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Abstract

Accurately ranking docking poses remains a great challenge in computer-aided drug design. In
this study, we present an integrated approach called MIEC-SVM that combines structure modeling
and statistical learning to characterize protein–ligand binding based on the complex structure
generated from docking. Using the HIV-1 protease as a model system, we showed that MIEC-
SVM can successfully rank the docking poses and consistently outperformed the state-of-art
scoring functions when the true positives only account for 1% or 0.5% of all the compounds under
consideration. More excitingly, we found that MIEC-SVM can achieve a significant enrichment in
virtual screening even when trained on a set of known inhibitors as small as 50, especially when
enhanced by a model average approach. Given these features of MIEC-SVM, we believe it
provides a powerful tool for searching for and designing new drugs.
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INTRODUCTION
Virtual screening is often the very first step to search for drug leads in compound libraries
that contain millions of small molecules.1,2 A crucial step of virtual screening is to
accurately rank the docked ligands. Scoring functions used in the docking programs such as
FlexX,3,4 AutoDock,5–7 Glide,8–10 and GOLD11,12 are designed to be general and
applicable to any protein–ligand system. However, these general scoring functions do not
necessarily perform well on ligands with large molecular weight,13 such as the HIV-1
protease inhibitors,14 in which case customized scoring functions have been developed to
better characterize the binding site and rank inhibitors more precisely for specific targets.
For example, additivity models with chemical group specific parameters, trained on
experimental binding affinities of a group of ligands sharing the same scaffold, could
successfully predict the binding affinities of new derivatives.15–17 Machine learning
methods such as neural network and support vector machine have also been exploited to
distinguish binders from nonbinders using two- or three-dimensional descriptors that are
normally calculated using such as Molecular Operation Environment (MOE), MACCS, and
Molprint2D.18–21

A challenge for both general and customized scoring functions is to accurately rank the
binding affinity for ligands dissimilar to those used in training the scoring function. A group
of methods using interaction fingerprint have been developed to tackle this challenge,22–25

such as the Pharm-IF scoring function trained on the distances between pairs of ligand
pharmacophores.26 In a comparison with Glide,8–10 Pharm-IF achieved a higher enrichment
factor of 10% on five investigated targets, including the HIV-protease, but only moderate
improvement on area under the curve (AUC), which means Pharm-IF trades false positives
to false negatives. Notably, a quite weak IC50 cutoff (10 μm), much weaker than the
common value of 1 nm for an inhibitor, was used to define active compounds in ref 26,
which resulted in 10% of total compounds being considered as active, a portion much higher
than the common percentage of about 1% in a successful virtually screening.

We previously proposed to capture the energetic patterns of protein recognition using
molecular interaction energy components (MIECs).27–32 Coupled with regression or
classification methods, the MIECs successfully predicted the binding affinities of protein–
ligand complexes or distinguished binding from nonbinding ligands.27–32 In the present
study, we extended this idea to virtual screening and used HIV-1 protease as the model
system to assess its performance on ranking the docking poses and docked ligands. To take
advantage of the output from the docking programs, we considered MIECs including van
der Waals, electrostatic, hydrogen bond energy, solvation energy, and geometry constraint.
The solvation energy was calculated by generalized Born method in our previous
studies.27–32 To have a fast estimation of this term for a large number of ligands in virtual
screening, we estimated the sovlation contribution using the loss of hydrophobic and
hydrophilic surface area. The geometry constraint was defined by the nearest distance
between the ligand atoms and the atoms of the protein target.

We then trained a support vector machine (SVM) to learn the energetic and geometric
characteristics that discriminate binding ligands from nonbinding ones. To mimic the
scenario in reality, the compounds in the training and test sets were dissimilar, and the
binding ligands only accounted for a small portion (1% or 0.5%) in both training and test
sets. Cross validations showed superior performance of our approach in identifying binding
ligands from a large library of compounds, suggesting the usefulness of this scoring function
in virtual screening.
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RESULTS
Predicting High Affinity Inhibitors in Virtual Screening with MIEC-SVM

