2C9, 2D6, 3A4 and merged sets,
respectively. Respective increases in TP rates of TOP QC SCR models relative to TOP SCR
rates are somewhat smaller, 5, 7, 7 and 19, while the number of TOP QC SCR FPs actually
increases by −2, 1, 8, 7 relative to TOP SCR rates. Still, with the exception of the 3A4 set,
the addition of QC descriptors to TOP SCR descriptors gives RS-Predictor a net
improvement in the identification of aromatic hydroxylations. This also indicates that the
SMARTCyp reactivities can be improved for aromatic hydroxylations. The sets for which
QC models have the least effect are 1A2 and 2E1. Looking at Table 6, these are the two sets
that have the highest ratios of  aromatic hydroxylations; perhaps better ratios allow RS-
Predictor models to elucidate a greater discriminatory signal for this reaction type solely
through topological descriptors and quantum chemical descriptors offer no additional signal.
The 2B6 substrate set has the greatest proportional increase in QC TP rate and decrease in
FP rate relative to non-QC models. Both QC models identify five more observed reactions
than equivalent non-QC models, while TOP QC models have 15 fewer FPs than TOP
models, and TOP QC SCR models have 9 fewer FPs fewer than TOP SCR models. These
numbers are relatively close to those mentioned for the other substrate sets, which is
significant considering that 2B6 contains approximately  and  of the number of
observed and potential aromatic hydroxylations as 2C9, 2D6, 3A4 and merged sets
respectively. This provides further justification for the importance of QC descriptors
towards the identification of 2B6-mediated regioselectivity. SMARTCyp was found to
identify fewer TPs and FPs than other methods. Both StarDrop and Schrödinger have
significantly higher numbers of FPs than other methods, while their TP rates only surpass
those of RS-Predictor for the 3A4 set.

While QC descriptors do not have as much effect on the TP prediction rates for non-
aromatic ring hydroxylation, they do lessen the number of predicted FP sites. TOP QC
models identify 7, 7, 31 and 34 fewer non-observed ring hydroxylations than TOP models
for 2C9, 2D6, 3A4 and merged sets respectively. As with aromatic hydroxylation, the
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relative difference between different SCR models is less pronounced, likely reflecting the
additional signal represented by the SMARTCyp reactivity descriptor. The FP rates of TOP
QC SCR models are 1, −1, 12 and 14 lower than corresponding TOP SCR models for
respective 2C9, 2D6, 3A4 and merged sets. Predictions of ochratoix_a and azelastine in
Figure 6 are two cases where TOP QC SCR models have improved TP predictions due to a
lowered rank-prediction of a non-aromatic ring false-positive incorrectly identified by a
TOP SCR model. Based upon this evidence we believe that if available mass-spectrometry
data indicates that an unknown substrate is undergoing ring-based metabolism, QC models
should be applied to determine the exact site of P450-mediated metabolism. With regards to
other methods, SMARTCyp identifies a few more observed ring hydroxylations than RS-
Predictor, but significantly more FPs for this reaction type. The only cases where RS-
Predictor TP rates match SMARTCyp rates are for TOP SCR model for the 2C9 set, and for
all models for the 3A4 set, where every method has very similar TP rates. Both Schrödinger
and StarDrop have higher ring hydroxylation TP and FP rates than RS-Predictor for 2C9 and
2D6 sets. These two methods have higher TP rates and lower FP rates than SMARTCyp,
except when Schrödinger TP rates match those of SMARTCyp for 2D6. Schrödinger and
StarDrop have similar rates for 2C9 and 3A4 sets, but StarDrop has higher ring
hydroxylation TP rates and lower FP rats than Schrödinger for the 2D6 set.

SMARTCyp and Schrödinger have similar TP prediction rates of sulfur-based reactions,
while Schrödinger has lower FP rates. StarDrop has similar FP rates to those of
SMARTCyp, but higher TP rates. RS-Predictor has a greater preference to predict sulfur-
based reactions than other methods, having higher TP and FP rates for all substrate sets.
Analysis of different RS-Predictor model predictions for the merged set indicate that QC
models alone are quite poor at identifying observed sulfur-based reactions, though they also
have a very low FP rate. The situation is reversed with TOP models, which have high TP
and FP prediction rates for sulfur-based reactions. When models are trained from both
descriptor sets the TP and FP rates fall in-between those of both models separately, with a
better overall  ratio than either. It appears to be a general trend across the different
substrate sets that the addition of SCR descriptors to TOP QC models improves TP
prediction rates of sulfur-based reactions while leaving the FP rates unchanged. Removal of
QC descriptors from these models increases FP prediction rates, while giving 3A4 models a
slight improvement in TP rates and improving the rank-positions of certain TP sulfur
predictions for other sets.

Of the three Csp2-based reactions, Csp2 oxidation, aldehyde oxidation and alcohol
oxidation, StarDrop is only parametrized to predict alcohol oxidation. While Schrödinger is
parametrized for Csp2 oxidation and aldehyde oxidation, only very rarely does it predict
them. Consequently both methods have lower TP and FP rates than RS-Predictor and
SMARTCyp for this reaction class. SMARTCyp has greater TP and FP rates than RS-
Predictor, while SCR models have better  ratios than non-SCR models.

The nitrogen-based reaction set does not include N-dealkylation reactions, which occur with
much greater frequency than N-hydroxylation, N-oxidation or Nitro-group reduction.
StarDrop is not parameterized for any of these reactions, its TP and FP predictions for this
category all represent dehalogenation reactions; these reactions were placed into this set
because they represent a known reaction type with low overall population, and graphic space
was limited. The most important conclusion to be drawn from the analysis of this pathway-
set is the strong propensity for SMARTCyp to predict nitrogen-based reactions. RS-
Predictor is able to successfully incorporate this signal; SCR models have significantly
higher TP rates than non-SCR models. At the same time the FP rates of TOP QC SCR
models are quite similar to those of TOP QC models, which was not guaranteed to occur
given the high FP rates of SMARTCyp. Even more interesting, the removal of QC
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descriptors from TOP QC SCR models results in decreased FP rates, which is the opposite
situation of what occurs for sulfur-based reactions, where removal of QC descriptors gives
TOP SCR models higher FP rates. The FP rates of Schrödinger are similar to those of QC
models, and have more, less and equal TP rates to SCR models for 2C9, 2D6 and 3A4 sets
respectively. The signal of QC descriptors towards the identification of aromatic ring
reactions, and the signal of SCR descriptors towards the identification of nitrogren-based
reactions, is likely why TOP QC SCR is the only model able to successfully identify the
primary observed site of 3A4-mediated aromatic ring N-oxidation of ellipticine, illustrated
in Figure 4.

