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Abstract
Computational methods involving virtual screening could potentially be employed to discover new
biomolecular targets for an individual molecule of interest (MOI). However, existing scoring
functions may not accurately differentiate proteins to which the MOI binds from a larger set of
macromolecules in a protein structural database. An MOI will most likely have varying degrees of
predicted binding affinities to many protein targets. However, correctly interpreting a docking
score as a hit for the MOI docked to any individual protein can be problematic. In our method,
which we term “Virtual Target Screening (VTS)”, a set of small drug-like molecules are docked
against each structure in the protein library to produce benchmark statistics. This calibration
provides a reference for each protein so that hits can be identified for an MOI. VTS can then be
used as tool for: drug repositioning (repurposing), specificity and toxicity testing, identifying
potential metabolites, probing protein structures for allosteric sites, and testing focused libraries
(collection of MOIs with similar chemotypes) for selectivity. To validate our VTS method, twenty
kinase inhibitors were docked to a collection of calibrated protein structures. Here we report our
results where VTS predicted protein kinases as hits in preference to other proteins in our database.
Concurrently, a graphical interface for VTS was developed.
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Introduction
Drug discovery and development focuses initially on finding a lead candidate. The intent is
to find a molecule capable of modifying (usually inhibiting) the activity of a protein to alter
the course of a disease. Early in the process, it should be known whether or not the lead
candidate, or a focused library built around a promising scaffold, is specific toward the
target of interest and if there are potentially detrimental off-target effects. Alternatively, the
scope of an existing drug can be expanded if new biomolecular targets can be identified,
thus reducing the cost and time of developing new therapies. Fortunately, experimental
methods are relatively well developed to address drug specificity and promiscuity1 (and
online databases2–4 and data mining techniques5–7 can potentially aid in these efforts). On
the other hand, testing a lead candidate or focused library against other proteins
experimentally (referred to as specificity testing or counter-screening) is a tedious process,
and is often limited by cost, time, availability of proteins, and appropriate assays. In a
method that has been referred to as Virtual Target Screening (VTS), protein structures are
screened by ranking a small molecule’s docking scores to calibration docking statistics.
These ranked dockings theoretically can reveal proteins that have significant interactions
with a given small molecule. Improvements in virtual screening (VS) applications8, 9 and the
availability of an increasing number (78,020 structures as of December 20, 2011) of solved
protein structures from the Protein Data Bank10 (PDB) help to make VTS a reality.

In VTS (also referred to as inverse docking or virtual counter-screening), a molecule of
interest (MOI) can be docked rapidly into each entry of a protein structure library. The key
to an effective VTS system is correctly interpreting the relative importance of the individual
ligand-protein docking scores to determine which proteins are of particular significance
among all screened proteins. Identification of protein ‘hits’ in previous inverse docking
studies have included: direct ranking of scores, modification of scores (such as weighting
against possible promiscuity and non-specific binding), ‘fingerprinting’ (comparisons
between the molecule of interest and known inhibitors) and incorporation of larger binding
data sets to improve scoring functions for ligand docking.11–19 Already, virtual counter-
screening techniques have been developed to answer the need for drug positioning,3, 20–29

toxicology,30–33 and selectivity of focused librares.34

Here, the development and validation of a new VTS system is described that employs a
unique approach involving 20 known small molecule kinase inhibitors and more than 1,400
protein structures, and a structure-based counter-screening approach dependent on
calibration with a diverse set of molecules. This benchmarking against our protein database
yields a fast, yet robust, procedure for determining targets for a given molecule of interest
(MOI). The individual protein structures have been calibrated against a drug-like set of
compounds, the National Cancer Institute’s (NCI) Diversity Set (more information below).
An extensive case study of known kinase inhibitors is presented as validation of our
methodology where protein hits identified by VTS within our calibrated protein library are
compared to hundreds of published experimental data points. Additionally, a user-friendly
interface has been developed to facilitate the VTS workflow.

