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Abstract
The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain
relief, osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which
targets at another closely related cannabinoid receptor (CB1), accentuates the importance of
selectivity for the development of CB2 ligands in order to minimize their effects on the CB1
receptor. In our previous study, LiCABEDS (Ligand Classifier of Adaptively Boosting Ensemble
Decision Stumps) was reported as a generic ligand classification algorithm for the prediction of
categorical molecular properties. Here, we report extension of the application of LiCABEDS to
the modeling of cannabinoid ligand selectivity with molecular fingerprints as descriptors. The
performance of LiCABEDS was systematically compared with another popular classification
algorithm, support vector machine (SVM), according to prediction precision and recall rate. In
addition, the examination of LiCABEDS models revealed the difference in structure diversity of
CB1 and CB2 selective ligands. The structure determination from data mining could be useful for
the design of novel cannabinoid lead compounds. More importantly, the potential of LiCABEDS
was demonstrated through successful identification of newly synthesized CB2 selective
compounds.
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1. Introduction
The whole drug discovery and development process typically takes 10 to 15 years, and costs
500 million to 2 billion dollars1 for a new drug. Despite significant investment in the
discovery and optimization of “lead compound”, the failure rate in clinic Phase II and Phase
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III has been rising2. Lack of desired pharmacological and physicochemical properties
frequently causes rejection of drug candidates from further development. The selectivity to
specific drug targets has been a crucial pharmacological property of drug candidates3. Since
the advent of chemical genetics and chemical genomics4, even more emphasis has been
placed on ligand selectivity to study biological systems and explore mechanisms of action.

The endocannabinoid system is assumed to regulate psychological processes, and is directly
related to human mental and physical health. The first cannabinoid receptor was discovered
in 1988 5, later named as the CB1 receptor. A second cannabinoid receptor, CB2 receptor,
was identified in human peripheral organs in 19936. These two receptors share high
sequence similarity, especially in transmembrane portions7. Thus, selective cannabinoid
ligands are desired to ensure minimal effect on the other receptor. Recent studies show that
the cannabinoid CB2 receptor may serve as a potential target for many diseases8, including
neurodegenerative disorders9, blood cancer10 and osteoporosis11. On the other hand, a
famous drug, Rimonabant, which targets the cannabinoid CB1 receptor to treat obesity, was
withdrawn from the market due to its side psychotropic effects12. In spite of the therapeutic
potential of the CB2 receptor, the suspension of Rimonabant reemphasizes the importance of
selectivity regarding the design of CB2 agonists and antagonists.

Felder et al reported the first CB2 selective ligand, WIN-55,212-2, which showed 19 fold
higher binding affinity for CB2 than for CB113. Since then, the discovery of novel CB2
selective ligands has become the endeavor of many scientists8, 14. Nowadays, computer-
aided drug design has been integrated into the pipeline of drug discovery to accelerate
traditional experimental screening, which requires significant efforts. Thus, the search for
CB2 selective ligands is an important application of drug design. For example, several
reports were published about homology modeling and molecular docking to develop CB2
specific ligands15. Besides structure-based drug design, machine learning and pattern
recognition are gaining popularity for virtual screening and the prediction of various
molecular properties. In the context of selectivity profiling, Wassermann et al predicted
ligand selectivity by using support vector machine ranking3.

Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps (LiCABEDS) is a
generic ligand classification algorithm developed by Xie's laboratory16 for the prediction of
categorical ligand properties. LiCABEDS was established on Freund and Schapire's
ensemble learning framework17. The underlying theory and its application on modeling
ligand functionality have been outlined in our previous report. Briefly, the motivation of
LiCABEDS is to build a “strong” classifier by integrating a set of weighted “weak learners”
that are defined in a specific hypothesis space. Unlike many other supervised learning
algorithms, LiCABEDS minimizes training error by iteratively adding more “learners” into
the classifier ensemble, but still aims at margin maximization. The implementation of
LiCABEDS is available at www.cbligand.org/LiCABEDS, including automated model
training, cross-validation, and predicting. In this study, we continued to explore the
performance and applicability of LiCABEDS for the prediction of cannabinoid ligand
selectivity. LiCABEDS was compared with a famous supervised learning algorithm, support
vector machine (SVM), in order to evaluate their performance in recovering true selective
ligands. Performance measures were given by precision, recall rate, the geometric mean of
both, and ROC curve with area-under-curve (AUC). An ideal classifier would recover all
selective ligands from a screening library (100% recall rate), and have no false positive error
(100% precision). In addition, the investigation of LiCABEDS models revealed information
on the structure diversity of CB1 selective and CB2 selective ligands. Supported by scaffold
and fragment analysis, we hypothesized that CB2 selective ligands tended to be more
structurally diverse than CB1 selective compounds among discovered cannabinoid ligands.
More interestingly, the LiCABEDS model successfully identified a true CB2 selective

Ma et al. Page 2

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cbligand.org/LiCABEDS


ligand from 12 newly synthesized compounds. With these 12 compounds added to the
training set, a new LiCABEDS model was capable of recovering four CB2 selective
compounds from another batch of 26 novel testing compounds. In the following, we report
datasets involved in model training and validation, a comprehensive computation protocol of
LiCABEDS and SVM, and results of systematic calculations.

2. Materials, Methods, and Calculations
2.1 Selectivity and Datasets

To demonstrate the performance and robustness of machine learning algorithms in the
prediction of cannabinoid ligand selectivity, 703 chemical structures and their bioactivity
(Ki value) to CB1 and CB2 receptors were retrieved from the public cannabinoid ligand
database (www.cbligand.org). A selective ligand is usually defined descriptively as its
differing binding affinity to form a ligand-protein complex with different receptors.
However, it lacks a quantitative definition. In this study, a ligand was regarded as
CB1selective (or CB2 selective) as long as its ratio of CB1 Ki to CB2 Ki (CB2 Ki to CB1
Ki) was less than 0.1. In other words, a ligand bound selectively to cannabinoid receptor
subtypes if it exhibited more than 10-fold Ki difference. The rationality of this criterion was
supported by an expert in selective cannabinoid ligand discovery, J.W. Huffman 18. He
commented that O,2-propano-Δ8-THC analogues 19 exhibited modest CB2 selectivity. The
CB1/CB2 Ki ratio of these analogues, reported by Reggio et al, ranged from 2.8 to 4.5. In
addition, the 10-fold Ki threshold created selective and non-selective compound sets with
reasonable sizes. Following this approach, 149 compounds were identified as CB1 selective;
147 compounds were identified as CB2 selective; the remaining compounds were treated as
non-selective. The goal of the study was to distinguish CB1 selective compounds from the
CB1 non-selective (including CB2 selective and non-selective), and CB2 selective
compounds from CB2 non-selective (including CB1 selective and non-selective).

2.2 LiCABEDS
Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps (LiCABEDS) is a
general-purpose ligand classification tool that is established on a famous ensemble learning
algorithm, adaptive boosting17. The performance, robustness, interpretability and parameters
of LiCABEDS were thoroughly discussed through modeling 5-HT1A ligand functionality16.
Now we aim to demonstrate the wide applicability of LiCABEDS by modeling cannabinoid
ligand selectivity. Briefly, the prediction in LiCABEDS is determined by weighted
summation of a set of “weak” classifiers, i.e. decision sumps. Each decision stump outputs a
predicted categorical label according to whether the testing sample possesses a specific
compound fragment or structure pattern. Figure 1 visualizes the underlying mechanism of
the LiCABEDS prediction model. Even though the performance of each individual decision
stump is not necessarily much better than a random guess, ensemble learning theory shows
that strong classifiers can be obtained by boosting these weak learners.