In addition to having high prediction propensity for the low population N-based reactions,
SMARTCyp also identifies a large number of N-dealkylations. The TP rates of SMARTCyp
are greater than or equal to those of other methods, and its FP rates are as well, except for
the 3A4 set where Schrödinger FP rates surpass those of SMARTCyp. Schrödinger N-
dealkylation FPs are significantly higher than either StarDrop or RS-Predictor, which have
comparable FP rates. As with the other N-reaction set, incorporation of SCR descriptors and
subsequent removal of QC descriptors each decreases the number of predicted FPs. While
SMARTCyp has a strong propensity to predict N-dealkylations it has an equally low
propensity to predict O-dealkylation. RS-Predictor has the highest O-deaklylation TP rates
of all the methods, with decreasing FP rates upon the addition of the SCR descriptor and
subsequent removal of QC descriptors. StarDrop TP rates are slightly higher than those of
Schrödinger for 2C9, much higher for 2D6 and slightly lower for 3A4. Schrödinger FP rates
are similar to those of TOP QC models, while StarDrop FP rates are much lower than both
RS-Predictor and Schrödinger for 2C9 and 2D6.

The sets of SOMs undergoing O-dealkylation and N-dealkylation have higher ratios of 
reactions than most other pathway sets. Even more interesting, these catalytic propensities
have a high degree of variance between isozymes. The average  ratio of O-dealkyation
for both 2C9 and 2D6 datasets is 49.3, whereas it is 32.7 for N-dealkylation. In contrast, the
catalytic propensities of 3A4 substrates is 31.0 for O-dealkylation and 44.7 for N-
dealkylation. The previously observed biases of SMARTCyp to favor the prediction of N-
based reactions and disfavor the prediction of O-dealkation reactions provide a chemical
rational for observed SMARTCyp performances on distinct substrate sets. SMARTCyp has
an average prediction rate of 62.9% for 2C9, 2D6 datasets, compared with 74.4% for 3A4
and an average of 74.1% across all nine substrate sets. In contrast, SMARTCyp has an
average performance rate of 82.2% for 2A6 and 2E1 sets, the two sets with the smallest
average substrate size. These are two of the three sets where the proportion of correct
SMARTCyp predictions are found to be statistically equivalent to those of RS-Predictor. We
hypothesize the high quality reactivities of SMARTCyp are best suited to identify the CYP-
mediated regioselectivity of smaller substrates because each putative SOM has similar
likelihood of reaching the oxidative heme, making the transition state energy of each
fragment the most discriminatory factor between SOMs. For a similar reason SMARTCyp is
likely to perform better on isozymes with a flexible backbone, which are better able to
expand and accommodate substrates in any orientation. The strong SMARTCyp
performance upon 1A2(78.9%) substantiates this views, because 1A2 the only CYP isoform
beyond 3A4 that has been reported to accommodate multiple ligands within its binding site
at the same time.56 Investigations by Cruciani et al. also found that local SOM reactivity
was a more important factor for 1A2 and 3A4 isozymes than it was for 2C9, 2D6 or 2C19
isozymes.24 The 1A2 set is the third case where the proportion of correct SMARTCyp
predictions are found to be statistically equivalent to those of RS-Predictor.

Isozyme specific RS-Predictor models, which elucidate pathway-based regioselectivity
trends through topological descriptors, have relatively consistent performance regardless of
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whether or not SMARTCyp reactivities are incorporated into model generation. Respective
TOP QC and TOP SCR RS-Predictor models have average prediction rates of 79.9% and
83.2% for 2A6 and 2E1 substrate sets, 81.9% and 83.9% for 2C9 and 2D6 datasets, and
80.3% and 83.2% for all nine substrate sets. To ensure that these results are truly
representative of how RS-Predictor will perform upon novel ligands, further validation
experiments were employed.

Model Validity
Each individual substrate prediction made by RS-Predictor was performed by a model
trained on 90% of the compounds within the substrate set for each isozyme in order to allow
for bootstrapping and model validation. Subsequent to validation, production-level models
were created using 100% of the available substrates in order to obtain the best possible RS-
Predictor models for making blind predictions. This means that predictions made using these
models will best reflect real-world situations. However, it may be that the in-house
compounds to which these models are one day applied may occupy a different region of
chemical space than those represented by our collated substrate sets, resulting in lower
accuracy until models are extended to that portion of chemical space as well. As a separate
issue, the substantial degree to which RS-Predictor outperforms SMARTCyp, StarDrop and
Schrödinger methods may stem from the fact that it alone has training access to the large
amount of experimental metabolite information that is only now being released in this work.

To address these issues we have performed additional validation tests by training RS-
Predictor models on updated versions of the 98 2C9, 134 2D6 and 321 3A4 substrates
previously released by Sheridan et al. in 2007. These Calibration models were then applied
to the 128 2C9, 136 2D6 and 154 3A4 substrates that were newly collated in this work.
These new data were treated as blind External sets using the Prediction schema in Figure 1.
The Calibration and External sets of each isozyme represent independent samples of the
available literature regioselectivity information; despite the fact that each set of is composed
of substrates of the same isozyme, each sample may in fact represent very different
regioselectivity spaces, just as the proprietary compounds within a given pharmaceutical
company may represent a unique regioselectivity space. The differences in the  SOMs
of different oxidative pathways from the substrates of each Calibration and External set are
given in the Supporting Information and help to illustrate these differences. Further analysis
of similarity between the Calibration and External sets of each isozyme were made through
fingerprint similarity analysis. MACCS fingerprints as implemented in MOE were
calculated for the all of the substrates of each isozyme dataset.57 It was determined that
using MACCS fingerprints and a 95% Tanimoto similarity that Calibration and External sets
of 3A4, 2D6 and 2C9 respectively contained 16, 2 and 7 similar compounds. This suggests
that the Calibration and External sets of each isozyme are significantly different in
composition.

An additional benefit to performing Calibration and External set investigations is that results
of RS-Predictor, SMARTCyp, StarDrop and Schrödinger may be compared with those
previously released for Merck and MetaSite methods. These are not entirely one-to-one
comparisons, as the Calibration sets of this work have been slightly updated based upon new
literature information (see Methods), but they are still informative. We have also applied the
3A4 reactivity model of Schrödinger, which represents half of the Schrödinger 2C9 and 2D6
models, to both 2C9 and 2D6 sets. This additional experiment lets us to gauge the relative
benefits of running the time-intentsive Glide docking component of Schrödinger 2C9 and
2D6 models, while also giving us a second purely reactivity-based set of results for each set
from a source independent of SMARTCyp.
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Overall results in Table 2 show that External RS-Predictor rates fall below those of
Calibration rates; the drops in performance vary significantly between isozymes and
descriptor sets, reflecting both differences in regioselectivity space, as well as the
applicability of different descriptors towards those spaces. At the same time the Calibration
models of RS-Predictor, even those that do not incorporate SMARTCyp reactivities,
outperform all other methods for all sets, with the exception of SMARTCyp for the 3A4
External set. Since External 3A4 substrates contain on average four fewer potential SOMs
than Calibration substrates, the fact that SMARTCyp External rates are higher than
Calibration rates corroborates the hypothesis that SMARTCyp is best suited to identify the
regioselectivity of smaller substrates. It also gives evidence beyond SMARTCyp results
upon other isozyme substrate sets that the first-order principle represented through time-
intensive DFT calculations may be viably applied to additional compounds for which they
were not exclusively calibrated. The question then becomes: Why do other methods fare so
poorly upon the 3A4 External set as compared to how well they perform upon the 3A4
Calibration set?

