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Abstract

A protocol was developed for the computational determination of the contribution of interfacial 

amino acid residues to the free energy of protein-protein binding. Thermodynamic integration, 

based on molecular dynamics simulation in CHARMM, was used to determine the free energy 

associated with single point mutations to glycine in a protein-protein interface. The hot spot amino 

acids found in this way were then correlated to structural similarity scores detected by the ProBiS 

algorithm for local structural alignment. We find that amino acids with high structural similarity 

scores contribute on average −3.19 kcal/mol to the free energy of protein-protein binding and are 

thus correlated with hot spot residues, while residues with low similarity scores contribute on 

average only −0.43 kcal/mol. This suggests that the local structural alignment method provides a 

good approximation of the contribution of a residue to the free energy of binding and is 

particularly useful for detection of hot spots in proteins with known structures but undetermined 

protein-protein complexes.

Keywords

hot spot prediction; protein-protein binding; thermodynamic integration

Introduction

When binding to one another, proteins exhibit a diverse array of physical and functional 

interactions and determine cellular functions that are fundamental to living organisms.1,2 

Typically, a few amino acid residues, the so-called hot spots, account for the majority of the 

binding free energy in a protein-protein binding site.3 Protein-protein interactions are 

affected by point mutations, whose effect is most pronounced at hot spots.
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We tested the validity of local structural alignment, conducted with the Protein Binding 

Sites (ProBiS) algorithm which identifies protein binding sites through local structural 

alignment,4–8 for identification of hot spots. To assess the relationship between local 

structural similarities and the contribution of specific amino acids to the free energy of 

binding we employed molecular dynamics free energy calculations.9

Molecular dynamics free energy calculations were first applied to proteins some 25 years 

ago,9,10 but the limited computational capabilities available at that time gave rise to 

problems related to adequate sampling of the conformational space. This field is subject to 

continuous methodological development11–23 and by 2002, advances in the field were 

considered sufficient to make molecular dynamics free energy calculations more widely 

applicable in the field of biological macromolecules.9 Since then, they have been frequently 

applied to the determination of the free energy of ligand-protein binding.24 Examples 

include the determination of binding free energy of the antibiotic sparsomycin with the 50S 

ribosomal subunit25 and discrimination between true ligands and a set of putative binders 

identified by docking.26 These methods can predict unknown binding affinities fairly 

accurately,27 but they have limitations.28 Molecular dynamics free energy calculations have 

been applied to enzymatic reactions, with the reactive center described by quantum 

mechanics and the environment by molecular mechanics29 and were also used to assess the 

difference in interaction energies of a protein with two different membrane lipids in a cell 

membrane.30 In addition, there are many rapid free energy methods like Linear Interaction 

Energy (LIE)31,32 and Linear Response Approximation (LRA).33,34 The insights to protein-

protein binding derived from molecular dynamics free energy calculations can provide a 

necessary augmentation to the developments in the field of drug design.35–37

Molecular dynamics free energy simulations of point mutations in proteins were shown to be 

in quantitative agreement with relevant experimental data.38,27,21 For example, the effect of 

amino acid mutations on the thermostability of proteins was successfully simulated in a 

study that also exposed the need for methods capable of performing molecular dynamics 

free energy calculations inside protein-protein interfaces.38

This article examines the relationship between hot spot amino acid residues identified by the 

ProBiS algorithm5 and the interaction free energy of these amino acid residues determined 

by molecular dynamics via free energy methods. Local structural alignment of protein 

surfaces is shown to be a useful means of understanding the role in protein-protein 

interactions of individual amino acids and can be used for identification of hot spots in 

known proteins with undetermined protein-protein complex structures.