Materials and Methods
Hardware

Molecular modeling and VTS studies were performed using a Dell Precision 490
workstation running on Fedora 8 Linux with dual Xeon 3.06 GHz processors, 4 GB RAM,
and a 250 GB hard drive.
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Software
Schrödinger’s Maestro 8.035 was used as the primary graphical user interface for molecule
structure preparation. LigPrep 1.636 was used to convert the NCI Diversity Set I37 from the
provided 3D models in SDF file format to refined 3D models in Maestro file format.
LigPrep 2.238 was later used for refinement of small MOIs that were to be screened in VTS.
Maestro and MacroModel39 9.5 were used in preparation of enzyme coordinates for docking
studies. Schrödinger’s Grid-based Ligand Interaction Docking with Energetics (GLIDE)
5.040–42 was used for the generation of grid files and automated in silico docking (virtual
screening). Perl scripts were created to automate protein structure calibration via command-
line execution of Schrödinger applications. PyMol43 from DeLano Scientific was used for
graphical presentation of the results.

Small Molecule Calibration Structures
The National Cancer Institute (NCI) Diversity Set I, consisting of 1,990 3D structures, was
used as our small molecule calibration set. It is a representative subset of the entire NCI/NIH
Development Therapeutics Program chemical collection of almost 140,000 compounds. As
previously mentioned, ligand refinement was done using Schrödinger’s LigPrep, which
increased the number of structures to 2,392. The original 1,990 structures decreased, though,
to 1,875 due to lack of force field parameters (e.g., molecules containing arsenic were
omitted). The additional structures represented different tautomers, ring conformations, and
protonation states of the 1,875 compounds. Energy minimization of the NCI Diversity Set I
employing the MMFF force field44–49 was also performed using LigPrep.

Protein Structures
Our collection of protein structures, currently at 1,451 entries (Figures 1 & 2), was prepared
from the PDB. We loosely applied a set of guidelines in selecting proteins to add to our
library. Our main aim was to have a broad representation so that new target proteins could
be probed. The guidelines used in selecting our initial set of proteins were: 1) human
proteins preferred; 2) wild-type structures only; 3) full-length or near full length sequences;
4) X-ray structures rather than NMR or homology (theoretical) models; 5) resolution better
than 3 Å; and 6) a ligand non-covalently bound in the protein’s active site or binding
interface. Proteins with more than one molecule in the asymmetric unit (i.e., more than one
copy of the protein in the crystal structure) were inspected, and those with lower B-factors
were chosen while the other subunits were deleted. Of the 1,451 protein structures, 343
(24%) are unique, so the remaining structures are redundant in sequence. Human protein
structures account for 59% of the VTS library.

Ligand Structures
Fabian et al. collected Kd information for 119 kinase and kinase-like targets against 20
kinase inhibitors50 (Figure 3). We used these inhibitors as our test set for the VTS system.
Maestro was used to create each ligand structure, and LigPrep was used to create tautomers
and produce different ionization states within a pH range of 7 ± 2. Energy minimization of
ligand structures was effected using LigPrep.

In Silico Docking
For compatibility with the Optimized Potentials for Liquid Simulations (OPLS) all-atom
force field51, 52 used by GLIDE, selenium atoms were changed to sulfur atoms. (Selenium
parameters have since been added to the OPLS force field; however, the selenium-to-sulfur
substitution was used for those proteins subjected to X-ray crystallography studies using the
method of multiwavelength anomalous diffraction53). All explicit water molecules were
removed as well as repeated structures with high B-factors. The GLIDE protein preparation
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module, available from Schrodinger,54 was employed to add explicit hydrogen atoms, define
appropriate charges from the OPLS force field for protein atoms, and perform restrained
minimization of the protein structures. Small-molecule structures were docked with GLIDE
at standard precision (SP) into the protein target to approximate absolute binding free
energies using the GLIDE Score (Gscore) scoring function.40, 55 Default SP settings include
400 poses kept for energy minimization of the initial 5,000 poses within a scoring window
of 100.00 kcal/mol, energy minimization performed with a distance-dependent dielectric of
2.0 with a maximum number of 100 steps, and a scaling factor of 0.8 for van der Waals radii
of ligand atoms with an absolute value of partial charge less than 0.15. These Gscores are
calculated and used to rank the structures relative to each other in a docking run. Default
grid files were centered on the available ligand in each protein structure. Due to software
limitations, GLIDE is unable to dock ligands (such as polypeptides) with more than 300
atoms and/or 50 rotatable bonds. If there was a small molecule originally in the protein
structure, it was docked (referred to as “self-docking”) and the resulting Gscore was
recorded.