To accurately score the affinity of new ligands binding to the HIV-1 protease based on the
complex structures obtained from docking, we used the molecular interaction energy
components (MIECs) as the descriptors to characterize the ligand–protease interaction. The
MIECs in this study include van der Waals and electrostatic interaction energies between the
protease residues and the ligand, solvation energy, hydrogen bond, and geometric constraint.
The solvation energy was estimated by the loss of hydrophobic and hydrophilic solvent
accessible surface area (SASA) of each protease residue and the ligand upon binding (see
the Experimental Section), which is much more computationally efficient than the
Generalized Born model used in the previous studies27–32 in scoring millions of compounds
in the library. The geometric constraint was defined by the distance of the nearest heavy
atom-pair between the residue and ligand. We then trained a support vector machine (SVM)
on these MIECs to classify ligands into binding and nonbinding categories (Figures 1 and 2).

We first evaluated the performance of four commonly used kernel functions (linear,
polynomial, RBF, and sigmoid) in SVM using the data set with a positive to negative ratio
of 1:100. The performance of every kernel function with different K+, which is the weight
of the positive samples, was systematically assessed in the range between 0.1 and 20. For
every combination of the kernel function and K+, we ran 500 cross validations and
calculated the average MCC, Q+, and Q−. We found that linear kernel achieved the best
classification accuracy (as indicated by the highest MCC) than any other kernel at any given
K+ (Supporting Information Figure S1). Therefore, we used the linear kernel function in all
of the following analyses.

In virtual screening, the library contains millions of compounds but only a very small
fraction of these compounds bind to a specific target and compounds ranked top in the
docking results may have only <1% true positives. Therefore, the positive and negative
samples are quite unbalanced. To mimic this scenario, we tested our method on two data sets
with different positive to negative ratios R: R = 1:100 and R = 1:200. We used cross
validation to evaluate the strategy, which is to train the model with a group of randomly
selected samples and assess the model with its performance on another group of samples,
which are dissimilar to the training group. To avoid arbitrariness of a single cross validation,
we conducted 500 of these cross validations and in each run, we randomly selected 500
positive and 50 000 or 100 000 negative samples. To handle the unbalanced positive and
negative samples in SVM, we tested the weight for the positive samples (K+) from 0.1 to 20
and selected the points of MCC reaching plateau as the optimal values: 0.8 for R = 1:100
and 2.6 for R = 1:200.

Using the K+ values determined in each scenario and linear kernel, we observed satisfactory
performance of MIEC-SVM on identifying inhibitors of the HIV protease (Table 1). We
first trained our model on 1000 positives and 100 000 negatives that were randomly selected
from the 1795 positives and 632 033 negatives. Since in virtual screening, the top 5000 to 10
000 compounds are often selected for further evaluation, we limited the size of testing data
to 50 positives and 5000 negatives that were randomly selected from the remaining data set.
Note that we clustered the positive inhibitors based on their similarity of chemical structures
and the testing positives were selected from different clusters of positive compounds in the
training set to ensure distinction between training and testing samples. The average MCC of
500 runs of such cross validations was 0.761 and the average AUC was 0.998. Considering
how challenging it is to identify the 1% positives, such a performance of our model is
satisfactory.
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We next increased the negative to positive ratio to 200. The training/test sets were composed
of 1000/50 positives and 200 000/10 000 negatives. The performance was still satisfactory
with an average MCC of 0.722 and AUC of 0.998 in 500 independent cross validation runs.
Because follow-up experiments are normally only performed on the top ranked compounds
from docking, it is important to evaluate the true positive rate Q+. We found that MIEC-
SVM could achieve Q+ values of 0.775 and 0.626, respectively, in the two scenarios. In
particular, the top 20 ranked compounds in the two scenarios contained on average 15.576
and 12.990 true positives in the 500 test runs. For 499/500 test data sets in the scenario of R
= 1:100 and 449/500 test data sets in the scenario of R = 1:200, more than half of the top 20
ligands were true positives (Figure 3).