Computational Methods

Protein–protein interactions; identification of important residues

Many methods for prediction of protein–protein binding sites39–41 are based on amino acid 

sequence,42,43 spatial position of surface atoms,44 functional groups5,45 or amino acid 

residues,46 or energy scoring functions.47,48 Few methods are dedicated to prediction of hot 

spots.49–51

Carl et al. Page 2

J Chem Inf Model. Author manuscript; available in PMC 2014 November 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



To predict hot spot amino acids, we used the ProBiS algorithm5,8 which detects structurally 

similar sites on protein surfaces by local surface structure alignment. ProBiS compares 

protein surfaces by examining their physicochemical properties, and detects local 

similarities in their spatial arrangement. It is independent of amino acid sequence and 

compares query proteins against a database of protein structures regardless of their fold 

similarities. It calculates local structural similarity scores, maps them to surface amino acids 

of the query protein, and thus identifies regions whose structures have been conserved 

during evolution. Evolutionarily conserved regions are often involved in protein-protein 

binding.52 Local surface structures which are dissimilar, i.e., their physicochemical chemical 

properties cannot be aligned with RMSD < 2.0 Å, are discarded.5 To compute local 

structural similarity scores of the query protein surface, the ProBiS web server8 searches a 

database of approximately 30,000 non-redundant* protein structures from the PDB.

We hypothesize that the amino acids with high similarity scores predicted by ProBiS are 

correlated with hot spot residues and play a major role in protein-protein binding. These 

residues are not necessarily contiguous in protein sequence, but are typically found in well-

defined local 3D arrangements.5,49,50 Examples of important residues identified by ProBiS 

are given in Figure 1, where residues have a local structural similarity score ranging from 0 

(blue, dissimilar), to 9 (red, similar). In this study, we defined high-scoring residues as those 

with local structural similarity scores of ≥ 7 and low-scoring residues as those with scores ≤ 

3. These values were selected because intermediate similarity scores (4–6) represent 

residues whose contribution to structural conservation or lack thereof cannot be reliably 

assessed.5 If local structural similarities of protein surfaces are correlated to the free energy 

of binding, then high-scoring residues should contribute significantly more to the free 

energy of binding than low-scoring residues.

The contributions of high- and low-scoring amino acid residues to the free energy of binding 

were calculated by thermodynamic integration as implemented in CHARMM. If the high-

scoring residues predicted by ProBiS indeed play significant roles in binding and are 

candidates for the role of hot spot amino acids, then examination by thermodynamic 

integration can be restricted to just these residues with a concomitant reduction in the 

necessary computational resources. A schematic representation of this approach is given in 

Figure 2.

Protein simulation systems

Protein-protein complexes 1aze, 1emv, 1ugh and 1all from the RCSB Protein Data Bank 

(www.pdb.org)53 were prepared for molecular dynamics simulations. Hydrogens were 

added to all protein chains by the HBUILD routine in CHARMM.54 Each protein system 

was explicitly solvated in water and neutralized with Na+ and Cl− ions. All systems were 

simulated using an academic version of CHARMM55–57 with the CHARMM27 force 

field.58–60 Arginine and lysine side chains were simulated in a protonated form, while 

glutamic and aspartic acids were simulated in deprotonated form; histidines were left 

*Single chain protein structures from PDB that have >95% sequence identical structures are clustered together and a representative of 
each cluster is chosen.
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uncharged. No disulfide patches were necessary because none of the studied proteins contain 

a disulfide bridge.

Each protein complex was placed in a cube of water, so that the protein was at least 10 Å 

from the edge of the cube, and periodic boundary conditions were applied. Details of 

different simulation systems are summarized in Table 1.

The protocol for equilibration of all systems was as follows. The protein atoms were first 

harmonically restrained, and only water molecules were minimized. Steepest descent 

minimization (500 steps) was followed by 1,000 steps of adopted basis Newton-Raphson 

minimization. Water was subsequently heated from 0 to 300 K in 2,000 steps with the leap-

frog Verlet algorithm and then equilibrated with constant pressure and temperature (NPT) 

dynamics for 200 ps with an integration time step of 1 fs. For consistency with the 

CHARMM force field,61 water molecules were modeled explicitly with the TIP3P model.62 