Thus the responsibility of LiCABEDS training algorithms is to derive M decision stumps
and weight assignment. Molecular fingerprints define a high-dimensional chemistry space,
from which decision stumps can be reasonably constructed. As LiCABEDS theory has been
reported previously, the training algorithm is only outlined here. Let y(x,i,t) = 2I(xi = t)−1
represent a decision stump, where x is molecular fingerprint vector, i is vector index, t is a
parameter, and I is indicator function. Thus, the LiCABEDS model is formulated as
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(1)

The parameters, am, im and tm, for each decision stump m can be decided following the
training algorithm:

1. Initialize the sample weights for each training compound n, wn = 1/N,n = 1, …,N
and N is the total number of training compounds.

2. For each round of calculation m = 1, …,M

Find im, tm for weak learner ym by minimizing the weighted error function

(2)

where “arg min” is the function to return the arguments which minimize the object function,
Xn is the descriptor vector for compound n; ln = ±1is the selectivity label. The optimal
values of im,tm are found by enumerating all possible combinations of im,tm.

Then evaluate the quantities:

(3)

am becomes the weight for the “decision stump” m. Then update the weights of training
compounds for next round of calculation:

(4)

2.3 Support Vector Machine
Support Vector Machine (SVM) shares some similarity with adaptive boosting regarding
margin maximization. Both algorithms have a native margin-maximization mechanism to
control overfitting, but margins in these two algorithms are expressed in different norms.
The binary classification in standard SVM setting is formulated by function fw,b(x) =
sign(wTx + b). w is the normal vector to the decision hyperplane. The motivation of the
support vector machine is that the optimal decision surface has the largest distance to the
nearest data points of both categories, i.e,. margin maximization, and still classifies training
samples correctly by satisfying yi (wTxi + b) ≥ 1 ∀i where yi is label of training data. Given
the same training data sets {xi, yi}, i = 1 to n, the problem of margin optimization can be
transformed into constraint optimization:
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Among all the constraints, the training samples that are relevant to the determination of
margin are called “support vectors”. More details about SVM algorithm can be found in the
original publication20 and its application in chemoinformatics3 as well as our 5HT-1a
classification paper21.

2.4 Calculations
Four types of molecular fingerprints, including Maccs key22, Unity (www.tripos.com),
FP223, and Molprint 2D 2425, were generated as descriptors to represent each cannabinoid
ligand in machine learning algorithms. Maccs key (166 bit) and FP2 (1024 bit) were
calculated using OpenBabel, and Unity fingerprints (992 bit) were generated in Tripos
Sybyl. The whole cannabinoid ligand dataset produced 2530 three-layer Molprint 2D
features from Bender et al's program. These features were mapped to binary vector
according to previously published protocol16. To systematically evaluate prediction
accuracy, 50% CB1 selective and 50% CB1 non-selective compounds were randomly
selected as training set in order to build a prediction model. The remaining compounds,
which were not present to learning algorithms, were used to test the model. The calculation
strategy was also applied to CB2 selectivity modeling. Two machine learning algorithms
(LiCABEDS and SVM) combined with four types of fingerprint and two receptor subtypes
resulted in 16 calculation settings. Each calculation setting was repeated for 20 times on
different randomly selected training and testing samples to assess stability and reliability.

All calculations regarding LiCABEDS were automated with our published program
(www.cbligand.org/LiCABEDS). The SVM-based selectivity modeling method in this study
was conducted using library “e1071”, which included an R wrapper of LIBSVM26. This
article also reports the effect of cross-validation on the prediction performance of testing
data sets. With cross-validation, 30% of the training data was omitted from the cross-
validation set in order to choose optimal training parameters. For LiCABEDS, the training
parameter was the number of “decision stumps”, or training iterations; while the parameter
of SVM was the constant C that regularized the tradeoff of training error and margin size.
All the training data then were used to train a model according to the optimal parameter
specified during cross-validation. During this study, a LiCABEDS model was developed
using all the labeled compounds to predict CB2 selectivity of 12 newly synthesized
compounds.

The following performance metrics were calculated for each calculation setting:

Precision measured the percentage of correctly identified selective compounds, and Recall
Rate (or True Positive Rate) depicted the capability of the prediction model to retrieve or
recover selective compounds. Geometric mean of Precision and Recall Rate could serve as a
single criterion to rate prediction performance. ROC (receiver operating characteristic) curve
plotting TPR versus FPR showed the enrichment of true selective compounds with varying
decision threshold.

Structural skeletons of cannabinoid ligands were generated and compared for the exploration
of structure diversity in selective CB1 and CB2 ligands. Briefly, compounds were reduced to
carbon skeletons by deleting all non-ring substituent except linkers between ring systems,
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replacing all hetero-atoms with carbon atoms, and converting all bond orders to single
bonds 27. Following these procedures, generic compound scaffolds were generated by
shrinking the linker chain from a sequence of two or more CH2s to only one CH2. Figure 2
exemplifies the procedure of scaffold generation with a CB1 selective ligand, SR141716.

Furthermore, a LiCABEDS model was trained to predict the CB2 selectivity of newly
synthesized compounds with novel scaffold. In this case, the model was developed with all
annotated cannabinoid ligands as training data and Molprint 2D fingerprint as descriptor.
The binding affinities of these compounds to CB1 and CB2 receptors were determined by
radioligand competition binding assays. The LiCABEDS prediction was compared with
experimental CB2 selectivity following the same 10-fold-Ki criteria. The compound
structures and experimental details can be found in Supporting Information Part 1.

2.5 Model Interpretation
The interpretation of a LiCABEDS model may help us to understand the underlying
classification mechanism and to discover significant features related to ligand properties.
The models developed out of the 20 rounds of calculations are used to demonstrate the
interpretation of CB1 selectivity prediction. As presented in the Materials, Methods, and
Calculations section, each “decision stump” contributes to the final prediction according to
its weight, aM in equation 1. The highly weighted “decision stumps” imply that they
contribute significantly to the prediction outcome. We extract such decision stumps together
with related features, and analyze their occurrences among the CB1 selective and non-CB1
selective compounds. In this demonstration, we use Molprint 2D descriptors as predictive
features. Each Molprint 2D feature depicts a central atom and its atom environment up to a
specific topological distance, and the atom environment in Molprint 2D is defined as the
distribution of heavy atoms surrounding the central atom. Heavy atoms are distinguished by
Sybyl atom types. The same analogy applies to the analysis of CB2 selectivity models.

3. Results and Discussion
This section is focused on the analysis of LiCABEDS, SVM and different molecular
fingerprints for their capability of distinguishing cannabinoid selective compounds from
non-selective ones. The results are quantitatively supported by various performance metrics
that depict aspects of prediction outcomes. The effect of cross-validation on LiCABEDS and
SVM is also discussed. In addition, the cross-validation studies reveal that the LiCABEDS
model complexity is positively correlated with the recall rate of CB2 selective compounds,
but not CB1 selective ones. A possible explanation to this is provided in terms of structure
diversity, which gives us deeper understanding of the LiCABEDS mechanism. A case study
shows how LiCABEDS could direct drug discovery and chemical modification by
predicting the selectivity of newly synthesized compounds.