Comparison with Other Scoring Functions
To illustrate the superior performance of our model, we conducted comparison with the
docking scores of Glide8–10 and X-score.46 The performance of each score function was
evaluated using the area under the ROC curves (AUC) and the number of true positives in
the top 20 ligands in the test data sets. Figure 4 shows the ROC curves for the three methods
obtained from the same data set in the two scenarios. The average AUC of 500 test data sets
in scenario 1 (R = 1:100) is 0.569 for Glide, 0.884 for X-score, and 0.998 for our method. In
scenario 2 (R = 1:200), the average AUC is 0.570 for Glide, 0.892 for X-score, and 0.998 for
MIEC-SVM. As only a small number of ligands are subject to further evaluation and
refinement in drug design, it is important to get as many true positives as possible in the top
ranked ligands. Figure 3 shows the distribution of the true positives in the 500 cross
validations in the top 20 ligands ranked by the three methods. The average true positives
were 9.8, 9.3, and 15.6 for Glide, X-score and MIEC-SVM in scenario 1 and 9.6 for Glide,
6.8 for X-score, and 13.0 for MIEC-SVM in scenario 2. It is very clear that our method
outperformed the two state-of-the-art scoring functions assessed by AUC or true positives in
the top ranked ligands. One possible reason of the outperformance is that the evaluation is
based on the rigid-body docking structures, which may deviate from the real complex
structures. In contrary to Glide and X-score that are trained on the crystal structures, our
model employs machine learning method (SVM) to reduce its sensitivity to the inaccuracy
of the docking structures. On the other hand, such an observation is not completely
surprising as both Glide and X-score are general energy functions for all systems but are not
specifically designed to rank the HIV protease inhibitors.13 As we have shown in our
previous studies, the MIEC-based methods are general and can be applied to diverse systems
including domain–peptide interactions27,29–32 and protein–ligand interactions.28 The
machine learning method is transferable, but the model needs retraining for a specific
system.

MIEC-SVM Trained with Small Data Sets
In reality, the number of known inhibitors to a drug target, particularly a novel one, is often
small. A natural question is whether the MIEC-SVM model can work on other drug targets
with a much smaller training set, which is obviously very challenging because small training
sets may lead to overfitting. As noted above, it is important to have a high true positive rate
in the top ranked compounds because they are the candidates for the follow-up experiments.

In order to detect the minimum size of training set, we systematically shrunk the training set
and evaluated the performance of the trained models on the same group of test data sets.
First, we randomly generated 500 groups of test data sets for both scenarios of R = 1:100
and R = 1:200. The test data set for the two scenarios respectively contained 50 and 25
positive samples randomly selected from one cluster in the positive data set and 5000
negative samples randomly selected from the negative data set. Second, for each group of
test data set, we generated four groups of training data set that respectively contain
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500/300/100/50 positive samples. Each training set also respectively contains 50 000/30
000/10 000/5000 negative samples for the scenario R = 1:100 and 100 000/60 000/20 000/10
000 negative samples for the scenario R = 1:200. To keep the diversity between the training
data and the test data, all the positive samples in the training set came from ligand clusters
different from those in the test set. Finally, we calculated the standard statistics to evaluate
the performance of the models (Table 2).

In both scenarios, we observed that the models trained from 500 and 300 positive samples
showed no overfitting as indicated by comparable performance of the models in the training
and test sets. When smaller training sets were used, overfitting started to emerge. The
models trained on 100 positives and 10 000 or 20 000 negatives showed larger drop of
performance in the test set from the training set and such a drop became more significant for
the models trained on 50 positive and 5000/10 000 negative samples (the decrease of MCC
was about 0.2). Interestingly, the models trained on smaller number of positives (100 or 50
samples) still showed high accuracy, and AUC (Q+ equals to 0.624, AUC = 0.990 for the
most difficult case that the model was trained on 50 positives samples with R = 1:200), as
well as the enrichment of true positives in the top 20 ligands (11.86 for the most difficult
case). Taken together, these observations suggest that the MIEC-SVM models are able to
find new inhibitors for a target protein that has 50 known inhibitors.