The cutoff for van der Waals interactions was set to 13.5 Å.63 The temperature was held 

constant at 300 K with the Nose-Hoover thermostat.64 Pressure was held constant with the 

internal barostat. Electrostatics were calculated with the particle mesh Ewald method. To 

ensure that the system was adequately relaxed, the harmonic restraint on protein atoms was 

removed and molecular dynamics were simulated for further 1.5 ns, with an integration time 

step of 1 fs. To assure an adequate ionic strength, 100 Na+ and 100 Cl− ions were added and 

distributed randomly inside the simulation box. Ions that overlapped with the protein were 

deleted; water molecules that overlapped with ions were also deleted. Next, an appropriate 

number of either cations or anions was deleted to leave a charge-neutral solution with salt 

content in the 200 – 400 mM range. The solution was allowed to relax for another 100 ps 

with an integration time step of 1 fs and the final coordinates were used to define the initial 

system in calculations of free energies of point mutations.

To prepare structures of free proteins not bound to their binding partners, the coordinates of 

the binding partner from the complex were deleted and the protein was solvated and relaxed 

during a molecular dynamics run as described above for protein complexes. The protein 

structures prepared in this way were used in the following point mutation protocol.

Molecular dynamics free energy calculations

Molecular dynamics free energy simulations were used to determine the contributions of 

high-and low-scoring residues to the binding free energy of investigated proteins. For each 

examined residue, the free energy change associated with its mutation to glycine was 

calculated for the protein in its complexed and unbound forms.

The basic principle of our binding analysis is illustrated in Figure 3. The binding free energy 

change caused by a single point mutation in the protein-protein interface can be calculated 

from the processes represented by the vertical legs in Figure 3 as ΔΔG° = ΔG°3 – ΔG°4. 

Since free energy is a property of state, it can also be calculated from non-physical processes 

represented by the horizontal legs in Figure 3 as ΔΔG° = ΔG°2 – ΔG°1, which can be more 

readily obtained by thermodynamic integration.
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We calculated ΔΔG° for the horizontal legs of the thermodynamic scheme shown in Figure 

3, where ΔG°2 is the difference in free energy between the unbound wild-type protein and its 

mutated counterpart, ΔG°1 is the difference in free energy between the complexed wild-type 

protein and its mutated counterpart, and ΔΔG° is the difference between these ΔG° values. 

The calculations were conducted with CHARMM’s PERT module. To avoid van der Waals 

end point problems,65 a soft core potential (PSSP) was used as implemented in PERT.66–68

A negative value of ΔΔG° means that the mutation of an amino acid into glycine is more 

favorable in the free protein than in the protein complex. The implication is that amino acid 

interactions are more favorable in the wild-type protein complex compared to the mutated 

one. A negative ΔΔG° therefore signifies a favorable contribution of the amino acid to the 

interaction free energy in the wild-type protein.

To calculate the free energy difference associated with a point mutation we employed 

thermodynamic integration in which gradual transition from one state into the other is 

achieved by slowly changing the coupling parameter λ. Thus the potential energy function 

of the system is gradually changed from the starting state UA to the end state UB as in the 

following equation:69

(1)

where U is the current potential energy function at coordinates r of N atoms.

Free energy difference between λ = 0 and λ = 1 is:

(2)

which gives us the equation for thermodynamic integration:

(3)

The point mutation is presented in a single topology, and so all the atoms from states UA and 

UB are present at all values of λ. When λ = 0, the investigated protein is in wild-type state, 

and when λ = 1, the target residue has been transformed to glycine by patching a hydrogen 

atom at the α carbon of the amino acid that is to be mutated. The introduction of the glycine 

hydrogen atom, coinciding with the disappearance of the side chain of the original amino 

acid, is implemented by scaling the charge and the van der Waals radius of the glycine 

hydrogen from 0 to 1, while scaling the same parameters of the original amino acid side 

chain from 1 to 0. By means of this process, the glycine hydrogen at λ = 0 and the side chain 

of the original amino acid at λ = 1 effectively become dummy atoms.