Our findings indicate that the empirical modeling of electronic reactivity through 392
quantum chemical descriptors derived through AM1 semiempirical Hamiltonian result in
overdetermined RS-Predictor models for the 3A4 Calibration set. Prediction rates of RS-
Predictor models trained with QC descriptors on the External 3A4 set fall on average 11.6%
below Calibration rates. However models trained using just topological descriptors, or
topological descriptors with SMARTCyp reactivities, have External rates that fall just 2.7%
below those of equivalent Calibration rates. The reason for this appears to be that AM1-
derived signal has greater relevance for the 3A4 Calibration set than for the 3A4 External
set. Performance rates of TOP QC and TOP QC SCR models for the 3A4 Calibration set
exceed those of TOP and TOP SCR models by 6.2% and 3.8% respectively. These results
indicate that the QC descriptors have significant signal for the 3A4 Calibration set, just as
they do for the set of 2B6 substrates, but that the elucidated signal for QC models is not
guaranteed to be applicable to a different set of 3A4 substrates that encompasses a different
area of regioselectivity space. Respective performances drops of 12% and 10.6% for
Schrödinger and StarDrop show that this phenomena of different 3A4 regioselectivity spaces
is not indicated by RS-Predictor alone. As Schrödinger and StarDrop represent
fundamentally different modeling algorithms than RS-Predictor, drops in performances are
more likely to stem from different domains of applicability between the small set of
substrates each method was calibrated upon (unreleased by either method) and the External
sets of this work, rather than the particulars of a given modeling algorithm.

The signal relevance of QC descriptors for the largest set of 3A4 substrates available prior to
our literature collation efforts helps to explain the large number of 3A4 and isozyme non-
specific AM1-depedent regioselectivity methods that have been proposed, and raises
questions about their overall utility.39,40,44,45 Another group investigating CYP hydrogen-
abstraction models using PM3, SAM1 and AM1-derived regression models found results to
be internally consistent within the given training set, but could only be applied to predict
external DFT-derived activation energies for alkane reactions, and no other reaction types.58

They suggest, and we agree, that semiempirical-derived models should be interpreted and
applied with a certain degree of caution. Still the small 0.2% difference between TOP SCR
and TOP QC SCR rates for the complete set of 475 substrates of 3A4 suggests that robust
MIRank modeling of the entire 3A4 regioselectivity space is able elucidate QC and non-QC
signal with similar degrees of overall effectiveness.

This was proven when select 3A4 RS-Predictor models were applied using the Prediction
schema in Figure 1 to a set of 38 in-house 3A4 substrates provided by a major
pharmaceutical company that we are currently collaborating with. TOP QC, TOP QC SCR
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and TOP SCR models were respectively able to identify the observed SOMs in the top two
rank-positions 71%, 71% and 76% of the time. StarDrop also performed well with an
accuracy of 74%; in contrast SMART-Cyp and Schrödinger faired poorly upon this set, with
respective prediction accuracies of 55% and 58%. The higher accuracy of RS-Predictor and
StarDrop models, while encouraging, do not imply that they are the only methods that
should be applied to compounds under development, merely that on on average they are
more accurate than the other two methods. In Table 3 we see that each individual method
and model is able to identify the 3A4-mediated metabolism of at least one compound that is
not correctly identified by another method or model. The SMARTCyp reactivity descriptor
has less overall effect on the base TOP QC RS-Predictor model accuracy for this set (TOP
QC models have the highest top three rank-prediction accuracy of all the methods) than for
the public 3A4 substrate set. Meanwhile the QC models of 3A4 models are shown to be just
as robust as non-QC models for this set of substrates. A point made in our prior work was
that the base 3A4 TOP-QC RS-Predictor model is less accurate than other methods when
considering only the first predicted rank-position, but more accurate than other methods
when the second and third positions are taken into account.50 Results for this set of
compounds corroborate this finding, while showing the incorporation of the SMARTCyp
reactivity descriptor improves the accuracy of the first rank-position while leaving second
and third rank-position accuracy relatively unchanged.

Quantum chemical descriptors have less overall significance towards the identification of
2D6- mediated regioselectivity. The prediction rates of TOP SCR and TOP QC SCR models
are within 1% of each other for both Calibration and External 2D6 sets. The DFT-derived
transition state energies encoded within SMARTCyp are not equally effective at the
identification of 2D6-mediated metabolism, with Calibration and External rates that differ
by almost 20%. SMARTCyp prediction rates for the 2D6 Calibration set are astonishingly
low at 48.5%, but at 68.1% almost equal the performances of StarDrop and Schrödinger for
the External set. Such discrepancies cannot be explained by overall substrate size;
propensities of Csp3 hydroxylation, O-, N-dealkylation and S(II)-oxidation have some
variance between sets, though not enough to justify such significant differences in
SMARTCyp performance. Instead these findings indicate that electronic reactivity is much
more important for the External 2D6 set than it is for the Calibration set. Indeed, the
Schrödinger 3A4 model, a reactivity-based method developed completely independently
from SMARTCyp has a 9.6% performance increase for the External 2D6 set relative to
Calibration set rates. When Glide docking is combined with the 3A4 model to create the
Schrödinger 2D6 model, Calibration rates rise by 7.7%, corroborating the importance of
isozyme structure towards 2D6-mediated regioselectivity. The discrepancy between
Schrödinger 2D6 and 3A4 model performance is much more pronounced for the Calibration
set (7.7%) than for the External set (2.0%), likely due to the greater signal of the
Schrödinger reactivity model for the External set. Schrödinger Calibration rates are
significantly lower (15.3%) than those of StarDrop, but when the third predicted rank-
position is taken into consideration, Schrödinger rates fall only 3.5% lower than those of
StarDrop. RS-Predictor does approximately 5% better upon the 2D6 Calibration than
StarDrop, but 10% better for the External set. Where SMARTCyp and Schrödinger External
rates improve relative to Calibration rates by 19.6% and 3.9% respectively, StarDrop and
RS-Predictor External rates respectively fall by 12.3% and ~7%. Differences between RS-
Predictor Calibration and External 2D6 rates are relatively constant, regardless of the
descriptor set used. Few details are known about the orientation and steric descriptors used
within StarDrop, and we are therefore unsure why External rates should drop so
significantly, beyond the fact that Calibration and External 2D6 sets appear to represent
significantly different regioselectivity spaces.
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Whereas each method has significant differences in performance for the Calibration and
External sets of 3A4 and 2D6, the same cannot be said 2C9. Performances for each method
and model are relatively stable across all 2C9 substrates. This is somewhat surprising given
that this is the only case where the External set is substantially larger than the Calibration
set, and there are significant differences in pathway propensities of Csp3 and Csp2 oxidation.
One explanation could be the relative similarity in observed propensities of O-, N-
dealkylation and S(II)-oxidation between Calibration and External sets; 2C9 is the only
isozyme for which these mechanisms all have similar propensities between sets. It is also the
only isozyme for which both TOP QC and StarDrop External rates rise relative to the
Calibration rates. Schrödinger rates also rise, but only for the 2C9 model, the 3A4 reactivity-
based model rates fall slightly. While Glide docking makes the Schrödinger 2C9 model
more robust for the External set, the 3A4 model actually does better for the Calibration set,
raising questions about which Schrödinger model should be applied to an unknown 2C9
substrate. 2C9 is also the only isozyme where SMARTCyp External rates fall below
Calibration rates, and though the fall is by only by a small amount (0.8%), it helps to explain
the lack of robustness of TOP SCR models relative to TOP QC SCR models.