Calibrating
Docking the NCI Diversity Set I against the VTS library provided a reference for each
protein structure. Statistics on the calibration dockings are eventually compared to the MOI
docking score in the VTS. How well a MOI ranks against a protein’s calibration reference is
employed to determine if that protein is a hit. For each protein structure, a Perl script
(written in-house) was employed to execute Schrödinger command-line utilities to calculate
top-200, top-20, and Boltzmann weighted averages of the Gscores from the calibration
dockings. These averages served as criteria to determine whether a particular protein is a hit.
The formula for the Boltzmann weighted average, Bj, is defined with ΔGi,j as the
approximate binding free energy (Glide docking score or Gscore, kcal/mol) for the ith

structure in the NCI Diversity Set I docked into the jth protein structure in the VTS library.

The number of successful dockings (out of 1,875 unique structures) is also logged. These
statistics, along with any self-dock Gscore, are tabulated for each protein in the VTS library.

Virtual Target Screening
LigPrep was used to prepare all MOIs. A Perl script uses the statistics from the calibration
dockings as a reference after the MOI is docked into each structure in the protein library.
Thus, when an MOI is docked, its Gscore is compared to the calibration averages. If its
Gscore is better (i.e., more negative than the top-200 average, top-20 average, or Boltzmann
average), the protein to which it was docked is determined to be a hit. (See Figure 4.)

VTS Web-based interface
To facilitate the application of the VTS protocol, we have developed a web-based interface
that provides a user friendly, quick and automated tool for docking MOIs into collections of
user-defined proteins. The framework for the online VTS interface is based on the open
source CHARMM interface and graphics56 (CHARMMing) package, which was originally
designed to provide an easy to use interface to the Chemistry at HARvard Macromolecular
Mechanics57 (CHARMM) modeling package and force field.58 The underlying framework
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upon which both the VTS interface and CHARMMing are built is based on the Django
engine – a high-level Python Web framework.

Derived from CHARMMing, the graphical Virtual Target Screening (gVTS) system
includes tools necessary to set up and initiate VTS experiments. Functionality currently
implemented includes the following:

• Maintain a library of protein grids for docking of small molecules.

– User-prepared grids, based on the proteins of interest can be uploaded and
stored in the internal database.

– Ability to create custom grid sets that can represent structures specific to a
given VTS experiment.

• Maintain database of MOIs.

– User can submit MOIs either by uploading the Cartesian coordinates or by
drawing a molecule via a 2D chemical drawing interface, JChemPaint
(jchempaint.sourceforge.net), which is included in gVTS.

– All submitted MOIs are atom-typed and then energy minimized with
MacroModel.

• Initiate VTS runs and analyze results

– VTS jobs can be set up with any number of MOIs against either the entire
library of proteins or a custom created subset.

– Job runtime estimation algorithm predicts an approximate execution time
based on the number of MOIs, rotatable bonds per MOI, and number of
screened proteins.

– Job scheduling and queuing system provided by the CHARMMing
interface allows for submission of multiple jobs and can be interfaced to
popular queuing systems such as Torque, PBS, and sun grid engine (with
slight modifications).

– Complete, up to the second, information on any job currently running or
run in the past is available and includes but is not limited to the status of
the job, information about any resulting hits, structures being screened/hit,
log, and output files. In addition, the user is able to visualize the docking
pose of any MOI in a protein hit.