3.1 LiCABEDS and SVM in Default Settings
LiCABEDS was originally designed as a general-purpose ligand classifier for the prediction
of categorical ligand properties. The theoretical framework of LiCABEDS shows that
LiCABEDS is not necessarily a linear classification algorithm. However, when the feature
space is represented in binary molecular fingerprints, the training algorithm described in the
method section produces a linear classifier. Given that a type of fingerprint defines a pattern
set S, and that a function f : S → N maps each structure pattern to a unique index, there are 2|
S | possible decision stumps y(x,i,t) = 2I(xi = t) −1, because i ∈ {id : id = f(s), s ∈ S} and t ∈
{0, 1} . Due to the sample space of t in the context of binary fingerprint, the indicator
function, I, can be omitted by expressing a decision stump as y(x,i,t) = k(2xi −1), k ∈ {+1,
−1}. k = +1 if t = 1, k = -1 otherwise. Therefore, the LiCABEDS prediction function
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 can be updated as , a′m =amkm
For a specific i, define a set Ai that contains any a′m associated with xi.

Thus, . This proves the linearity of
LiCABEDS with decision stumps created in a binary feature space.

In our previous studies, LiCABEDS was compared with naive Bayes classifier and
classification tree (or recursive partitioning method). Support Vector Machine (SVM) is
another popular classification algorithm for building linear and non-linear models. SVM has
been widely applied in cheminformatics and ligand-based drug design. For the linear nature
of LiCABEDS models here, we present a comparison between LiCABEDS and linear SVM.
Note that non-linear SVM models may exhibit advantages over linear ones in certain
circumstances21. Nevertheless, the selection of non-linear kernel functions and parameters is
computationally expensive, and could become a risk factor for over-fitting.

This section presents the performance of LiCABEDS and SVM models trained with default
parameters (parameter tuning will be discussed later), to show the robustness of these two
algorithms. The only parameter in linear SVM is the “C”-constant of regularization. Its
default value is 1, meaning that training error and margin size are equally important. The
only parameter in LiCABEDS training is the number of training iterations or decision
stumps, M. A reasonable default value of M is 2| S |, so that every possible decision stump
could be incorporated in the ensemble classifier, even though only some relevant decision
stumps contribute to the prediction in real-world problems. By following this principle, the
number of LiCABEDS training iterations for Molprint 2D, FP2, Unity and Maccs
fingerprints are 5000, 2000, 2000 and 400, respectively.

The results of a systematic evaluation of cannabinoid-subtype selectivity prediction are
summarized in Figure 3 and Table 1.

Figure 3 plots the distribution of precision and recall rate of different computational methods
in 20 rounds of calculation. The performance metrics of LiCABEDS and SVM that are
trained with different fingerprints are shown. Correspondingly, Table 1 lists the average,
standard deviation, and geometric mean of precision and recall rates. Overall, satisfactory
results are achieved. LiCABEDS + Unity outperform other combinations for CB1 selectivity
prediction, with the highest geometric mean, 67.7. SVM + FP2 lead the CB2 selectivity
prediction, with the highest geometric mean, 65.4. Regardless of fingerprint types, the range
of precision and recall of LiCABEDS models covers 56.1%-77.9% and 49.3%-80.0% for
CB1 selectivity, 52.1%-74.1% and 33.8%-74.3% for CB2 selectivity. At the same time,
SVM models yield precision of 57.7%-76.4% and recall of 54.7%-80.0% for CB1
selectivity, and precision of 55.7%-76.3% and recall of 43.2%-77.0% for CB2 selectivity. In
spite of the variability, the precision and recall rate stay above 50% in most cases.

In general, all the fingerprints exhibit decent prediction accuracy in LiCABEDS and SVM.
According to Table 1, Unity fingerprint is the optimal choice for screening CB1 selective
compounds, since it achieves a 67% precision rate in both machine learning algorithms. FP2
fingerprints produce the highest geometric mean of precision and recall for CB2 selective
compounds (63.5% for LiCABEDS and 65.4%). Also, the best recall rate of CB2 models is
established on FP2 fingerprints (63.4% for LiCABEDS and 64.5% for SVM). Figure 3
reveals consistent high precision rate of Molprint 2D fingerprint for both CB1 and CB2
selectivity prediction. Maccs key is weak at recovering CB2 selective, but is surprisingly

Ma et al. Page 7

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sufficient for CB1 selective. Altogether, Molprint 2D, FP2 and Unity have subtle different in
terms of performance metrics, leaving Maccs key slightly behind.

With four types of fingerprints, the geometric mean (GM) gap of LiCABEDS and SVM
models falls in the interval (-2.2, 1.3). Table 1 suggests that SVM generally outperforms
LiCABEDS. However, the difference is insignificant when visualized in Figure 3 or
compared with the standard deviation in Table 1. Another interesting fact is that the
precision and recall rate of CB1 models are uniformly higher than those of CB2 models,
even if the computation protocol is identical. Section 3.3 will explain and discuss this in
depth.

The evaluation and comparison of modeling strategies are quantified according to precision,
recall rate, and geometric mean. Precision should be emphasized when the cost of validating
a predicted selective is high. On the other hand, recall rate catches our attention when many
lead compounds are desired at an early stage of virtual screening. However, precision and
recall rate are usually negatively correlated. An astringent strategy guarantees a high
precision rate by selecting high-confident samples, but sacrifices recall rate by ignoring
potential true positives. Even if the geometric mean is not perfect as single-number
performance measure, it remains a reasonable way to rank screening strategies.

These analyses assume correct selectivity label of training and testing compounds. Due to
systematic and random error in bioassays, the reality obviously deviates from this
assumption. For example, Huffman et al pointed out that the CB2/CB1 affinity ratio of a
famous cannabinoid, WIN-55,212-2, was reported in a range from 0.6 to 30 18. In our study,
this compound could be CB2 selective or non-selective. The inconsistent selectivity label in
training and testing compounds causes confusion and uncertainty. To minimize this effect,
we tried to extract bio-affinity values of a cannabinoid ligand from the same literature, and
use the Ki values reported for the same cell line. However, this systematic error cannot be
fully eradicated. The CAS number, bio-affinity value and reference of all the cannabinoid
ligands involved in this study can be found in Supporting Information Part 2.

3.2 LiCABEDS and SVM with Cross-validation
The ultimate goals of supervised learning algorithms are to minimize generalization error
and to achieve optimal performance for prospective predictions. In this sense, LiCABEDS
and SVM are not exceptions. The sole pursuit of reducing training error may lead to poor
predictions for new testing samples (overfitting), while the over-emphasis on margin
maximization may result in lack-of-fit. This paradox is also known as “bias-variance
tradeoff” in statistics. Cross-validation is an effective method to determine optimal model
parameters. In this study, the parameters evaluated in cross-validation are the number of
training iterations in LiCABEDS (M) and C-constant in SVM. For LiCABEDS, M ∈
[minstep, maxstep]. maxstep is the default training iterations mentioned previously. minstep
= 50 if Maccs is used as descriptor, otherwise minstep = 100. C ∈ {2i: i = -16, -15, … 15,
16}. Although the parameter space of LiCABEDS is much larger than SVM, dynamic
programming makes the cross-validation in LiCABEDS as rapid as training a model. The M
and C that perform best on cross-validation data are selected for model training. The
performance of these models is further evaluated on the same testing sets, and results are
shown in Table 2 and Figure 4.