For many important drug targets, it is not uncommon to have 50 known inhibitors, but new
inhibitors are still in urgent need to reduce toxicity or improve efficacy. We thus further
investigated whether our method trained on 50 positive samples can still find new inhibitors.
As the 50 available inhibitors for a target can have diverse chemical structures, we took the
following “model average” strategy to exploit the diversity presented in the training set. We
randomly selected 40 positive and 4000 negative samples to train 500 models. Each of these
models was used to score compounds in the library. A compound was predicted as an
inhibitor if a certain number of models classify it as positive. In this study, we chose a cutoff
of 1, i.e. at least one model predicted the compound as a positive. To examine the
effectiveness of this strategy and how the training data influences the performance, we
constructed 500 test data sets of 50 positive and 5000 negative samples, in which the 50
positive samples were randomly selected from five clusters, 10 from each cluster. The
training data sets contained another 50 positive and 5000 negative samples, while positive
samples were selected from same or different clusters (Table 3). We constructed 31 training
data sets that exhaustively selected samples from all possible combinations of the five
positive clusters. We observed that our models predicted less than 60 inhibitors and among
which around 70% were true positives. Considering that true positives account for only 1%
of the test set, such a performance is satisfactory, which also suggests the robustness of the
MIEV-SVM method.

Most Informative MIECs and Protease Residues for Protease–Ligand Binding
Encouraged by the success of the MIEC-SVM model on scoring the docking poses, we next
conducted feature selection to search for the most informative MIECs and protein residues
for protein–ligand binding. Given the large number of possible combinations of six MIECs
and 99 protease residues, we took a two-step heuristic strategy in which we found the
informative MIECs in the first step and then the informative residues in the second step.

In the first step, we trained and tested the models with different MIEC terms in scenario 1
with a positive/negative ratio R = 1:100 (Table 4). Using any single MIEC, the model
showed a significant drop of sensitivity and a smaller decrease of MCC except the
hydrogen-bond term, which may be due to the difficulty of correctly reconstructing
hydrogen bonds in docking. The polar hydrogen atoms are rotatable and such rotation is
often not considered by the docking program. In addition, the hydrogen bond energy is
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calculated based on the distance between the hydrogen atom and the acceptor atom, as well
as the angle formed between the hydrogen donor and acceptor atoms, all of which are
sensitive to the position of the hydrogen atom.

We next examined the performances of different MIEC combinations using a greedy
algorithm. We started with the two MIECs with the best MCCs, ΔAphilic, and Dnear, as the
seed. The combinations of the seeds with all other MIECs were tested. Then the two best
performed combinations were kept as the seeds for the next iteration until the number of
included MIECs reached five (Table 4). For example, the two best performed 3-MIEC
models were trained on ΔEvdw, Dnear, ΔAphobic and ΔEvdw, Dnear, ΔAphilic, which were
selected as seeds for the next iteration to find the best performed 4-MIEC models. Using this
greedy search strategy, we found that the model trained on ΔEvdw, Dnear, and ΔAphobic
performed best, even better than using all MIECs. This finding is not totally unexpected as
these MIECs are less sensitive to the conformational flexibility and inaccuracy in docking
than the other terms: ΔEvdw characterizes the short-range interactions of the binding, Dnear
represents the geometry constraint and shape complementarity, and ΔAphobic estimates the
solvation energy based on the loss of hydrophobic SASA. Interestingly, the second-best
performing 3-MIEC model is ΔEele, Dnear, and ΔAphilic. Both ΔAphilic and ΔAphobic
estimate the ation energy, but they are respectively complementary to ΔEele and ΔEvdw.
Therefore, it is not surprising that these two combinations showed similar performance.

We next searched for residues important for recognition using the best performed
combination of Dnear, ΔAphobic, and ΔEvdw. We first evaluated the contribution of each
position by examining the change of MCC when leaving it out in the model, i.e. all the
MIECs with which this position is associated were removed from the model (leave-one-
position-out test). The positions with the largest MCC drop were used as the seed for a
greedy search to find the most critical combinations of two positions. This procedure was
repeated until no position was left for consideration. Figure 5 shows the best performed
combination of 38 positions with an average MCC of 0.802 in 500 cross validations for the
scenario 1 (R = 1:100), as compared with MCC of 0.785 using all the positions. We also
tested this model in scenario 2 (R = 1:100), and the average MCC was 0.762, improved from
0.734 using all the positions. Most of the 38 residues are around the binding pocket (Figure
6), including the catalytic dyad and their neighbor residues (residue 23–27). Interestingly,
the 38 positions also include several residues at which drug resistant mutations often occur,
such as positions 10, 48, 54, and 90. We speculate that reducing an inhibitor’s interaction
with these residues may improve its potency to combat resistance.