• User authentication system

– To ensure privacy of the data, the Django/CHARMMing based user
authentication system in combination with database identifiers protects
each user’s information such as MOIs, protein structures, jobs, etc. and
allow access only by authorized persons.

The interface has been developed using the Python 2.6 programming language and the
Django 0.96 object framework, however, future versions of CHARMMing (and gVTS) will
fully support the latest language/framework. A MySQL 5.1.37 database is used to maintain
system information and user generated data. Perl scripts provide the interface to the
Schrödinger software suite. The JChemPaint Java applet is used to draw molecular
structures.
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Results and Discussion
Kinase Data Set and Protein Hit Determination

Twenty small molecule kinase inhibitors were chosen as a test set for our VTS procedure.
Fabian et al. had previously collected data for these 20 molecules and 119 protein kinases46

included in a complete table (their Supplementary Table 4) of binding constants (Kd values
if Kd < 10 μM). For this study, our metric compared this table of binding data with the VTS
protein hit data on the 20 kinase inhibitors. We gauged VTS accuracy by its ability to predict
protein hits by reference to protein-inhibitor pairs that have Kd < 10 μM. Of the 119 kinases,
43 structures were available for download from the PDB allowing for 860 data points to be
compared (Figure 5) of which 220 (26%) protein-inhibitor combinations had Kd < 10 μM.

Among the protein hit criteria for determining a VTS hit, the top-20 average was optimal in
this study for predicting specific kinase hits as reported, slightly better statistically than the
Boltzmann average criterion. “Optimal” is defined as having the maximum number of data
points matching between VTS and experimental data. In the tables at the top of Figure 7, the
top-20 average afforded the best correlation between VTS hits and experimental Kd < 10
μM and VTS non-hits vs. experimental Kd ≥ 10 μM. The top-200 average yielded the
highest hit rate (49%) for simply determining protein kinase-inhibitor interactions with Kd <
10 μM, but it also yielded the largest number of false positives and false negatives (37% vs.
28% or 30%).

It should be noted that the activity data is based on a primary kinase screening assay run at
10 μM.50 VTS sensitivity (ability to predict a protein-inhibitor combination to be a hit
considering only reported Kd < 10 μM) is relatively low: 22%–49%. (Here sensitivity is
defined, from the VTS hits, as the ratio of the upper-left value to the 220 values with Kd <
10 μM.) However, the overall accuracies of the VTS system in identifying inhibitor-kinase
combinations with Kd < 10 μM are 64%, 72%, and 71% for the top-200 hits, top-20 hits,
and Boltzmann hits, respectively. (Overall accuracy is calculated from VTS hits and non-
hits, upper-left and lower-right values, compared to all 860 data points.)

Results for Approved Drugs
For assessing the approved drugs in our test set, we assumed that an ideal profile would
consist of a relatively low number of overall protein hits while retaining a high percentage of
kinase hits. It is worth noting that staurosporine (while not an approved drug), a known pan-
kinase inhibitor,50 yielded the top percentage of kinase hits among the 20 small molecules in
all 3 protein hit criteria. (See Table S7 & Figure S8 in Supplementary Information for kinase
hit data for all 20 kinase inhibitors.) Drugs included in the Fabian set of kinase inhibitors
tested are Nexavar (BAY-43-9006), Gleevec, Tykerb (GW-2016), Iressa, Sutent
(SU112448), Tarceva, and Zactima (ZD-6474). The top-20 average yielded the highest
percentage of kinase hits among the approved drugs in our study as summarized in Tables 1
& 2. For the purpose of this kinase inhibitor study, an enrichment factor (EF) was calculated
considering any protein kinase in our database to be a hit. Since 19% of the VTS protein
library is a protein kinase, our enrichment factor is defined as the ratio of kinase hit
percentage to 19. EF values for approved drug top-20 average hits (EF-20) are included in
Table1. (EF values for all 20 kinase inhibitors and protein hit criteria are in Table S7.) While
showing a low number of protein hits, the VTS system was able to identify these small
molecules as having significant specificity towards kinase binding with high percentages of
kinase hits. Zactima’s EF-20 value is lowest, 1.7, with only 4 out of 12 unique protein hits
being kinases. The other protein hits include a Subtilisin, Coagulation Factors X & XA,
Thrombin, Plasminogen Activator Inhibitor Type 1, Thyroid Hormone Receptor α1, and
Histamine Methyltransferase. The first is a bacterial protease from B. subtilis; the next 4 are
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related to blood clotting. Primary targets (Table 2) for each of the seven drug molecules
were found (if present in the VTS library) as top-20 average protein hits. Interestingly,
Zactima (Caprelsa) prescribing information includes monitoring thyroid-stimulating
hormone for risk of hypothyroidism and warnings of bleeding.59 Common top-20 average
non-kinase hits (listed in Table S12) include Subtilisin, blood clotting-related proteins,
Albumin, Carboxyesterases, Epoxide Hydrolases, HSP-90α, and Histamine
Methyltransferase.