Cross-validation brings consistent improvement for both LiCABEDS and SVM, except for
CB2 selectivity prediction using Maccs fingerprint. The geometric mean (GM) of
LiCABEDS grows Δ1.7 – 2.7 for CB1 selectivity prediction, and Δ-1.7 – 1.9 for CB2
selectivity prediction. Correspondingly, the geometric mean (GM) of SVM grows Δ2.7 – 4.6
for CB1 selectivity prediction, and Δ-2.5 – 3.7 for CB2 selectivity prediction. Both

Ma et al. Page 8

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



algorithms are robust enough to deliver satisfactory predictions with default model
parameters. Even if cross-validation has positive impact, the improvement is inconclusive
when compared with performance variance. SVM seems to be more sensitive to the choice
of parameters than LiCABEDS, since the increment of its geometric mean is relatively
higher.

SVM + Molprint 2D outperforms other models in both CB1 and CB2 selectivity prediction
after parameter tuning for its highest GM (71.3 and 66.5). Figure 4 shows that, the precision
rates of LiCABEDS and SVM are similar among all fingerprints, but SVM is capable of
retrieving more selective compounds than LiCABEDS, especially for CB1 selective
compounds. In the end, the GM of SVM is 0.4 to 3.9 higher than that of LiCABEDS.

3.3 Training Iterations of LiCABEDS
Training iterations (M) of LiCABEDS are directly related to model complexity, as every
round of training adds one more “weak classifier” to the ensemble model. Parameter M was
thoroughly discussed in our previous study16, and the hypothesis was that large M produced
close-to-optimal models. Using cross-validation might improve prediction performance, but
its effect was statistically insignificant. The results in section 3.2 also support this
hypothesis. Thus, assigning a relatively large value to M not only guarantees model
convergence, but also avoids costly cross-validation procedures and potential overfitting of
cross-validation data. Apart from machine learning language, the meaning of M can be also
interpreted in applied domain knowledge. This section is primarily focused on how M
affects the recovery of selective ligands.

Naturally selective compounds are supposed to be overwhelmed by non-selective ones,
which is also true for our training and testing sets. Thus, what the LiCABEDS training
algorithm faces is unbalanced data. Treating each training sample equally at the initialization
stage, the training algorithm first assures the correct classification of non-selective
compounds even at the cost of misclassification of selective ones. As the majority of the
samples are non-selective, this is an effective technique for minimizing training errors when
the classification power of LiCABEDS is limited. Later when the model complexity grows,
the training algorithm aims at recovering selective ligands from the training pool by picking
up discriminative features and building “decision stumps” accordingly. This process is
visualized in Figure 5.

Figure 5 plots the average and standard deviation of recall and precision rates on the testing
data sets as a function of training iterations, M. As shown in the left column, the recall rate
steadily increases as M grows. For example, with Molprint 2D fingerprint, the recall rate
starts from 20%. It converges to a plateau (approximately 60%) when M is more than 500. A
similar trend can be observed in other plots. Meanwhile, the precision is more stable
compared to recall rate. The precision rate mainly fluctuates from 60% to 70% for Molprint
2D, FP2, Unity fingerprints, and from 50% to 60% for Maccs fingerprint. The precision rate
seems to be negatively correlated with training iterations, meaning that a large M reduces
precision of the prediction. To explain this, easy-to-classify selective ligands are correctly
labeled at the beginning stage of training. As training continues, the algorithm tries to
recover more selective ligands that are harder to classify. At the same time, more non-
selective ligands also may be predicted as selective, which reduces precision. However, the
positive effect of a large M on recall rate is obviously more significant than its negative
effect on precision. Therefore, training error is effectively minimized in the early stage of
training. As recall rate reaches the plateau, adding more “decision stumps” only impairs
precision rate. The value that seeks a balanced trade-off between these two metrics can be
determined by cross-validation, which has been well explained in the previous section.
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The precision and recall rate of CB1 selectivity models are very different from those of the
CB2 selectivity models. Their values as a function of training iterations are displayed in
Figure 6. One major difference is that the recall rate of CB1 selectivity models reaches the
plateau when M is about 50 for Molprint 2D, FP2 and Unity fingerprints. The uptrend of
recall rate is almost not observable with Maccs fingerprint. Figure 6 suggests that precision
rate gradually reduces as M grows, which is similar to Figure 5. Thus, a large M is less
favored compared to CB2 selectivity models. This also explains why cross-validation is
more beneficial to CB1selectivity prediction than CB2 selectivity prediction. As mentioned
in Section 3.2, cross-validation enhances the geometric mean of CB1 selectivity models by
Δ1.7 – 2.7, but Δ-1.7 – 1.9 for CB2 selectivity models. Furthermore, the average of optimal
M for CB1 selectivity prediction is 283 with Molprint 2D fingerprint. The average for CB2
selectivity prediction is 736 with the same fingerprint. A straightforward conclusion is that
the complexity of CB2 selectivity models is higher than the CB1 models. It also indirectly
suggests that the structure of CB2 selective ligands is more diverse. More factors therefore
need to be considered in the classifier.

A universal quantitative definition of structure diversity does not exist, since it can be
evaluated according to aspects of criteria, such as molecular weight and number of rings.
We attempt to illustrate the structure diversity of cannabinoid selective ligands in both
fragments and scaffolds. Principal component analysis (PCA) is an unsupervised learning
skill that transforms original data into a new orthogonal coordinate system in order to
capture the maximum variance. In the new coordinate system, the first component has the
largest possible variance; the second component has the second largest possible variance;
and so on. Figure 7 displays the first two components of Maccs fingerprints of all selectivity
ligands. PCA reduces the dimensionality of 166-bit fingerprint for visualization while
maintaining minimum information loss. In Figure 7, CB1 selective ligands form three
clusters that are approximately centered at (-3,1), (2,1), and (2,-3). Only a few points are
scattered near the origin. Similarly, CB2 selective ligands also form three clusters that are
approximately centered at (-4,0), (0,0), and (-3,-4). The radius of each cluster is associated
with the structure variance of the compounds in the cluster. Although the distributions of
CB1 and CB2 selective ligands in the PCA plot are different, it is difficult to distinguish
these two types of ligands according to only two principal components.

To assess structure diversity in a different aspect, the scaffolds of CB1 and CB2 selective
compounds were generated according to the protocol described in the Method section.
Results showed that 149 CB1 selective compounds possessed 22 scaffolds. Meanwhile, 147
CB2 selective compounds were reduced to 38 scaffolds. Figure 8 lists five most populated
scaffolds in each compound category. An interesting finding is that the top three CB1
scaffolds have significant overlapping. The second scaffold in Figure 8(A) therefore is a
substructure of the other two. On the other hand, CB2 scaffolds have relatively more
variation. These observations also support our hypothesis that CB2 selective compounds
could be more structurally diverse than CB1 selective compounds. However, the greater
number of scaffolds for CB2 selective compounds is more likely to be attributable to the fact
that companies and academic groups are actively looking for CB2 selective compounds.
This scaffold information could provide useful clues for the design of CB selective
compounds.