CONCLUSION
Previously, we have demonstrated the effectiveness of MIEC-SVM in capturing the binding
modes of protein–peptide and protein–ligand interactions.27–32 In this study, we further
generalized this model and applied to a more challenging problem of identifying strong
inhibitors in virtual screening in which the complex structures were generated from docking
programs that may be inaccurate and noisy. In spite of these challenges, the MIEC-SVM
model showed satisfactory performance on ranking the inhibitors in the difficult scenarios
with very small positive to negative ratio (1:100 and 1:200). Measured by AUC as well as
the true positives in the top 20 ligands, MIEC-SVM performed significantly better than the
state-of-the-art scoring functions such as Glide and X-score. As the HIV protease is the
primary drug target for the AIDS therapy and drug resistance was observed for all the drugs,
this scoring function specifically designed for the HIV-1 protease would be useful in
searching for and designing new inhibitors that are distinct from the currently available
drugs and help to develop new therapeutic treatments for AIDS.
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An especially encouraging observation is that the MIEC-SVM model showed significant
enrichment of true positives in the top 20 candidates, even trained on a data set as small as
50 known inhibitors. In particular, we found that model average can further improve the
enrichment using training set containing small number of positives. Such a robustness of
MIEC-SVM suggests that the model captures the energetic and geometric characteristics of
the protein–ligand binding. This feature is particularly important for finding new inhibitors
for novel drug targets because the number of known inhibitors against these targets is often
small. In addition, MIEC-SVM consistently outperformed the state-of-the-art scoring
functions of Glide and X-score in the scenario where a small percentage (1% or 0.5%) of a
small number of positives is present in the compound library. Taken together, we believe
that the MIEC-SVM method is a powerful tool for finding strong inhibitors in virtual
screening.

EXPERIMENTAL SECTION
Data Set

Figure 1 shows the work flow of the model building and model evaluation process. The
ligand data set for training and testing the models were assembled from the BindingDB33

and ZINC34 database. From BindingDB, we retrieved 4486 unique ligands with known
binding affinity to the HIV-1 protease, and their dissociation constants (Kd) range from 10−1

to 10−14 M. These ligands were classified into 2072 positive and 2405 negative samples
using an artificial cutoff of 10 nM. Nine samples with conflicting binding affinities
measured by different experiments were discarded.

All the ligands were docked to an HIV-1 protease template structure (PDB code: 1HPV35)
using Glide.8,9 As indicated by a favorable (negative) energy (Coulomb plus van der Waals)
calculated by Glide, 1795 positive and 2038 negative complexes were docked successfully.
Obviously, the portion of positives (47%) is much larger than that commonly seen in virtual
screening (~1%). To mimic the reality, we increased the number of negatives by selecting
~647 000 compounds from the ZINC database34 that passed the Lipinski’s drug-like
filters.36 All these compounds were docked into the protease template structure with
consideration of all enantiomers. To avoid including any true inhibitor from these drug-like
compounds, we removed the top 20 000 conformations ranked by Glide and added the
remaining 629 995 conformations to the negative set. As a result, there were 1795 positive
and 632 033 negative samples.

Protein Preparation and Docking Procedure
The HIV-1 protease template structure (PDB code: 1HPV35) was subject to multiple
preparation steps as suggested in Maestro’s protein preparation wizard in Glide. First, water
molecules were removed, bond orders were assigned, and hydrogen atoms were added.
Second, protonation and tautomeric state of His, orientation of amide in Asn and Gln,
hydroxyl in Ser, Thr, and Tyr, and thiol groups in Cys were optimized sequentially by
hydrogen position optimization and exhaustive sampling options. The preparation step was
finished by restrained minimization of ligand/protein complexes using OPLS_2001 force
field.37,38

Docking was performed by Glide,8,9 which utilized precomputed grids. The grids were
generated using the centroid of the ligand in the template structure as the origin. The grid
box size for the centroid of the docking ligands was 10 Å × 10 Å × 10 Å, while the size for
all the atoms in the ligands was 30 Å × 30 Å × 30 Å. All the complex models of candidate
ligands were constructed with Glide-SP (standard-precision) docking with van der Waals
radius scaling of 0.8 and a partial charge cutoff of 0.25. The options of ring conformation
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sampling and nitrogen inversion were turned on in the docking as well. For each ligand, up
to 10 top scored conformations were saved for later data analysis.