Multiple CDK2 Structures
The VTS library contains 146 structures of Cyclin-dependent kinase 2 (CDK2). Of these,
101 grid files dock ligands into/near the ATP binding site. Despite the high number, varying
numbers of CDK2 hits occurred (from 0 to 92; Table 3) for the 20 kinase inhibitors among
the protein hit criteria. Within the top-200 average VTS hits, the three inhibitors that yielded
the highest number of CDK2 hits were SP600126, roscovitine, and flavopiridol (92, 87, and
66, respectively), which are higher than any of the approved drugs, ranging from 2 to 45
CDK2 hits. Fabian reported only these 3 molecules and staurosporine (47 hits, top-20
criteria) with Kd < 10 μM against CDK2. The primary target for roscovitine and flavopiridol
is CDK2. Compound SP600125, its primary target being JNK, has been reported to act
independently of JNK inhibition in its anti-cancer activity60, 61 with reported IC50 values of
3.96 μM and 22.2 μM for CDK2 bound to Cyclins A and E, respectively.60 When
comparing known co-crystal structures against corresponding kinase structures, it is
observed that the average CDK2 RMSD = 1.22±0.66 (maximum of 2.48) accounting for an
average ligand RMSD of 5.14±2.50 (maximum of 13.16).

Our CDK2 results suggest that having multiple structures of the same protein in the VTS
protein library is beneficial, as might be expected since supplementing the library with
conformational diversity should allow for less “induced fit effect” error in any virtual
screening method. Figure 8 presents 3 CDK2 structures of protein RMSD values from 1.23
to 1.70 producing cross-dockings with ligand RMSD values from 0.71 to 6.04, representing
a top-20 hit, a top-200 hit, and a non-hit. Multiple protein structures and the “apparent
goodness of virtual screening results” have been discussed in detail by Sheridan et al.,62

Rockey et al.,63 and Cavasotto et al.64 Sheridan emphasized that in consideration of diverse
small molecule structures, docking is sensitive to a single crystal protein structure.
Furthermore, adding more crystal structures to a docking run will increase its accuracy.
Instead of increasing the number of protein structures, flexible (protein) docking algorithms
may be used; however, they are relatively slow compared to standard docking techniques,
especially in terms of thousands of dockings per molecule as required for our VTS protein
structure library. Having multiple protein structures in the VTS library increases
conformational diversity without using costly simulation methods.