3.4 ROC Analysis of LiCABEDS models
Sensitivity and specificity are classical statistical measures of the performance of binary
classification. The ROC curve visualizes the true positive rate (sensitivity) as a function of
false positive rate (1-specificity) by changing the classification boundary value. Visual
inspection of enrichment of positive samples is straightforward by examining ROC curve.
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Besides the convenience of visualization, the area under curve (AUC) serves as a
quantitative performance measure of enrichment of relevant samples. The ROC curve of a
random guess function (curve in dashed line) yields an AUC of 0.5. A perfect classification
function has an AUC of 1.

As discussed in our original LiCABEDS paper,  indicates the degree
of confidence in each prediction. The default classification boundary is A = 0 . Thus,
changing the decision criterion generates a set of TPR and FPR values and allows inspecting
the enrichment of selective ligands. Figure 9 and 10 plot the ROC curves of LiCABEDS
models for the prediction of CB1 and CB2 selectivity with four types of fingerprints. Out of
20 rounds of test calculation, the average AUC of CB1 selectivity models (Figure 10) are
0.883, 0.893, 0.897 and 0.895 with Molprint 2D, FP2, Unity and Maccs fingerprints
respectively. Correspondingly, the average AUC of CB2 selectivity models is 0.839, 0.880,
0.855 and 0.839 with the same set of fingerprints. Visualization of these two figures and
AUC values both confirm that LiCABEDS effectively enriches selective ligands. In
addition, the ROC curve also indicates that large | A | suggests high probability of observing
relevant samples, because the left region of ROC curve corresponds to astringent decision
criteria. Figure 9 and 10 reveal that the performance of fingerprints involved in LiCABEDS
models is comparable, especially for CB1 selectivity models. Molprint 2D models produce
relatively low AUC for CB2 selectivity prediction (average 0.839), which seems to be
contradictory to our previous findings. In real-world problems, a practical decision boundary
corresponds to the left region of the ROC curve because large FPR is mostly disfavored and
remains unexplored. The slope of the left part of ROC curve is more important than AUC.
As shown in Figure 9 and 10, also by AUC calculation, the LiCABEDS models for CB1
selectivity prediction exhibit better enrichment than CB2 models. This finding also agrees
with the previous hypothesis that the structure patterns of CB2 selective ligands are more
diverse.

3.5 Important features for CB1 and CB2 selective ligands
To demonstrate further the advantage of LiCABEDS, we analyzed the important features
that contributed significantly to distinguishing the selective and non-selective compounds.
Table 3 lists these features for the classification of CB1 selective compounds. As shown in
Table 3, features 697, 1446, 99,546, 1329 and 1809 are favored by CB1 selective ligands.
For example, feature 697(0;0-1-0;1-2-0;1-1-1;2-1-0;2-1-1;) has an average weight (aM) of
3.58 in 20 LiCABEDS models for CB1 selectivity. This feature can be translated to a
substructure of a central sp3 carbon atom (C.3, colored blue in the example compound with
CAS id 322399-51-9) neighbored by one sp3 carbon atom and, surrounded by two sp3
carbon atoms, one sp2 (C.2) carbon atom located two bonds away; one sp2 and one sp3
atom located three bonds away (colored red ). 6 of 149 CB1 selective compounds have this
feature while only 1 of 554 non-CB1 selective compounds has this feature. Such features
may be useful for guiding ligand optimization. On the other hand, features 1561, 1974, 849,
430, 1691, 1365 and 1935 are disfavored by CB1 selective ligands. For example, feature
1935 (2;0-2-2;1-2-2;2-3-2;) has average am as -2.91, and can be translated to a substructure
of a central aromatic carbon atom (C.ar, colored blue in the example compound with CAS id
1000376-80-6) neighbored by 2 aromatic carbon atoms and, surrounded by 2 and 3 aromatic
carbon atoms located two and three bonds away respectively(colored red ). 5 of 149 CB1
selective compounds have this feature while 157 of 554 non-CB1 selective compounds has
this feature.

Table 4 listed the most important features for charactering of CB2 selective compounds. As
shown in Table 4, features 2089, 1446, 99,546, 1329 and 1809 are favored by CB2 selective
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ligands. For example, feature 2089(2;0-2-2;1-3-2;2-1-1;2-4-2;2-1-7;) is assigned an average
aM of 3.11 in 20 LiCABEDS models for CB2 selectivity. This feature can be translated to a
substructure of a central aromatic carbon atom (C.ar, colored blue in the example compound
with CAS id 824961-06-0) neighbored by 2 aromatic carbon atoms and, surrounded by 3
aromatic carbon atoms located two bonds away; one sp2, 4 aromatic carbon atoms, one sp3
oxygen atom located three bonds away (colored red). 4 of 147 CB2 selective compounds
have this feature while none of 556 non-CB2 selective compounds has this feature. On the
other hand, features 2002,98,28,2403,1148 and 1840 are non-favored by CB2 selective
ligands. For example, feature 1840(2;0-2-2;1-1-0;1-2-2;2-3-0;2-3-2;) is assigned an average
aM of -1.29 and can be translated to a substructure of a central aromatic carbon atom (C.ar,
colored blue in the example compound with CAS id 174627-59-9) neighbored by 2 aromatic
carbon atoms and, surrounded by 1 sp3 carbon atom, two aromatic carbon atoms located two
bonds away; 3 sp3 carbon atoms and 2 aromatic carbon atoms located three bonds
away(colored red ). 6 of 147 CB2 selective compounds have this feature while 33 of 556
non-CB2 selective compounds have this feature. If we compare the features in Table 3 and
Table 4, feature 849 and feature 1365 are favored by CB2 selective compounds while they
are disfavored by CB1 selective ligands.

The results again suggest that those features might be related to ligand selectivity and
ligand–protein interaction. The interpretability of LiCABEDS models is rooted in the
explanation of each “decision stump”, especially the highly weighted ones. Therefore,
LiCABEDS models can be understood and interpreted easily. This finding could potentially
guide chemical modification to achieve a better pharmacological or physicochemical profile.