While TOP SCR rates are optimal for the three External sets, TOP QC SCR models only
predict one substrate less than TOP SCR models for 2C9 and 2D6 sets. Meanwhile the QC-
regioselectivity space of 3A4 Calibration and External sets are significantly different, as
evidenced by Calibration/External performance rates of 74.8%/72.1% and 81.0%/68.8% for
TOP and TOP QC models respectively. As shown earlier TOP QC, TOP QC SCR and TOP
SCR models have equivalent overall performances for a different set of 38 proprietary
substrates of 3A4. While the number of accurately predicted substrates between TOP SCR
and TOP QC SCR models only differ by one for 2C9 and 2D6 External sets, this does not
mean that TOP SCR models correctly predict one additional substrate that was missed by
TOP QC SCR models. In fact TOP SCR models identified 9 2C9, 8 2D6 and 16 3A4
External substrates missed by TOP QC SCR models, while TOP QC SCR models identified
8 2C9, 7 2D6 and 6 3A4 External substrates missed by TOP SCR models. This then raises
the question which model, TOP SCR or TOP QC SCR, should be applied to predict the
regioselectivity of an unknown compound. To help future users of RS-Predictor answer this
question, as well to aid the endeavors of future modelers, we have shown example substrates
from the External sets that were predicted by one of these models but not the other in Figure
7, Figure 8 and Figure 9.

In the oxidation of all-trans retinol(6a) by 2C9, RS-Predictor models created with
topological and SMARTCyp descriptors alone erroneously predicted that the preferred
metabolic sites would be on the allylic methyl and methylene groups on the cyclohexene
ring, and the third site involving the geminal methyl groups; the addition of QC descriptors
allowed the TOP QC SCR models to properly identify the observed Csp3 oxidation site in
the first rank-position. However, in 13-cis-retinoic acid(6b), the terminal carbon bearing the
hydroxyl group is no longer available as a potential Csp3 reaction site, and the predictions
made without QC descriptors are more accurate. A similar situation occurs in the naturally
occurring compound eugenol(6d), an extensively used flavoring agent and fragrance whose
CYP-mediated O-dealkylation results in the toxic product hydroxychavicol that can damage
DNA. In this case, the inclusion of QC descriptors bias the outcome and predict that
potential reactions at the allylic or vinylic positions are more favorable than at the actual
observed SOM, whereas TOP SCR models identify the observed O-deakylation in the
second rank-position. Safrole is another natural product that only differs from eugenol in
that the two ortho oxygens on the benzene ring are joined as a 1,3-dioxolane. This region of
the fused bicyclic molecule is then more stable to CYP-mediated oxygen dealkylation, and
the reaction outcome changes from O-demethylation for eugenol to Csp3 hydroxylation at
the benzylic/allylic position for safrole, making TOP QC SCR models more accurate in this
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case. Replacement of the vinyl moiety of safrole with two different saturated secondary
amines give the structures of the widely abused amphetamine derivatives MDMA(6e) and
MDE(6g). The addition of QC descriptors to TOP SCR models was found to increase the
predicted rank-position of the observed SOMs of these two compounds. CYPs 1A2, 2B6 and
3A4 also mediate the N-deethylation of MDE as a secondary reaction; TOP SCR and TOP
QC SCR models both identify the observed SOMs in the first and second rank-positions, but
only QC models predict them in the correct order. These findings all indicate that QC
descriptors are better suited to predict compounds with 1,3-dioxolane moiety fused to an
phenyl ring.

The 3A4-mediated pathways of the R(6f) and S(6h) enantiomers of warfarin are better
predicted by TOP SCR models than those involving QC descriptors. This represents
additional evidence that the inclusion of QC descriptors tends to overestimate the reactivity
of certain aromatic and enolic sites. Further analysis of the reactivity patterns of both
warfarin enantiomers shows that both of the aromatic ring hydroxylations mediated by 3A4
are also mediated by 2C9, as is an additional aromatic ring reaction that was properly
identified by the second predicted SOM of 3A4 TOP QC SCR models. For these 2C9-
mediated reactions, TOP QC SCR models were better at predicting the observed reactions,
in contrast to what was observed in 3A4 warfarin modeling. Since QC descriptors were not
designed to encode enantiospecific information, some loss of accuracy may be expected, and
suggests that the incorporation of chiral descriptors into RS-Predictor modeling would be a
viable path for future research.

With verapamil(7a), a calcium channel blocking agent used in the treatment of cariovascular
disorders, models trained with quantum chemical descriptors alone identify the two
observed SOMs in the first two rank-positions, and the non-observed para-oxygen
dealkylation in the third rank-position. The addition of topological descriptors changes
changes that last prediction to the non-observed N-deaklylation, while the addition of SCR
descriptor places moves the N-deaklylation to the second predicted position, while the
observed meta O-deakylation moves to the third rank-position. A conclusion to be drawn
from this observation is that for relatively symmetric molecules, QC descriptors will be
more informative than the 2D-based atom distributions represented through topological
descriptors that do not explicitly represent information about the local electronic
environment around a putative site. Another relatively symmetric molecules that is more
accurately predicted by QC models than non-QC models is o-Phenylphenol(7c), a fungicide
used on harvested citrus fruits with a toxic CYP-mediated metabolite. The CYP-mediated
site of benzenol hydroxylation was identified by TOP SCR models in the third rank-
position, but by TOP QC SCR models in the first rank-position.

Pranidipine(7b) and nicardipine(7d) are calcium channel blockers with significantly
different scaffolds than verapamil; each substrate is composed of a Hantzsch
dihydropyridine ring with an attached meta-nitrobenzene, but differ by having slightly
different ester chains. SMARTCyp highly favors the prediction involving Hantzsch pyridine
hydroxylation, with the two observed sites of 2D6-mediated pranidipine metabolism in the
first and second rank-positions. These same sites are predicted by SMARTCyp in the same
positions for nicardipine, barnidipine and nifedipine - these molecules are metabolized in
those positions by some CYP isoforms and not others. Neither topological or quantum
chemical descriptors were able to identify this reaction class. Therefore, it is possible to
suggest that TOP SCR models, which do not contain the large number of QC descriptors
that have the potential to dilute encoded SMARTCyp reactivity information, should be used
to for predicting the sites of CYP metabolism on molecules with a Hantzsch pyridine
scaffold. Results for E3179(7f) and theophylline(7h) indicate tha substrates witht imidazole
moieties should also be predicted by TOP SCR models, or by SMARTCyp alone. For both
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of these cases, TOP, QC and TOP QC models were unable to identify the observed SOMs
on or adjacent an imidazole, whereas SMARTCYP identifies the observed SOMs in the 1st
and 2nd rank-positions. Another case where QC models make less accurate predictions near
an nitrogen-containing aromatic ring is the atypical serotonin-dopamine antagonist
antipsychotic drug sertindole(8b). In this case, however, the observed 2D6-mediated
reaction is an imidazolidine hydroxylation on a different region of the molecule, which TOP
SCR models identify in the first rank-position.