Kinase Inhibitor Pose Analysis
In order to assess how well VTS kinase hits compared to known inhibitor binding modes (or
poses), X-ray co-crystallized structures matching 23 unique (35 in total) kinase-inhibitor
combinations (Table 5) were used as reference structures to compare ligand poses with VTS
hit data, and Gscores were normalized to Z-scores. Cross-dockings (546) and 11 self-
dockings were analyzed with these known co-crystals to correlate ligand RMSD values with
VTS docking scores. Somewhat surprisingly, except for LCK-staurosporine (R = 0.73), all
statistics generated from less than 10 dockings (gray area, Table 4) yielded negative
correlation coefficients. However, only EGFR-Tarceva yielded no Top-20 hits (compared to
Kd = 0.0014 μM) in its 2 dockings: 1 cross-docking (PDB 1XKK65) and 1 self-docking
(PDB 1M1766). Inspection of each PDB structure revealed reported water molecules (which
were deleted during preparation for VTS) hydrogen bonding a threonine residue to Lapatinib
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(1XKK) and Tarceva (1M17) explaining the inability to reproduce the binding mode of
Tarceva in EGFR and recognize it as a protein hit. Conversely, Fabian et al. reported Kd >
10 μM for Gleevec with p38α, SRC, and SYK whereas VTS predicted all as top-20 average
protein hits. A literature search yielded the following Kd values: 34.0 μM for p38α,
Namboodiri et al.;67 31 μM for SRC, Seeliger et al.;68 and 5.0 μM for SYK, Atwell et al.69

Karaman et al. reported binding results of Kd = 3.8 μM for SRC and Kd = 6 μM for SYK
against Gleevec.70 Also found were IC50 values, ~1.2–7.5 μM, for Nexavar inhibiting
EGFR in 4 different hepatocellular carcinoma cell lines.71

R values (Table 4) for p38α-SB203580 and SRC-Gleevec are notably low: 0.08 and 0.01,
respectively. For all 7 relevant SRC structures, the DFG loop72 is in its active position
(“DFG-in”) not allowing Gleevec to be docked as in its co-crystals, PDB IDs 2OIQ68 &
3OEZ73 where the DFG loop is in the inactive position (“DFG-out”). The two reference
structures for p38α-SB203580 are PDB IDs 1A9U74 and 3GCP.75 The DFG loop is in 2
different conformations for each of these structures while SB203580 retains the same
binding mode in the hinge region. In PDB 3GCP, β-octylglucoside occupies the DFG-in
position, while DFG loop is in the inactive DFG-out position. Further, the SB203580
(3GCP) is involved with Pi-stacking between Phe 169 of the DFG loop and Tyr 35 of the
glycine-rich loop. In 1A9U, there is only Pi-stacking between SB203580 and Tyr 35 while
the DFG-loop is in the active DFG-in position. Correlation coefficients were calculated for
two groupings of p38α structures, DFG-in and DFG-out, yielding R values of 0.61 and
−0.09, respectively. SB203580 docking modes in the p38α/DFG-out group were frequently
in the allosteric site. The docking modes in the p38α/DFG-in group depended on
conformation of the glycine-rich loop and its Tyr 35 as well as the location of Phe 169 of the
DFG loop (Figure 9).

Protein Hit Criteria Analysis
Of the 557 kinase-inhibitor dockings analyzed for the inhibitor pose analysis, there were 169
unique kinase structures. Z-scores were calculated, from this subset of the VTS library, for
protein hit criteria using calibration statistics. These average Z-scores are Z = −1.62±0.12
for the top-200 average, Z = −2.60±0.26 for the top-20 average, and Z = −3.15±0.49 for the
Boltzmann average. (See Figure S11.) These average Z-scores correspond to the
approximate top 5%, top 0.5%, and top 0.1%, respectively. When the same statistics were
evaluated for the entire VTS protein library (normally distributed, Table S16), the resulting
values were −1.81±0.51, −2.90±0.73, and −3.37±1.07, roughly equivalent to the top 5%, top
0.2%, and top 0.05%. These values were lower than the subset of VTS kinase entries. That
is, the calibration on the NCI Diversity Set, a set of weak or better binders, yielded average
hit criteria with lower (better) benchmarks than the subset of kinases. The top-200 hits
consisted of approximately 3,300 (non-unique) docking poses, 11% of all 29,400 dockings.