3.6 Prediction of Selectivity of Novel Compounds
Besides retrospective validation, a LiCABEDS model was developed to predict the CB2
selectivity of 12 novel compounds14 (Section 2.4) before they were experimentally tested.
The training set consisted of all the CB2 selective and CB2 non-selective compounds in our
cannabinoid database. The training iteration was set to 2000 with Molprint 2D as the
molecular descriptor. The LiCABEDS model predicted PY-63 (Figure 11) as CB2 selective,
while predicting the other 11 compound as CB2 non-selective. Later, the experimental
validation showed that the three structures in Figure 11 (PY-42, PY-61 and PY-63) were
CB2 selective, and that the remaining compounds were either non-selective or inactive. The
structures of the 12 compounds and their bioactivity profiles are summarized in Table S1
(Supporting Information). Therefore, LiCABEDS successfully discovered PY-63, but
missed the other two potential selective compounds. These two compounds contained a
novel scaffold that was not present in training data. However, the prediction model still
recovered a true selective without reporting any false positive. In the next step, these
compounds were added to the training data to derive a new CB2 selectivity model. The new
model was used to predict the CB2 selectivity of another 26 compounds. The structures of
the 26 compounds, their experimental CB2 selectivity and predicted CB2 selectivity are
listed in Table S2. LiCABEDS identified 5 CB2 selective compounds out of 26. Among
them, 4 compounds were true CB2 selective. In addition, there were totally 7 CB2 selective
compounds according to a binding assay. Thus, LiCABEDS achieved a precision of 4/5 and
a true positive rate of 4/7, which was consistent with previous retrospective validation.
Because the first batch of 12 compounds were added into training data, the information
regarding the novel scaffold was encoded in prediction model, and the prediction
performance was improved. This result also suggested that high-quality training information
is the prerequisite of a supervised learning algorithm. Even though the number of testing
compounds was limited, this case study illustrated that the expense of drug discovery
projects could be minimized by introducing calculation of in silico ligand profiling.
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4. Conclusion
When introduced as a general-purpose ligand classifier, LiCABEDS demonstrated its
application for the classification of 5-HT1A ligand functionality16. This article reports a
follow-up study of LiCABEDS algorithm in the prediction of cannabinoid ligand selectivity.
In-depth discussions are presented on LiCABEDS theoretical framework, performance
measures compared with SVM, vulnerability to overfitting, choice of training parameter,
and prospective validation. The results show that LiCABEDS models effectively recover
60%-70% selective compounds from testing data sets, while maintaining satisfactorily low
false positive rates. All fingerprints deliver decent performance metrics, thereby showing the
flexibility of LiCABEDS to adapt assorted hypothesis space. More importantly, LiCABEDS
successfully identifies a CB2 selective compound out of twelve newly synthesized ones
without any false positive error. Another advantage of LiCABEDS is straightforward
parameter setting. Default training iteration significantly reduces calculation time by
omitting a costly cross-validation procedure, but conveys close-to-optimal models.
LiCABEDS is not a black-box method, since models are interpretable by examining
individual “decision stumps” that are components of ensemble models. Furthermore, the
investigation of LiCABEDS models provides insight into structure diversity of cannabinoid
selective ligands. The correlation between performance metrics and model complexity
reveals that reported CB2 selective ligands are more diverse than CB1 selective ligands.
This hypothesis is later supported by principal component analysis of fragments and analysis
of compound scaffolds. It is also consistent with some performance metrics, such AUC of
ROC curve. This suggests that more binding modes form ligand-protein complexes for CB1
than for CB2 receptors. We conclude that LiCABEDS has potential to model the
pharmacological properties that are not well addressed by traditional QSAR methodology.
LiCABEDS also could guide screening strategy in early stages of drug development.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
graphical illustration of the constitution of a LiCABEDS classifier. Each decision stump
outputs a categorical value (+1 or -1) that contributes to the selectivity label by examining
the presence of a predefined structural pattern. The final prediction is the summation of the
predictions of individual decision stumps weighted by constant at.
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Figure 2.
SR141716, a CB1 selective ligand, as an example to show the procedure of scaffold
generation. (A) The original structure of SR141617. (B) Its carbon skeleton after deleting
the side chains, such as the ‘=O’ , “-CH3′ and ’-Cl’ groups, replacing all non-carbon atoms,
in this case nitrogen atoms, with carbon atoms and converting all bond orders to single
bonds. (C) General carbon skeleton is produced by shrinking the linker chain of the carbon
skeleton from two or more CH2s to one CH2.
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Figure 3.
the boxplot displays the precision and recall rate after 20 rounds of calculation, using either
LiCABEDS or SVM. LiCABEDS and SVM models are trained with four types of
fingerprints (indicated along the X-axis) and default training parameters for the prediction of
either CB1 selective or CB2 selective ligands. The Y-axis shows performance metrics in
percentage values.
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Figure 4.
the boxplot resembles Figure 3 in figure layout. This figure displays the distribution of
precision and recall rate after parameter tuning. Parameters of LiCABEDS and SVM are
tuned by cross-validation.
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Figure 5.
the plots showing the average and standard deviation interval of recall and precision rate of
CB2 selectivity models versus model training iterations. The average and standard deviation
are calculated based on 20 rounds of test calculation. Each row represents a specific
fingerprint type. The Y-axis of each plot is the percentage. The values along the X-axis
represent M. Note that the growth of X-axis values is not linear.
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Figure 6.
the average and standard deviation interval of recall and precision rate of CB1 selectivity
models compared with model training iterations. The layout resembles Figure 5.
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Figure 7.
2D scatter plot shows the spatial arrangement of selective ligands in the coordinates of two
principal components. The principal components are solved according to Maccs fingerprints
of all selective ligands. The X-axis and Y-axis represent the two most significant
components. CB1 and CB2 selective ligands are represented in different color.
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Figure 8. top five scaffolds in CB1 selective compounds (A) and CB2 selective compounds (B)
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Figure 9.
ROC curves of LiCABEDS models for the prediction of CB1 selectivity on 20 testing sets.
Each individual plot contains four curves that represent different fingerprints.
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Figure 10.
ROC curves of LiCABEDS models for the prediction of CB2 selectivity on 20 testing sets.
Each individual plot contains four curves that represent different fingerprints.
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Figure 11.
the structures of newly synthesized CB2 selective ligands.

Ma et al. Page 26

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ma et al. Page 27

Ta
bl

e 
1

th
e 

av
er

ag
e 

an
d 

st
an

da
rd

 d
ev

ia
tio

n 
of

 p
re

ci
si

on
 a

nd
 r

ec
al

l r
at

e 
af

te
r 

20
 r

ou
nd

s 
of

 c
al

cu
la

tio
n.

 T
he

 n
um

be
rs

 a
re

 r
ep

or
te

d 
fo

r 
ea

ch
 c

om
bi

na
tio

n 
of

 m
ac

hi
ne

le
ar

ni
ng

 a
lg

or
ith

m
 (

SV
M

 o
r 

L
iC

A
B

E
D

S)
, m

ol
ec

ul
ar

 f
in

ge
rp

ri
nt

 (
M

ol
pr

in
t, 

FP
2,

 U
ni

ty
 o

r 
M

ac
cs

),
 a

nd
 s

el
ec

tiv
ity

 ty
pe

 (
C

B
1 

or
 C

B
2 

se
le

ct
iv

e)
. A

ll 
th

e
SV

M
 a

nd
 L

iC
A

B
E

D
S 

m
od

el
s 

ar
e 

tr
ai

ne
d 

w
ith

 d
ef

au
lt 

pa
ra

m
et

er
s.

 G
M

: g
eo

m
et

ri
c 

m
ea

n.
 G

M
 =

 s
qr

t(
Pr

ec
is

io
n 

×
 R

ec
al

l)

M
ol

ec
ul

ar
 F

in
ge

rp
ri

nt
C

la
ss

if
ic

at
io

n 
A

lg
or

it
hm

C
B

1 
Se

le
ct

iv
it

y
C

B
2 

Se
le

ct
iv

it
y

P
re

ci
si

on
(%

)
R

ec
al

l(
%

)
G

M
P

re
ci

si
on

(%
)

R
ec

al
l(

%
)

G
M

M
ol

pr
in

t
L

iC
A

B
E

D
S

64
.8

±
4.

5
67

.4
±

5.
7

66
.1

64
.9

±
5.

1
61

.2
±

7.
6

63
.0

SV
M

66
.8

±
5.

1
66

.6
±

6.
3

66
.7

65
.3

±
5.

1
60

.3
±

7.
8

62
.8

FP
2

L
iC

A
B

E
D

S
63

.8
±

2.
9

67
.8

±
5.