With each change in λ a perturbation is introduced into the system, to which the system is 

allowed to adapt with molecular dynamics during which energy values are not accumulated, 

followed by an accumulation run in which energies that will contribute to appropriate 

averages are gathered. The total run time is a sum of relaxation dynamics and accumulation 
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dynamics. To minimize the time span between the start of our simulations and the gathering 

of the results, we simulated each λ point on a separate computer. To provide a starting 

configuration for each λ point we first simulated the transition from λ = 0 to λ = 1 in 1 

nanosecond. In this simulation, the system visits all the values of λ that will be later 

simulated at length. The last configuration that the system visits for a particular value of λ is 

then used as a starting configuration for lengthier simulations at that λ point, and 

consequently each λ point is simulated on a separate computer. To assure sufficient 

sampling we varied the length of simulations from 3 to 23 ns. We tested several protocols 

for variation of the parameter λ and selected a protocol that slows down when λ approaches 

1 since at the end point the side chain of the original amino acid is switched off and its 

volume in the simulation cube becomes available to water molecules.

The molecular dynamics free energy calculation protocol

For accurate predictions of free energy differences the calculations must proceed in a slow, 

reversible manner. Consequently, energy fluctuations at individual λ points should not 

exceed thermal noise RT, which is approximately 0.6 kcal/mol at 300 K. Point mutation 

introduces a perturbation into the system that would lead to energy fluctuations far in excess 

of RT. When λ is gradually changed from 0 to 1, the system goes through a series of non-

physical states, but since free energy is a function of state, only the start and end 

configurations need be chemically or biologically relevant.

Adoption of a slow and reversible manner requires different dynamics schedules for 

different amino acids. A schedule was selected which ensures consistent results, i.e. similar 

results of simulations started with the same set of starting coordinates, the same velocity 

distribution, but different initial values for velocities of individual atoms. To check that 

energy fluctuations between neighboring λ points are below RT, perturbations of different 

amino acids into glycine were carried out with tripeptides AXA, where X represents the 

amino acid that will be mutated. The terminal alanines were both capped and the structure of 

AXA is shown in Figure 4.

In Figure 5, we show how energy fluctuations vary in size with various amino acid residues 

in a dynamics schedule. Perturbations to the system are always largest at the two endpoints, 

where the relative perturbation of the system is the largest (i.e. at the start of the simulation a 

new atom is introduced into the system, and at the end of the simulation the original side 

chain ‘disappears’). The dynamics schedule was constructed so that energy fluctuations 

were close to thermal noise, which was achieved by adjusting the step size between two 

consecutive lambda points.

When the introduced amino acid chain is a hydrogen atom, the perturbation at the end point 

is greater than at the starting point because the change in the volume available to water 

molecules does not change significantly upon the introduction of a hydrogen atom, whereas 

upon the removal of the original amino acid side chain a large gap appears that can be filled 

with water molecules. In anticipation of this development the simulations were performed 

with additional λ values at the end of the simulation. The rationale for this was that the 

smaller the difference between consecutive λ values, the smaller the perturbation that each 

succeeding state induces. As expected, the smallest perturbations were observed in amino 

Carl et al. Page 6

J Chem Inf Model. Author manuscript; available in PMC 2014 November 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



acids that differ little from glycine, such as alanine, and the largest perturbations occurred in 

large residues such as arginine.

Results and Discussion

ProBiS analysis of selected protein complexes

Protein complexes 1aze, 1emv, 1ugh and 1all were analyzed with the ProBiS web server. 

High-and low-scoring residues, with local structural similarity scores ≥ 7 and ≤ 3, 

respectively, were separately recorded for chains 1azeA, 1emvA, 1ughE and 1allA.

Several residues were selected for molecular dynamics free energy calculations: high-

scoring Asn51 and Tyr52 from 1azeA; Gln144 and Ser169 from 1ughE; Asp13, Val38, 

Thr45, Asp89, Arg93, Tyr97 and Val100 from 1allA; low-scoring Val7 from 1azeA; Cys23, 

Asn24, Thr27, Asp51 and Asp62 from 1emvA; Lys28 and Val31 from 1allA. Each of the 

selected amino acids is part of a protein-protein interface and is projected from the query 

protein surface toward its binding partner.