There were 890 top-20 hits, 3% of all dockings. However, the average normalized docking
score for the top-200 average protein hits, −2.35, is approximately the top 1%. Therefore,
the top-200 hits of the kinase inhibitors scored, on average, in the 98th percentile, which is
reasonable since our test set is a group of known inhibitors. It is not surprising that the
top-200 criteria, the approximate top 5% cutoff, produced too many hits with a kinase
percentage of 50%, compared to 60% in the top-20 hits, unable to adequately distinguish
protein hits from the “noise.” This noise influenced the top-200 hits such that the false
negatives and false positives rates were higher than the top-20 and Boltzmann hits as
mentioned earlier. For future studies, analysis of these (and perhaps other) statistical
measures would help ensure more robust criteria for VTS to effectively produce protein hits.
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Conclusions and Future Directions
Our VTS system results on the kinase inhibitor test set have shown promise in the ability to
characterize pan-kinase inhibitors, research compounds, and approved drugs. Our calibration
procedure, though admittedly not fully optimized, was able to accurately predict inhibitor-
kinase binding affinities when Kd < 10 μM and Kd ≥ 10 μM are both considered (72%
accuracy in the best case). Thus our VTS system is able to robustly discriminate protein
binders from non-binders. It must be emphasized that a viable VTS system must be able to
produce a reasonable signal to noise ratio which we submit we have accomplished with the
top-20 average criteria. It is insufficient to simply find true protein hits if the concomitant
false positive and false negative hit rates are high. Thus, when one inspects our VTS results
for both bona fide hits and non-hits, the predictions using the top-20 average criterion are
correct 72% of the time. We believe the inclusion of multiple copies of a protein structure
contributed to VTS accuracy. Taken together, VTS offers a relatively rapid and accurate
prediction of a given MOI’s potential to bind to proteins that may not have been previously
considered as one of its targets.

It is clear that the success of our VTS methodology relies on the calibration dockings with
the NCI Diversity Set I and addition of multiple copies of protein structures. We conclude
that the rigid body bias inherent to virtual screening using a single protein structure is
decreased in our VTS system for two reasons. First, the structures used in the calibration set
are likely to be influenced by protein conformational bias in a manner similar to the MOI. In
general, molecules in the NCI Diversity Set with structural features similar to the MOI are
likely to dock similarly and thus score similarly, reducing error in a systematic manner.
Secondly, by incorporating multiple structures for proteins, conformational diversity may be
increased among entries in the VTS protein database. Our CDK2 study revealed that even
with 101 relevant protein structures (36 CDK2 grid files were not centered about the ATP
binding site), known CDK2 binders were ranked as hits from 0 to 91% of the CDK2
proteins. Also, careful consideration is necessary when choosing more structures. For
example, adding p38α structures having the DFG-out conformation should help enhance
p38α dockings. Finally, it is known that docking scores and activity of a congeneric series
of molecules in a specific protein target can correlate well (e.g., Pauly et al.76). However,
using only a set of closely related proteins would be counter-productive in the VTS context.
On the other hand, using rankings of an MOI relative to average scores generated from the
prior calibration of each protein has proved to be an effective strategy in separating signal
from noise in VTS. This can be further enhanced by statistics on the normalized docking
scores to determine proper hit criteria.