As stated earlier QC models tend to have higher aromatic ring TP rates, and lower non-
aromatic ring FP rates. One example of this is the greater accuracy TOP QC SCR models
upon the steroid hormone ethinylestradiol(7e). TOP SCR models identify two non-observed
non-aromatic ring hydroxylations, but QC signal let RS-Predictor identify the observed
aromatic ring hydroxylation in the first rank-position, and a different position on the same
ring in the third rank-position. Another case of improved QC prediction quality is the 2D6-
mediated ring formation of the prodrug proguanil(7g). Topological descriptors alone identify
the aromatic ring region of the molecule as being the active site in the first and second
predicted rank-positions and the addition of SMARTCyp reactivities place the observed
SOM in the third rank-position. On the hand, Quantum chemical descriptors alone identify
the isopropane group as being reactive in the second and third rank-posisionts, while the
addition of topological descriptors places the observed site of oxidation in the first rank-
position.

The mechanism through which the widely used analgesic and antipyretic agent
acetaminophen(8a) is metabolized is not completely understood. It is therefore fitting that
TOP SCR and TOP QC SCR models would each identify only one of the reaction sites that
have the potential to yield the known product NAPQI, a toxic compound that causes severe
hepatocellular damage. In this case, SOM predictions of TOP and TOP QC models are
identical to their SCR counterparts, which is favorable considering that SMARTCyp alone is
not able to identify either of the observed reaction sites. Unfortunately, lack of change in
SCR predictions relative to non-SCR predictions is not always a good situation.
Etizolam(8b) is a short-acting benzodiazepine derivative prescribed for the treatment of
insomnia and related sleep disturbances that undergoes 3A4-mediated Csp3 hydroxylation
and 2-hydroxylation of a 1,4 diazapine. Both these sites are identified by SMARTCyp in the
top two rank-positions, while QC models only identify the Csp3 hydroxylation site and TOP
models only identify the ring hydroxylation site. TOP QC models were able to identify both
reaction sites, but only in the second and third rank positions. The incorporation of
SMARTCyp reactivities leaves the results unchanged, despite optimal SMARTCyp
predictions. Etizolam also provides an example of how QC descriptors can lessen sulfur
oxidation FPs, specifically on a thiophene ring.

TOP SCR models for thiophene sulfur oxidation made false-positive predictions on two 5-
lipoxygenaze inhibitors released by Abbott Laboratories: ABT-761(8g) and its N-
hydroxylated metabolite ABT-438(8e). The 2D6-mediated oxidation at the benzylic
methano bridge are only predicted by TOP QC models, but not by TOP or QC models
individually; the incorporation of SMARTCyp reactivities appear to have little effect. For
the antithrombotic prodrug clopidogrel(8d) however, the observed 2C9-mediated
monooxygenation of the fused thiophene ring is only predicted by TOP SCR models. It
appears that non-QC models tend to predict thiophene reactions more often than QC models
do, regardless of whether CYP-mediated metabolism actually occurs on that moiety for a
particular substrate. This could explain why both the TP and FP rates of TOP SCR models
are higher than those of TOP QC SCR models for sulfur-based oxidation reactions. TOP
SCR models were also found to perform better in the prediction of S(IV) oxidations. The
observed S(IV) oxidation of ML3603(8f), a metabolite of the potent inhibitor of p38 MAP
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kinase ML3403 is better predicted by non-QC models, another case of a poor quality QC
prediction for a site near an imidazole moiety. Removal of QC descriptors lowers sulfur FP
rates while simultaneously identifying sites of 2D6-mediated S(IV) oxidation of the
phenothiazine neuroleptic mesorisazine(8h), a blocker of dopaminergic D2 and
noradrenergic α1 receptors.

The main conclusions to be drawn from the above cases about how and when QC
descriptors and models are most appropriate can be summarized as follows:

• QC descriptors are often better suited to the identification of sites on or near
aromatic rings

• QC models should be used when making predictions on compounds with a
benzene-fused 1,3-dioxolane moiety

• QC descriptors are not sufficient to discriminate between enantiospecific CYP-
mediated pathways in chiral compounds.

• QC models have difficulties identifying observed SOMs on or near nitrogen
containing rings, specifically Hantzsch dihydropyridine, imidazole and
imidazolidine moieties.

• Non-QC models have a greater ability to correctly prioritize sulfur-based reactions,
and have greater numbers of TPs and FPs than QC models

It is important to remember that the cases described above represent comparisons between
two different RS-Predictor models as applied to specific External sets which represent a
relatively small sampling of the assembled P450-substrates. Conclusions drawn from such a
sampling should only be considered suggestive, and not be taken as canon.

Conclusion
The incorporation of fragment DFT transition state energies from SMARTCyp into the RS-
Predictor modeling framework enabled the creation of robust isozyme-specific CYP
regioselectivity QSARs trained using the largest set of P450 substrate data released to date.
Optimal combinations of RS-Predictor and SMARTCyp were able to identify
experimentally observed sites of metabolism within the top two rank-positions for substrate
sets for each CYP isozyme with the a high level of cross-validated accuracy: CYP(number
of substrates, accuracy), 1A2(271, 83.0%), 2A6(105, 85.7%), 2B6(151, 82.1%), 2C19(218,
86.2%), 2C8(142, 83.8%), 2C9(226, 84.5%), 2D6(270, 85.9%), 2E1(145, 82.8%), 3A4(475,
82.3%) and merged(680, 86.0%). Performance of these models were demonstrated to be
higher than those made by commercially available regioselectivity models from
StarDrop(78.0%, 75.3%, 74.1%) and Schrödinger(72.1%, 68.1%, 76.4%) for the 2C9, 2D6
and 3A4 sets, respectively. Combined models were also shown to have higher respective
performances than RS-Predictor models trained without SMARTCyp reactivities (80.5%,
83.3%, 77.7%), or SMARTCyp alone (67.3%, 58.4%, 74.4%). To validate RS-Predictor
performance rates, models were created using the largest sets of 2C9(98), 2D6(134) and
3A4(321) substrates available prior to this work which were then applied to the newly
assembled datasets of substrates of each isozyme, which were used as blind external sets
(2C9:128, 2D6:136, 3A4:154). Calibration and external rates were found to be statistically
equivalent for 2C9 models, and the same was found for 3A4 models that were created
without quantum chemical descriptors. Quantum chemical descriptors were found to have
significantly better results when identifying the regioselectivity of the 3A4 calibration set
alone, but the added effectiveness did not translate to the 3A4 external set. External rates of
the 2D6 models fell roughly 7% below those of equivalent calibration rates, while all other
methods except the Schrödinger method showed even greater performance discrepancies
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between sets. Performance differences for the majority of methods indicate that 2D6
calibration and external sets represent significantly different areas of regioselectivity space.
Meanwhile the prediction rates of optimal combinations of RS-Predictor and SMARTCyp
surpassed those previously reported by Merck (12.3%, 14.7% and 8.2% more accurate) and
by MetaSite (15.9%, 21.2% and 23.9% more accurate) for the 2C9, 2D6 and 3A4 calibration
sets, respectively. In addition to performing well on 2C9, 2D6 and 3A4 substrates, this work
describes the first ligand-based regioselectivity models ever released for CYPs 1A2, 2A6,
2B6, 2C19, 2C8 and 2E1.