Calculation of MIECs
To characterize the binding, we identified all 64 protease residues located within 12 Å of the
grid center in the complex structures generated by Glide (Figure 2). For each residue, we
calculated the following MIECs: van der Waals (ΔEvdw), electrostatic (ΔEelec), hydrogen
bond (ΔEH-bond), desolvation energy, and geometry constraint (Dnear, which is the distance
of the nearest heavy atom-pair between the residue and ligand). ΔEvdw, ΔEelec, ΔEH-bond,
and Dnear were taken from the output of Glide. The solvation energy was estimated by the
solvent accessible surface area (SASA).39 SASA for each atom was calculated using the
method developed by Street and Mayo.40 The radii of the atoms for the SASA calculation
were taken from AMBER0341 and general AMBER force field (gaff),42 and the probe
radius was set to 1.4 Å. The atoms were also classified into hydrophobic and hydrophilic
types based on the functional groups they belong to (Supporting Information Table S1). The
loss of hydrophobic and hydrophilic surface areas (ΔAphobic and ΔAphilic) upon binding
were calculated separately to discriminate their opposite contributions to binding. As shown
in Figure 2, the interaction between the protein and the ligand was described using a vector,
which contains the different types of interactions between each residue and the ligand.

Training and Testing the Model
In order to rigorously assess whether our method can identify inhibitors dissimilar to the
ones in the training set, we first clustered the positives using an average linkage clustering
method,43 in which the similarity of two clusters was measured by the average pairwise
similarity of the ligands in these two clusters, using a metric of ligand similarity calculated
by Openbabel with the Tanimoto method.44 Forty-five clusters were found using a cutoff of
0.5, and the size of the clusters ranges from 1 to 350. The clusters were consolidated into
five groups with the same size so that every sample has the same chance to be selected for
training or testing. For a cross validation, the positive samples in the training set were
randomly selected from four clusters and those in the test set were randomly selected from
the remaining cluster to ensure that similar compounds were not included in both training
and test sets. The negative samples in the training and test sets were randomly selected, as
they were taken from the ZINC database34 and are unlikely analogs.

We used cross validation to evaluate our method with 1000 positive samples in the training
set and 50 positive samples in the test set. We mimicked different scenarios by mixing the
positive samples with different number of negative samples. Because the clusters were
generated using average linkage hierarchical clustering, it is still possible that a small
number of positive samples in the test set have a similarity greater than 0.5 with ligands in
the training set. We observed comparable performances of our models when keeping and
removing the ligands with >0.5 similarity scores in the test set (MCC = 0.984 ± 0.023 and
0.980 ± 0.054, respectively, on 500 cross validations), which indicated the robustness of our
method.

Training Support Vector Machine
Each column of the MIEC matrix in Figure 2 was normalized by the maximum value. A
support vector machine (SVM) was then trained to classify compounds as inhibitors and
noninhibitors of the HIV protease. The LIBSVM45 program was employed in this study.
The performance of the models was evaluated by 500 runs of cross validations. TP (true
positives), FP (false positives), TN (true negatives), and FN (false negatives) obtained in the
500 test sets were counted separately. The following standard statistics were then computed:
prediction accuracy of positive samples Q+ = TP/(TP + FP); prediction accuracy of negative
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samples Q– = TN/(TN + FN); sensitivity SE = TP/(TP + FN); specificity SP = TN/(TN +
FP); and Matthews correlation coefficient MCC = (TP × TN – FP × FN)/((TP + FP)(TP +
FN)(TN + FN)(TN + FP))1/2. We also plotted the receiver operating characteristic (ROC)
curve and calculated the AUC (area under the curve). The ROC curve was obtained from the
real values calculated by SVM to judge whether the samples were positive or negative: the
larger a value, the more likely a sample is classified as a positive.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