Although the top-20 average is optimal in determining protein hits over the top-200 and
Boltzmann averages, future work will test the proposed optimization of protein hit criteria.
MOI ligand similarity and ligand efficiencies of the calibration dockings will be investigated
in order to minimize false positives and false negatives. Moreover, conformational diversity
should be increased by adding more available PDB structures per protein, when available.
MD simulations or other methods for generating ensembles of protein conformations could
also be employed. Careful additions to the protein structure library as well as further small
molecule test sets will be used to test VTS efficacy in determining toxicity, promiscuity, and
narrowing focused libraries. Further validation of the VTS system in comparison with other
available experimental data besides kinases is in progress.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Organism composition shown for VTS protein structure library of 1,451 total entries.
“Miscellaneous” consists of organism types each totaling less than 2% of the library: dog,
ray, chicken, rabbit, plant, protozoa, snake, and pig.
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Figure 2.
Protein type composition shown for VTS protein structure library of 1,451 total entries.
Kinases are about 2/3 of transferases, 19% overall.
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Figure 3.
Matrix of reported activities on kinase inhibitor assays at 10 μM. Of the 119 kinases
reported by Fabian et al., 43 were available from the PDB to include in the VTS library. 220
(26%, grey squares) of the 860 inhibitor-kinase combinations have target binding affinities
(Kd < 10 μM). This cut-off is used as our metric to compare VTS hits with reported data.
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Figure 4.
Scheme outlining the basic steps of the VTS system. Each protein structure is first calibrated
(left arrow) by docking the NCI Diversity Set I and calculating statistics. The Boltzmann
average, top-20 average, and top-200 average criteria (represented on right with “B,” “G20,”
and “G200,” respectively and shown on a hypothetical plot of score frequency vs. ΔG).
These “average” scores determine protein hits for a molecule of interest (MOI). The “X”
represents a hypothetical MOI Gscore that scored better than the top-200 and top-20
averages but not the Boltzmann average for the protein entry.
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Figure 5.
Illustration of the JChemPaint applet for the input of staurosporine into gVTS.
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Figure 6.
Illustration of the results panel and 3D docking pose of staurosporine in a kinase.
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Figure 7.
Tallies (top) and matrices (bottom) for VTS protein hit data and Kd values reported by
Fabian et al.50 for 860 combinations of 43 available protein kinase structures and 20 kinase
inhibitors. Tallies include totals in the far right and bottom values. Numbers and letters
correspond with protein kinases and kinase inhibitors, respectively, as in Figure 3.
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Figure 8.
(A) Line structure of staurosporine and select VTS CDK2 docking poses. Protein kinases
and docked poses are compared to PDB 1AQ1 (maroon). Examples include a top-20 hit (B,
PDB 2BPM, orange), a top-200 hit (C, PDB 3DDP, blue), and a non-hit (D, PDB 1PF8,
brown). Z-scores and ligand RMSD values are, respectively, −3.02 and 0.71Å, −2.08 and
3.72Å, 1.22 and 6.04Å. Staurosporine and residues within 4Å are in stick representation.
RMSD values of the aligned kinase structures to PDB 1AQ1 are 1.70 (2BPM), 1.62 (3DDP),
and 1.23 (1PF8). Subtle differences in the active site dramatically affected docking poses.
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Figure 9.
(A) Line structure of SB203580 and select VTS p38α docking poses. Protein kinases and
docked poses are compared to PDB 3GCP (green). Examples include a top-20 hit (B, PDB
1OZ1, blue), a top-200 hit (C, PDB 1DI9, purple), and a non-hit (D, PDB 2BAL, yellow). Z-
scores and ligand RMSD values are, respectively, −2.66 and 1.79Å, −1.99 and 3.49Å, −0.12
and 9.81Å. SB203580, the DFG loop (DFG-in position), and Tyr35 are in stick
representation. The activation loop is off-colored with PDB 2BAL missing 12 residues (D,
pink). Note the influence of Tyr35 on the glycine-rich loop above the docked poses.
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Table 2

VTS top-20 average protein hit data summary for approved drugs in kinase inhibitor study.

Approved Drug Primary Target Primary Target Hit? Kinase Hitsa (% of Total) Total Hitsa

Nexavar (BAY-43-9006) RAF1 N/A 5 (45%) 11

Gleevec ABL, KIT, PDGFR Yes, yes, N/A 10 (77%) 13

Tykerb (GW-2016) EGFR, ERBB2, ERBB4 Yes, N/A, N/A 20 (41%) 49

Iressa EGFR Yes 12 (55%) 22

Sutent (SU11248) VEGFR2, PDGFR, FLT3, KIT N/A, N/A, N/A, yes 14 (67%) 21

Tarceva EGFR Yes 2 (67%) 3

Zactima (ZD-6474) VEGFR2, EGFR N/A*, yes 4 (33%) 12

a
A high percentage of kinase hits with a low number of total hits demonstrates the VTS system’s robust ability to predict a small molecule to be a

potential lead candidate. N/A = structure not in VTS protein library.
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