Molecular dynamics free energy calculation test case

To observe the change in free energy and establish a simulation protocol associated with a 

point mutation we investigated the complex between N-SH3 domain of Grb2 protein and a 

peptide derived from Sos (1aze),70 a small (20 kDa) protein-protein complex. This complex 

was chosen due to its small size which enabled us to perform many test simulations. All 

mutations in the test case were done on chain A of the complex (1azeA).

We investigated the free energy change in relation to the simulation duration and the 

assignment of initial atom velocities. Longer simulations yield more accurate results, but at a 

higher computational cost. For example, 125 ps of simulation time for chains A and B of 

protein 1all (see Table 1 for details) required 56 hours on a workstation with two Intel Xeon 

2.27 GHz processors running Gentoo Linux. A smaller system (chains A and B of protein 

1aze) required 18 hours for 125 ps of simulation time and scaled linearly with increasing 

length, with 1 ns of simulation time requiring 150 hours of computation time on the same 

computer system. The velocity distribution (temperature) in individual simulations was 

constant; the initial velocities assigned to individual atoms however were not. Since initial 

velocities should not influence the results, multiple parallels of the same calculation were 

performed with different initial velocities. The resulting free energy differences were 

checked for conformity.

In Table 2, the data for point mutations of various amino acids into glycine in both the free 

protein (1azeA) and the complex (1aze) are presented. The focus was on two amino acids of 

chain A, Tyr52 and Asn42, which have different roles in the formation of the protein–

protein complex, as seen from the NMR structures in the PDB entry 1aze;70 Tyr52 is a part 

of the protein–protein binding site, whereas Asn42 is not. Tyr52 forms a strong hydrogen 

bond with the binding partner, and consequently it is expected that the ΔΔG° associated with 

this point mutation should be less than −3 kcal/mol. The position of Tyr52 relative to the 

binding partner is depicted in Figure 6. During the simulation, Tyr52 is mutated into Gly52. 
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The side chain of Gly52 (a single hydrogen atom) is located along the bond between the α 

and β carbon atoms of Tyr52.

From Table 2 it can be seen that the absolute value of ΔΔG° for Asn42 is close to −0.6 

kcal/mol (RT), whereas ΔΔG° for Tyr52 is approximately −5 kcal/mol, equivalent to the 

energy of a strong hydrogen bond. An appropriate simulation time appears to be between 20 

and 30 ns depending on the amino acid, where the simulation time is calculated as the 

number of λ points multiplied by time/λ point, which is also consistent with published 

data.38 However, we suggest that the size of ΔΔG° could be approximately determined using 

much shorter simulations, about 3 ns long, which can also be seen in Table 2. Greater 

precision is achieved with longer simulations, but shorter simulations still give information 

about the ΔΔG° trend.

Comparison of local structural similarity score and the interaction free energy of amino 
acids

We sought correlation between local structural similarity scores71,72 and calculated 

interaction free energies. Accordingly, we calculated ΔΔG° values for the amino acids 

belonging to a number of protein-protein binding sites in different protein-protein 

complexes, high- or low-scoring according to their ProBiS structural similarity scores.

In Table 3 are presented, side by side, the interaction free energies calculated by molecular 

dynamics free energy simulations and the structural similarity scores calculated by ProBiS 

for the investigated amino acids. The high-scoring residues contribute on average −3.19 

kcal/mol to the interaction free energy, while low-scoring residues contribute on average 

−0.43 kcal/mol.

For comparison, we also calculated hot spots using HotPoint,73 a method for prediction of 

computational hot spots based on conservation, solvent accessibility and statistical pairwise 

residue potentials of the interface residues. The results are presented in Table 3. Residues 

predicted as hot spots using this method contribute on average −2.87 kcal/mol, whereas 

predicted non-hot spot residues contribute −1.53 kcal/mol. In addition, residues predicted as 

hot spots have average local structural similarity scores of 7.14, whereas those predicted as 

non-hot spots have the average score of 3.83. We observe some differences between ProBiS, 

molecular-dynamics, and HotPoint predictions. In 1aze, ProBiS and molecular dynamics 

free energy calculations predict Tyr52 as a hot spot, whereas HotPoint does not. The reason 

for this might be that Tyr52 is very solvent accessible, which decreases the HotPoint score 

that relies on solvent accessibility. In contrast, molecular dynamics shows that Tyr52 forms 

a hydrogen bond with its binding partner, which is not seen in the 1aze crystal structure, and 

thus predicts this residue as a hot spot.