What makes RS-Predictor modeling different from the majority of regioselectivity
prediction methods is that no explicit modeling of a particular substrate within an isozyme
binding pocket is made. Instead, regioselectivity signal is elucidated from three sources: 1)
topological descriptors, which represent the relative propensities of different oxidative
pathways to occur for a particular isozyme, 2) quantum chemical descriptors, which
represent the local electronic environment of putative sites with respect to the global
electronic environment of the substrate, and 3) SMARTCyp transition state energies, which
represent the local energy barrier that each unique fragment must overcome to be oxidized
by a CYP heme. The benefit of this strategy is that once catalytic trends have been obtained,
the encoding of a candidate ligand with these descriptors and application of a previously
generated QSAR may be accomplished in approximately 2 s for a non-quantum chemical
model and 9 seconds for a quantum chemical model. These runtimes are shorter than the one
to ten minute runtime of StarDrop required by MOPAC calculation of substrate abstraction
energies, and significantly faster than the two to two and a half hour runtime of Schrödinger
requires for induced-fit docking. In contrast to this, the reactivity-only models from both
SMARTCyp and Schrödinger may be applied in less than a second, but both lack the
isozyme-specific signal provided by RS-Predictor models. While the implicit representation
of the catalytic trends of a particular isozyme using topological descriptors is quick and
yields impressive results, incorporation of data from the explicit docking of candidate
substrates will likely produce even better overall performance. Investigation into the
development of quickly calculable docking-based descriptors compatible with the RS-
Predictor modeling framework is currently underway.

The main weakness of RS-Predictor and the majority of other regioselectivity prediction
models is the implicit assumption that any compound submitted to the model is assumed to
be a substrate of the isoform for which the given model was calibrated. This, of course, may
not be the case. Isoform specificity models would address this issue by determining through
molecule-specific descriptors whether or not a given compound is a substrate of a specific
isozyme. The rationale behind these models is relatively straightforward — if there is an
accurate method to identify which, if any, CYP will metabolize an unknown compound,
then the actual CYP-mediated regioselectivity of that compound is more likely to be
identified by the isoform-specific model of that CYP. In recent years, a few isoform
specificity models have been published, but more work is needed in that area.59–62 The
available CYP selection models cover only 1A2, 2C19, 2C9, 2D6 and 3A4 isozymes, and
were trained from smaller substrate sets (226, 379) than those used in this work.
Consequently, the 680 substrates collated in this work serve as a strong foundation upon
which improved isozyme specificity models may be built. It is important to note however,
that the datasets used in this work were compiled specifically for isoform regioselectivity
modeling, not for isoform specificity selection. The fact that a given substrate is not a
member of a particular isozyme substrate set does not necessarily mean that it is not
metabolized by that isoform; it may just mean that the investigating group did not test for
the regioselectivity of that isoform. Further analysis and curation of the literature would
facilitate the development of isozyme specificity models.
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Specificity models function in a different fashion than regioselectivity models in that
descriptors are calculated for the entire compound, not for the potential oxidation sites
(SOMs) of that compound. This makes isoform specificity modeling and subsequent
regioselectivity modeling a subclass of multi-task modeling, a process by which multiple
related tasks may be modeled simultaneously.63 In the case of CYP-mediated metabolism,
this covers not only isoform specific mediated pathways, but differences in the pathways
mediated upon different types of compound. The differences in performances of multiple
methods upon different sets of 2D6 and 3A4 substrates illustrate how substrates of the same
isozyme may encompass different regioselectivity spaces. In a similar fashion substrates
identified by models trained either with quantum chemical descriptors or without them, but
not by both, demonstrate the relative utility of different descriptors and models towards
identifying the regioselectivity of the same set of substrates.

The end-goal of regioselectivity modeling is to identify how a human being will metabolize
a specific compound without actually administering that compound. Accurate
regioselectivity modeling is an important component of early-state drug discovery efforts.
Continued advancements in the creation of robust regioselectivity models require that future
investigators be as adaptable as the CYP isozymes that they seek to model. The combination
of RS-Predictor and SMARTCyp results reported here as applied to the largest open-source
set of P450 substrates ever released provides a state of the art benchmark by which future
efforts should be judged.

Methods
Substrate Sets

Prior to this work, the most extensive publicly available collection of P450 substrates with
identified SOMs and source papers was released by Merck in the form of six datasets for
three isozymes. Substrates for 2C9, 2D6 and 3A4 were respectively released in the form of
calibration sets of sizes 91, 124 and 305, and external sets of sizes 10, 10 and 19.27 These
sets serve as the foundation from which we have compiled nine isozyme-specific substrate
sets, as well as a conglomerate merged set of P450 substrates. Substrates and metabolites
from source papers identified by Sheridan et al., review papers of Rendic and Brown,64,65

the SuperCYP database,66 as well those found within the public literature were curated as
SDF files serving as the starting point for RS-Predictor model generation. These files are
part of the the Supporting Information associated with this publication.

Curation of the primary literature has resulted in new substrate sets for CYPs 1A2, 2A6,
2B6, 2C19, 2C8, and 2E1 of respective sizes 271, 105, 151, 218, 142, and 145. Meanwhile
the original 98 2C9, 134 2D6 and 321 3A4 substrates released by Merck have been updated
based on new source information, as well as being respectively extended by 128, 136, and
154 substrates. Literature curation is a manual, time intensive process that involves the
collation of reported substrate oxidations from a number of different sources. The techniques
used to determine oxidation sites vary between reporting groups. Two of the most common
techniques are the incubation of the “unknown” substrate with isolated microsomes of a
specific CYP isozyme or with multiple samples of human liver combined with known
inhibitors of specific CYP isozymes. Mass-spectroscopy is used to determine the structure of
observed metabolites, while differences in the inhibition levels each CYP with and without
the given substrate are used to gauge rate constants for the given isoform. The reactant
concentrations, tools used and motivations can vary significantly between studies;
occasionally the use of smaller concentrations can yield a greater rate constant, while
different studies often report different rate constants or even different metabolites for the
same substrate and isozyme. Examine the CYP-mediated metabolism of atomoxetine in
Figure 10. One study tested for two different metabolites for nine CYP isozymes, while
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another did an in-depth analysis of atomoxetine metabolism by CYP 2D6. The 2D6 study
identified a 2D6-mediated Csp3 hydroxylation in addition too the aromatic ring
hydroxylation and N-dealkylation investigated in the other work. It is possible that other
isozymes also metabolize the Csp3 hydroxylation but the investigating group did not test for
it. For the purposes of this work any metabolite reported from any paper with a clearance

( ) value above 0.05 for a specific human isoform was included in the substrate set of
that isozyme. When possible, differentiation between primary, secondary and tertiary
observed metabolites were also recorded. The atom identified by the author to receive the
oxidation radical from the CYP heme was the one marked, though in more cases than not the
mechanism of reaction was not a part of the study. Human error in terms of correct
identification of the mechanism of metabolism and mislabeling of sites are also possible.
Errors in source data is an unfortunate, but common issue with retrospective regioselectivity
modeling; this is one of the main reasons why the standard metrics of gauging
regioselectivity prediction accuracy treat a given substrate as being correctly predicted as
long as any observed metabolite, regardless of the source, is identified within the top two
predicted rank-positions.