2
65

.8
63

.7
±

3.
7

63
.4

±
5.

9
63

.5

SV
M

65
.6

±
3.

8
67

.2
±

5.
7

66
.4

66
.3

±
4.

5
64

.5
±

7.
0

65
.4

U
ni

ty
L

iC
A

B
E

D
S

67
.1

±
3.

9
68

.3
±

4.
6

67
.7

61
.0

±
4.

6
60

.7
±

6.
6

60
.8

SV
M

67
.0

±
3.

0
65

.8
±

5.
5

66
.4

60
.9

±
3.

6
62

.6
±

7.
0

61
.7

M
ac

cs
L

iC
A

B
E

D
S

66
.0

±
6.

1
64

.6
±

6.
5

65
.3

64
.4

±
6.

0
50

.3
±

7.
0

56
.9

SV
M

65
.6

±
5.

3
69

.5
±

6.
0

67
.5

63
.4

±
3.

9
54

.7
±

5.
2

58
.9

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ma et al. Page 28

Ta
bl

e 
2

th
is

 ta
bl

e 
re

po
rt

s 
th

e 
pe

rf
or

m
an

ce
 o

f 
L

iC
A

B
E

D
S 

an
d 

SV
M

 c
om

bi
ne

d 
w

ith
 d

if
fe

re
nt

 f
in

ge
rp

ri
nt

s 
af

te
r 

ru
nn

in
g 

cr
os

s-
va

lid
at

io
n.

 I
ts

 la
yo

ut
 r

es
em

bl
es

 T
ab

le
1. M

ol
ec

ul
ar

 F
in

ge
rp

ri
nt

C
la

ss
if

ic
at

io
n 

A
lg

or
it

hm
C

B
1 

Se
le

ct
iv

it
y

C
B

2 
Se

le
ct

iv
it

y

P
re

ci
si

on
(%

)
R

ec
al

l(
%

)
G

M
P

re
ci

si
on

(%
)

R
ec

al
l(

%
)

G
M

M
ol

pr
in

t
L

iC
A

B
E

D
S

69
.1

±
5.

0
68

.5
±

6.
5

68
.8

68
.4

±
4.

5
58

.2
±

8.
9

63
.1

SV
M

70
.7

±
4.

0
72

±
7.

8
71

.3
68

.5
±

3.
3

64
.5

±
7.

9
66

.5

FP
2

L
iC

A
B

E
D

S
68

.0
±

4.
0

68
.5

±
5.

8
68

.2
69

.2
±

4.
1

61
.8

±
6.

5
65

.4

SV
M

67
.5

±
5.

0
70

.8
±

7.
4

69
.1

71
.1

±
4.

0
60

.9
±

6.
7

65
.8

U
ni

ty
L

iC
A

B
E

D
S

70
.7

±
4.

8
69

.2
±

4.
7

69
.9

65
.0

±
3.

6
59

.2
±

7.
4

62
.0

SV
M

69
.8

±
3.

6
72

.2
±

5.
3

71
.0

65
.2

±
3.

6
60

.9
±

7.
8

63
.0

M
ac

cs
L

iC
A

B
E

D
S

68
.0

±
5.

5
66

.1
±

6.
2

67
.0

63
.8

±
6.

5
47

.7
±

8.
4

55
.2

SV
M

69
.0

±
5.

3
72

.9
±

5.
6

70
.9

65
.9

±
6.

6
48

.3
±

10
.4

56
.4

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ma et al. Page 29

Ta
bl

e 
3

Im
po

rt
an

t 
fe

at
ur

es
 f

or
 t

he
 c

la
ss

if
ic

at
io

n 
of

 C
B

1 
se

le
ct

iv
it

y

F
ea

tu
re

In
de

x
A

ve
ra

ge
W

ei
gh

t 
in

 2
0

m
od

el
s

N
um

be
r 

of
 C

B
1

se
le

ct
iv

e 
lig

an
ds

ha
vi

ng
 t

hi
s

fe
at

ur
e

N
um

be
r 

of
 N

on
-

C
B

1 
se

le
ct

iv
e

lig
an

ds
 h

av
in

g
th

is
 f

ea
tu

re

R
ep

re
se

nt
at

iv
e 

co
m

po
un

d

St
ru

ct
ur

e
C

B
1/

C
B

2 
ac

ti
vi

ty
 a

nd
 r

ef
er

en
ce

0;
0-

1-
0;

1-
2-

0;
1-

1-
1;

2-
1-

0;
2-

1-
1;

69
7

3.
58

6
1

26
1.

8n
M

/>
10

00
0n

 M
 P

M
ID

:1
11

81
06

8

14
;0

-1
-2

;1
-2

-2
;2

-2
-2

;
14

46
2.

27
10

7
62

2.
46

nM
/2

28
nM

 P
M

ID
:1

20
61

87
4

2;
0-

2-
2;

1-
2-

2;
2-

2-
2;

2-
1-

14
;

99
2.

11
20

4
75

.4
nM

/>
10

00
nM

 P
M

ID
:1

47
36

24
3

2;
0-

2-
2;

0-
1-

7;
1-

1-
0;

1-
3-

2;
2-

4-
2;

54
6

1.
98

1
14

1.
2n

M
/1

2.
4n

M
 P

M
ID

:1
09

40
54

0

0;
0-

3-
0;

0-
1-

2;
1-

3-
0;

1-
2-

2;
2-

3-
0;

2-
2-

2;
13

29
1.

92
2

7
2.

7n
M

/5
2.

3n
M

 P
M

ID
:1

76
72

44
4

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ma et al. Page 30

F
ea

tu
re

In
de

x
A

ve
ra

ge
W

ei
gh

t 
in

 2
0

m
od

el
s

N
um

be
r 

of
 C

B
1

se
le

ct
iv

e 
lig

an
ds

ha
vi

ng
 t

hi
s

fe
at

ur
e

N
um

be
r 

of
 N

on
-

C
B

1 
se

le
ct

iv
e

lig
an

ds
 h

av
in

g
th

is
 f

ea
tu

re

R
ep

re
se

nt
at

iv
e 

co
m

po
un

d

St
ru

ct
ur

e
C

B
1/

C
B

2 
ac

ti
vi

ty
 a

nd
 r

ef
er

en
ce

2;
0-

2-
2;

1-
2-

2;
1-

1-
14

;2
-1

-1
;2

-2
-2

;
18

09
1.

81
24

10
52

.6
nM

/>
10

00
nM

 P
M

ID
:1

47
36

24
3

0;
0-

1-
0;

0-
1-

4;
1-

2-
0;

1-
1-

27
;2

-2
-0

;2
-1

-1
;

15
61

-1
.5

4
30

21
6.