Even though the results in Table 3 represent a relatively small sample, we observe a 

correlation between evolutionary conserved residues (high structural similarity scores) and 

free energies of amino acid residues involved in protein-protein binding. In contrast, there 

are residues such as Gln144 from 1ughE which have high structural similarity scores but 

low interaction free energies. This suggests that although the ProBiS algorithm can identify 

hot spots in most cases, the role of a residue in protein-protein interactions cannot always be 
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explained by the similarity scores alone or alternatively, the residues predicted by ProBiS 

and with poor interaction energies could be structurally conserved due to their importance 

for other reasons.

Conclusion

In this article we present a protocol for determining a contribution of an amino acid to the 

free energy of formation of a protein-protein complex. To achieve this, we employed 

thermodynamic integration as implemented in CHARMM’s PERT module. To keep the 

simulation systems close to equilibrium during perturbations, we adjusted the dynamics 

schedule to keep energy fluctuations close to thermal noise RT. We established an 

appropriate sampling simulation time at 20 – 30 ns, with shorter simulations (around 3 ns) 

sufficing for an estimation of the ΔΔG° value.

Furthermore, we tested the accuracy of the ProBiS algorithm in its identification of binding 

sites by juxtaposing its scores with the interaction free energies calculated by 

thermodynamic integration. Our results indicate that high-scoring amino acid residues 

contribute more to the free energy of binding. This suggests that the local structural 

similarity score accurately identifies residues involved in protein-protein binding. For rapid 

estimation of the contribution of individual amino acids to the free energy of protein-protein 

complex formation, local structural alignment methods can be used to provide a short list of 

residues that are likely to be critical for protein–protein binding. Since molecular dynamics 

free energy methods require structures of complexed proteins for an estimation of amino 

acid contribution to the binding free energy, local structural alignment methods can be 

particularly useful when the structures of complexes with interesting binding partners 

remain undetermined.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ProBiS results for four complexes used in this study to examine the correlation between 

local structural similarity score and contribution to the free energy of binding. Proteins that 

form complexes with the investigated proteins are shown in grey. ProBiS scores are 

presented in a color scheme (bottom) with the most significant residues with a local 

structural similarity score of 9 colored red, and the least significant with a score of 0 colored 

blue.
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Figure 2. 
The process of determining the role of structural conservation on amino acid’s contribution 

to the free energy of binding as determined by molecular dynamics free energy simulation.
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Figure 3. 
The thermodynamic cycle describing the binding of the wild-type and the mutated protein to 

its binding partner. The binding free energy change ΔΔG° can be calculated as either ΔG°2 – 

ΔG°1 or as ΔG°3 – ΔG°4.
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Figure 4. 
Tripeptide in the form of AXA, where the central amino acid is surrounded by capped 

alanines. R denotes the side chain of the central amino acid X.
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Figure 5. 
Energy fluctuations for different amino acids in AXA tripeptide in a dynamics schedule 

designed to keep fluctuations close to 0.6 kcal/mol, the value of thermal noise RT at 300 K. 

The λ values that the system visits are not spaced equidistantly, but are sampled more 

frequently where perturbations are largest (in the case of the glycine point mutation, when λ 

approaches 1). Bulkier and charged amino acids perturb the system more than amino acids 

with small and neutral side chains. For simplicity, we present data for only four amino acid 

residues.
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Figure 6. 
Protein complex 1azeA in blue and its binding partner 1azeB in grey. The side chain of the 

hot spot amino acid Tyr52 is shown as red sticks. Point mutation of Tyr52 results in glycine, 

whose hydrogen and α-carbon atoms are shown as yellow spheres.
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