In addition to mining the public literature for new works that had not been curated by
Sheridan et. al, a large amount of our efforts involved looking up the papers originally
identified by them and spreading the structures and response information to 1A2, 2A6, 2B6,
2C19, 2C8, and 2E1 isozyme sets. During this process, errors within the original Merck
substrate sets were identified. For the 3A4 set, the compound H_259_31 occurred twice,
while SSR97193 and lu25_109 were removed due to low reported oxidation rates.67,68

Reports of low or non-existent oxidation of SSR97193, BPU and luciferin resulted in their
removal from the 2C9 dataset.67,69,70 Errors in structure were identified and fixed for
aflatoxin_b1 and promazine for 3A4 and Δ3-carene for 2D6. Meanwhile 143, 59 and 41
compounds from respective 3A4, 2D6 and 2C9 datasets had their observed metabolites
updated based upon source literature. The majority of these fixes involved the switching of
rank-positions of sites that were incorrectly identified as primary observed site of oxidation
versus a secondary observed site of oxidation, which would not effect comparison between
the results of Merck and MetaSite within that paper and our results presented in this paper.
Occasionally however an observed site of metabolism was only substantiated by non-human
CYP studies, in which case that site was removed. Other times the marked site of oxidation
did not correspond to the reported metabolite, in which case the correct site of oxidation was
recorded. There is an additional field in the 2C9, 2D6 and 3A4 substrate sets within the
Supporting Information that indicates whether a given substrate or the observed metabolites
of that substrate have been altered from their original release by Sheridan et al...
Unfortunately the Supporting Information of Sheridan et al. only provides the structures and
experimentally observed SOMs of each substrate, not the predictions of each individual
method upon that substrate. Only the overall prediction rate of each method was given in the
main paper; also 3A4 results were presented for 335 compounds but only structures for 324
compounds were released. One structure for 2C9 was withheld as well. Given these facts it
is important to realize comparisons between Merck and MetaSite results and those of RS-
Predictor, SMARTCyp, StarDrop and Schrödinger are not truly one-to-one. In addition the
results reported for MetaSite were for version 2.7.5 a significantly older version of the
software. While we have access to MetaSite version 3.1, their legal policy prohibits the
public benchmarking of MetaSite against other technologies and so were unable to calculate
the up-to-date performance of this technology for our new substrate sets. This is unfortunate
given that MetaSite is the only method to date(with the exception of RS-Predictor) with
reported 1A2 or 2C19 regioselectivity models that have been validated on large-scale
substrate sets.24
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Given the importance of P450-mediated Phase I metabolism to biological survival it is
unsurprising that functional redundancy between isozymes has arisen, whereby the same
substrate is often metabolized by multiple isoforms. The number of substrates that overlap
between different isozyme sets are shown in Table 4. Further analysis, made available to the
interested reader in the Supporting Information, shows that when the same substrate is
metabolized by different isozymes, the resultant metabolites have a high degree of overlap;
only a small percentage of the time does the same substrate undergo completely different
P450-mediated reactions. Observed metabolites are often the same, but relative reaction
rates vary between isoforms, resulting in situation where the primary metabolite of one
isoform is sometimes the secondary or tertiary metabolite of another. Differences in
metabolic function between isoforms likely reflects evolutionary specialization of different
P450 isozymes. The most extreme of cases contradictory regioselectivity signals are found
in the 192 compounds metabolized by both 2D6 and 3A4. Of these, 107 have identical
observed SOMs, while 130 share the same primary site of oxidation and only 21 have
completely different 3A4 and 2D6-mediated pathways. In total there are 680 unique
compounds, which have been merged together into an isozyme non-specific P450 substrate
set. All observed metabolites, regardless of isozyme, are represented in the merged dataset.

The regioselectivity signal of each set is shown in Table 5 as the average number of
observed and potential SOMs per substrate within each set. A listing of the sets in order of
decreasing regioselectivity signal are 2E1, 2A6, 1A2, merged, 2B6, 2C9, 2C8, 2C19, 3A4
and 2D6. Ordering of the sets by increasing substrate size yields a similar, though not
identical list: 2E1, 2A6, 2B6, 1A2, 2C19, 2C9, 2D6, 2C8, merged and 3A4. The pathway-
based catalytic trends of different isozymes are shown in Table 6. Pathway propensities are
determined by placing the SOMs of all substrates of an isozyme set into the CYP-mediated
reaction pathway set that they have the potential to undergo. Differences in pathway-
mediated trends between CYP isoforms are used to highlight relative strengths and
weaknesses of different methods and models for accurately identifying the substrate
metabolites of specific isozymes. To simplify pathway-based performance analysis made in
the Results section, similar pathways, or those with low relative populations such as sulfur-
based reactions, are grouped together into the same pathway-analysis set.

Method Details
One difference between the RS-Predictor algorithm of our prior work and of this work is
that models are created using 10-fold cross-validation, instead of 5-fold cross-validation.
This decision was made because for some of the smaller substrate sets (2A6, 2E1), results
would occasionally suffer when models were trained upon 80% instead of 90% of the
metabolite data. The only other change is the incorporation of SMARTCyp reactivity values
as an additional descriptor, which has been shown throughout this work to substantially
increase overall accuracy of RS-Predictor models.

Descriptor generation takes on average 1 s per substrate for non-QC models and 3 s for QC
models. The rate-limiting step of RS-Predictor is the MIRank employment of 10 iterations
of 10-fold cross-validation. MIRank models were calibrated upon multiple 2.6 GHz Opteron
Linux workstations with 8 CPUs, often with three independent runs being created at the
same time by each machine. Overall runtime is highly influenced the number of dimensions
that are being optimized; the number of dimensions are directly dependent upon the number
of substrates in the training set, and the number of descriptors being used to quantify the
SOMs of each substrate. The greater the number of either, the greater the runtime. The time
taken to create models (TOP SCR, TOP QC SCR), for the 105 substrates of 2A6(9.0 h, 13.7
h), 226 substrates of 2C9(1.1 d, 1.71 d), 475 substrates of 3A4(2.95 d, 4.55 d), and all 680
substrates of the merged(3.86 d, 6.23 d) set illustrate the broad run-time trends. It is
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important to remember that these runtimes reflect 10 iterations of 10-fold cross-validation;
using only one iteration would require a tenth of the runtime, but would not give the
additional signal bump obtained through use of rank aggregation (see Supporting
Information). Once models have been trained however the only steps necessary to make a
prediction are to encode an input compound with the relevant descriptors and apply the
previously trained models to that encoding. It takes approximately 1.8 s to apply a TOP
model and 9 s to apply a TOP QC model to a given substrate. SMARTCyp takes
approximately .5 s to make a prediction on an unknown compound. Consequently, the
incorporation of SMARTCyp reactivities into the RS-Predictor modeling paradigm does not
greatly impact overall runtime; it takes approximately 9 s per TOP QC SCR prediction and 2
s per TOP SCR prediction.