18
nM

/3
13

nM
 P

M
ID

:1
20

61
87

4

7;
0-

1-
0;

1-
1-

0;
2-

1-
0;

19
74

-1
.6

0
2

8
11

00
nM

/5
6n

M
 P

M
ID

:1
75

07
22

4

0;
0-

1-
0;

1-
2-

0;
1-

1-
2;

2-
1-

0;
2-

2-
2;

84
9

-1
.6

1
2

12
9

10
43

nM
/6

.4
nM

 P
M

ID
:1

01
88

97
7

31
;0

-1
-1

8;
1-

1-
2;

1-
1-

8;
2-

2-
2;

43
0

-2
.2

8
0

4
57

.5
nM

/2
52

nM
 P

M
ID

:1
00

52
98

3

0;
0-

2-
0;

0-
1-

7;
1-

1-
27

;2
-1

-1
;

16
91

-2
.2

9
0

4
20

nM
/1

2.
5n

M
 P

M
ID

:9
77

41
74

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ma et al. Page 31

F
ea

tu
re

In
de

x
A

ve
ra

ge
W

ei
gh

t 
in

 2
0

m
od

el
s

N
um

be
r 

of
 C

B
1

se
le

ct
iv

e 
lig

an
ds

ha
vi

ng
 t

hi
s

fe
at

ur
e

N
um

be
r 

of
 N

on
-

C
B

1 
se

le
ct

iv
e

lig
an

ds
 h

av
in

g
th

is
 f

ea
tu

re

R
ep

re
se

nt
at

iv
e 

co
m

po
un

d

St
ru

ct
ur

e
C

B
1/

C
B

2 
ac

ti
vi

ty
 a

nd
 r

ef
er

en
ce

2;
0-

1-
0;

0-
2-

2;
1-

1-
1;

1-
2-

2;
1-

2-
10

;2
-5

-2
;2

-1
-8

;2
-2

-1
0;

2-
1-

27
;

13
65

-2
.3

7
0

13
90

0n
M

/7
.6

 n
m

 P
M

ID
:1

71
49

87
9

2;
0-

2-
2;

1-
2-

2;
2-

3-
2;

19
35

-2
.9

1
5

15
7

28
nM

/2
90

nM
 P

M
ID

:1
79

42
30

7

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ma et al. Page 32

Ta
bl

e 
4

Im
po

rt
an

t 
fe

at
ur

es
 f

or
 t

he
 c

la
ss

if
ic

at
io

n 
of

 C
B

2 
se

le
ct

iv
it

y

F
ea

tu
re

In
de

x
A

ve
ra

ge
W

ei
gh

t 
in

 2
0

m
od

el
s

N
um

be
r 

of
 C

B
2

se
le

ct
iv

e 
lig

an
ds

ha
vi

ng
 t

hi
s

fe
at

ur
e

N
um

be
r 

of
 N

on
-

C
B

2 
se

le
ct

iv
e

lig
an

ds
 h

av
in

g
th

is
 f

ea
tu

re

R
ep

re
se

nt
at

iv
e 

co
m

po
un

d

St
ru

ct
ur

e
C

B
1/

C
B

2 
ac

ti
vi

ty
 a

nd
 r

ef
er

en
ce

2;
0-

2-
2;

1-
3-

2;
2-

1-
1;

2-
4-

2;
2-

1-
7;

20
89

3.
11

4
0

23
58

nM
/1

38
nM

 P
M

ID
:1

55
82

45
5

2;
0-

1-
0;

0-
2-

2;
1-

1-
1;

1-
2-

2;
1-

2-
10

;2
-5

-2
;2

-1
-8

;2
-2

-1
0;

2-
1-

27
;

13
65

2.
42

9
4

90
0n

M
/7

.6
nM

 P
M

ID
:1

71
49

87
9

2;
0-

2-
2;

1-
1-

1;
1-

2-
2;

2-
2-

2;
2-

1-
8;

2-
1-

10
;2

-1
-2

7;
94

2.
35

31
9

>
50

00
nM

/8
4n

M
 P

M
ID

:2
00

6:
66

51
89

2;
0-

1-
1;

0-
2-

2;
1-

4-
2;

1-
1-

7;
1-

1-
8;

2-
1-

0;
2-

6-
2;

13
37

2.
08

3
0

37
88

nM
/8

0n
M

 P
M

ID
:1

55
82

45
5

0;
0-

1-
0;

1-
2-

0;
1-

1-
2;

2-
1-

0;
2-

2-
2;

84
9

1.
99

43
88

10
43

nM
/6

.4
nM

 P
M

ID
:1

01
88

97
7

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ma et al. Page 33

F
ea

tu
re

In
de

x
A

ve
ra

ge
W

ei
gh

t 
in

 2
0

m
od

el
s

N
um

be
r 

of
 C

B
2

se
le

ct
iv

e 
lig

an
ds

ha
vi

ng
 t

hi
s

fe
at

ur
e

N
um

be
r 

of
 N

on
-

C
B

2 
se

le
ct

iv
e

lig
an

ds
 h

av
in

g
th

is
 f

ea
tu

re

R
ep

re
se

nt
at

iv
e 

co
m

po
un

d

St
ru

ct
ur

e
C

B
1/

C
B

2 
ac

ti
vi

ty
 a

nd
 r

ef
er

en
ce

8;
0-

1-
1;

1-
1-

2;
1-

1-
27

;2
-1

-0
;2

-2
-2

;
30

9
1.

79
20

7
>

56
00

nm
/9

4n
M

 P
M

ID
:1

79
42

30
7

2;
0-

2-
2;

1-
1-

0;
1-

2-
2;

2-
2-

0;
2-

2-
2;

16
22

1.
68

9
3

14
4n

M
/9

nM
 P

M
ID

:1
19

61
07

3

2;
0-

2-
2;

1-
2-

2;
1-

1-
15

;2
-1

-0
;2

-2
-2

;
20

02
-1

.1
4

3
8

39
nM

/7
6n

M
 P

M
ID

:1
60

05
22

3

0;
0-

2-
1;

1-
2-

1;
2-

2-
0;

98
-1

.1
5

1
61

8.
55

nM
/2

1.
48

nM
 P

M
ID

:1
78

27
02

2

2;
0-

3-
2;

1-
4-

2;
1-

2-
7;

2-
2-

0;
2-

4-
2;

28
-1

.2
0

0
7

2.
6n

M
/4

.8
nM

 P
M

ID
:1

80
38

96
7

2;
0-

2-
2;

1-
2-

2;
1-

1-
14

;2
-2

-2
;2

-1
-1

0;
24

03
-1

.2
2

9
10

7
2.

46
nM

/2
28

nM
 P

M
ID

:1
20

61
87

4

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ma et al. Page 34

F
ea

tu
re

In
de

x
A

ve
ra

ge
W

ei
gh

t 
in

 2
0

m
od

el
s

N
um

be
r 

of
 C

B
2

se
le

ct
iv

e 
lig

an
ds

ha
vi

ng
 t

hi
s

fe
at

ur
e

N
um

be
r 

of
 N

on
-

C
B

2 
se

le
ct

iv
e

lig
an

ds
 h

av
in

g
th

is
 f

ea
tu

re

R
ep

re
se

nt
at

iv
e 

co
m

po
un

d

St
ru

ct
ur

e
C

B
1/

C
B

2 
ac

ti
vi

ty
 a

nd
 r

ef
er

en
ce

2;
0-

2-
2;

0-
1-

7;
1-

2-
0;

1-
2-

2;
2-

6-
0;

2-
2-

2;
2-

1-
7;

11
48

-1
.2

6
14

57
0.

73
nM

/0
.5

2n
M

 P
M

ID
:8

83
17

52

2;
0-

2-
2;

1-
1-

0;
1-

2-
2;

2-
3-

0;
2-

3-
2;

18
40

-1
.2

9
6

33
2.

7n
M

/2
.3

nM
 P

M
ID

:1
75

07
22

4

J Chem Inf Model. Author manuscript; available in PMC 2014 March 27.