Details of SMARTCyp(V1.5) may be found here.47,53 StarDrop(V4.3) determines SOM
reaction barriers through on-the-fly AM1 calculations with a modified version MOPAC97, a
process that can take one to ten minutes per compound on a modern workstation.54 These
barriers are combined with orientation and steric accessibility descriptors to evaluate
potential reaction pathways.71 The Schrödinger P450 SOM Prediction 1.0 module assigns an
intrinsic reactivity to each SOM using values that were derived from a Hammett-Taft
approach with parameters optimized from the reactivity profiles of selected substrates of
3A4.55,72 This 3A4 model from the Schrödinger suite is combined with the Induced Fit
Docking (IFD) Glide protocol when predicting sites of 2C9 and 2D6-mediated metabolism.
The use of IFD reduces the number of predicted false-positives of the module on the
Schrödinger 2C9 and 2D6 test sets by 16% and 17% respectively, at cost of a 2–2.5 h run-
time per ligand on a 2-CPU machine. The Schrödinger 3A4 model alone is quite fast, with a
runtime of approximately .5 s per substrate.

The random model used in this work is equivalent to the classic probability of having a bag
filled with multiple marbles that are one of two colors, and one must pick a specific color
combination of marbles within two guesses and no replacements. For a given substrate i
composed of S SOMs (marbles), of which M undergo CYP-mediated metabolism (colored
blue), and NM (NM == S − M) do not undergo CYP-mediated metabolism (colored red), the
likelihood of an accurate random prediction of an observed SOM in the top two rank-
positions is predicted as follows

The converse of this event,

may be calculated as shown above with the hypergeometric distribution, resulting in the
expression
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(1)

The R2 values for all substrates within a given set are then averaged to determine the
random model accuracy for that particular set.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Abbreviations

RS-Predictor Regioselectivity-Predictor

CYP Cytochrome P450

SOM site of metabolism

MIRank multiple instance ranking

SVM support vector machines

IFD induced fit docking

TP true-positive

FP false-positive
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Figure 1.
RS-Predictor Flowchart. Stored SVM models from the Training schema are optimized for all
training set substrates, using the optimal model parameter values obtained from each
iteration of cross-validation. Cross-validated results in Table 1 and Calibration set results in
Table 2 were obtained from predictions made using the Training schema. External set results
in Table 2 and proprietary set results in Table 3 were obtained from predictions made using
the Prediction schema.
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Figure 2.
Different CYP-mediated metabolic pathways and model predictions of cinnarizine; solid
circles, coarse hashed circles and finely hashed circles designate primary, secondary, and
tertiary experimentally observed SOMs for the given isozyme. The numerals near each site
designate the primary, secondary and tertiary predicted sites of the given isozyme model of
the given method upon the substrate. This molecule does not posses any observed tertiary
SOMs, but later graphics that use this labeling scheme do.
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Figure 3.
True-positive (TP) and false-positive (FP) prediction rates of individual methods broken
down by CYP-mediated pathway. Each major column represents a specific pathway set,
identified at the top of 3a, that is composed of all SOMs from the given substrate set that
have the potential to undergo that pathway. Similar pathways, or those with low relative
populations, were grouped together as detailed in Table 6 (see Methods) to simplify overall
presentation. Each pathway column is composed of multiple mini-columns that represent the
number of predicted TPs/FPs by (from left to right) QC, TOP, TOP QC, TOP QC SCR, TOP
SCR and SMARTCyp models for 3a and StarDrop, Schrödinger, TOP QC SCR, TOP SCR
and SMARTCyp models for 3b, 3c, and 3d. SMARTCyp was not specifically calibrated for
2C9 or 2D6, but is a measure of the importance of reactivity for specific sets of substrates
and isozymes. The y-column of each pathway column represents the percentage of observed
SOMs from the given pathway of the given substrate set, with the actual number being
shown at the top of each column. This scaling was chosen to ensure that visualization of
true-negatives would not overshadow more interesting results. The number of potential
(observed and non-observed) SOMs of each pathway for each substrate set is given at the
bottom of each column.
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Figure 4.
Different CYP-mediated metabolic pathways and model predictions of ellipticine (labeling
scheme detailed in Figure 2). For this substrate the inclusion of QC descriptors improves the
RS-Predictor identification of observed sites of Csp3 hydroxylation. The signal provided by
QC descriptors enhances the identification of aromatic ring reactions, while SMARTCyp
reactivities assist in the identification of nitrogen-based reactions. This is likely why only
the TOP QC SCR model is able to identify the primary observed site of 3A4-mediated
aromatic ring N-oxidation.
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Figure 5.
Different CYP-mediated metabolic pathways and model predictions of atomoxetine
(labeling scheme detailed in Figure 2). RS-Predictor models with QC descriptors are shown
to increase the prediction accuracy of the primary observed 2D6 and 3A4-mediated aromatic
ring metabolite relative to models without them. The SMARTCyp model is shown to have
high preference to predict nitrogen-based reactions, identifying the primary 2C9, and
secondary 2D6,3A4-mediated N-dealkylation metabolite in the first rank-position and non-
observed sites of N-hydroxylation and N-dealkylation in the second and third rank-positions
respectively.
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Figure 6.
Different 3A4-mediated metabolic pathways and model predictions of Ochratoxin_a and
Azelastine (labeling scheme detailed in Figure 2). For each ligand the inclusion of QC
descriptors decreases the predicted rank-position of non-observed sites of non-aromatic ring
hydroxylation while simultaneously increasing the rank-position of the observed site of
metabolism.
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Figure 7.
Substrates with an observed SOM predicted in the top two rank-positions by TOP QC SCR
models and not TOP SCR models in the left panel, and by TOP SCR models but not TOP
QC SCR models in the right panel. The first, second and third predicted SOMs are
designated by 1, 2 and 3 for TOP SCR models and A, B and C for TOP QC SCR models.
Primary and secondary observed sites of oxidation are designated by solid circles and
coarsely hashed circles respectively.
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Figure 8.
Substrates correctly predicted by either TOP SCR or TOP QC SCR models, but not both.
Labeling scheme detailed in Figure 7.
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Figure 9.
Substrates correctly predicted by either TOP SCR or TOP QC SCR models, but not both.
Labeling scheme detailed in Figure 7.
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Figure 10.
The CYP-mediated metabolism of atomoxetine. The primary and secondary metabolites, in
terms of observed reaction rates, are indicated by the subscript after each isozyme.
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