MIEC molecular interaction energy component

SVM support vector machine

SASA solvent accessible surface area

TP true positive

FP false positive

TN true negative

FN false negative

Q+ accuracy of positive samples

Q– accuracy of negative samples

SP specificity

SE sensitivity

MCC Matthews correlation coefficient

ROC receiver operating characteristic

AUC area under the curve
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Figure 1.
Workflow of MIEC-SVM.
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Figure 2.
Building MIEC-SVM model. (1) Generate the complex structure for each ligand in the
library using Glide. (2) Calculate MIECs to characterize the protein–ligand interaction. The
MIECs are calculated for each protein residue including van der Waals, electrostatic,
hydrogen bond, solvation energy (estimated by loss of hydrophobic and hydrophilic surface
areas), and geometric constraint (distance between the nearest heavy atoms for each residue–
ligand pair). The ligand is represented by a purple ball, and the protease residues are shown
as red balls. (3) Assemble the fully filled MIEC matrix, where the response variable y is
binary to represent whether the ligand is a binder or nonbinder to the protease and {x1…xN}
represent the MIECs for each ligand. (4) Train a support vector machine to analyze the
MIEC matrix and build classification models.
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Figure 3.
Distribution of true positives in the top 20 ligands in the 500 cross-validations. (a) The
challenging scenario 1 with a positive/negative ratio R = 1:100. The difference between the
MIEC-SVM and either X-score or Glide is statistically significant (both p-value <2.2 ×
10−16). (b) The challenging scenario 2 with a positive/negative ratio R = 1:200. The
difference between the MIEC-SVM and either X-score or Glide is statistically significant
(both p-value <2.2 × 10−16).
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Figure 4.
Comparison between MIEC-SVM, Glide, and Xscore on the same data sets using 500 cross
validations. The sensitivity and specificity are averaged from the 500 cross validations. (a)
The challenging scenario 1 with a positive/negative ratio R = 1:100. (b) The challenging
scenario 2 with a positive/negative ratio R = 1:200.
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Figure 5.
Selecting the most informative positions in the MIEC-SVM model using the best
combination of three MIECs of Dnear, ΔAphobic, and ΔEvdw. The MCC is given by the best
performed group of residues in the “leave-one-residue-out” test and is the average of 500
cross validations in the challenging scenario 1 with a positive to negative ratio R = 1:100.
The best performing positions are shown in Supporting Information Table S2.
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Figure 6.
Selected positions from feature selection in the HIV-protease structure. The selected
positions are shown in purple. Most of the residues are around the binding pockets. The
positions that are far from the pockets are often the hot-spots of drug-resistant mutants, such
as 10, 90, 48, and 54.

Ding et al. Page 18

J Chem Inf Model. Author manuscript; available in PMC 2014 January 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ding et al. Page 19

Table 1

Model Performance in Different Scenarios Assessed by 500 Runs of Cross Validations

positive to negative ratio positive to negative ratio

R = 1:100 R = 1:200

training set NPos = 1000, NNeg = 100000a NPos = 1000, NNeg = 200000

test set NPos = 50, NNeg = 5000 NPos = 50, NNeg = 10000

Q+ 0.775 ± 0.057 0.626 ± 0.053

Q− 0.999 ± 0.000 0.999 ± 0.000

SE 0.765 ± 0.166 0.840 ± 0.096

SP 0.999 ± 0.009 0.999 ± 0.000

MCC 0.761 ± 0.116 0.722 ± 0.062

AUC 0.998 ± 0.002 0.998 ± 0.002

positives in the top 20 15.576 ± 1.923 12.990 ± 2.563

NPos and NNeg are, respectively, the numbers of positives and negatives in the training or test set.
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Table 2

Performance of MIEC-SVM on the Shrunk Training Data Sets R = (a) 1:100 and (b) 1:200

(a) positive to negative ratio R = 1:100

training set NPos = 500, NNeg = 50000a NPos = 300, NNeg = 30000 NPos = 100, NNeg = 10000 NPos = 50, NNeg = 5000

test set NPos = 50, NNeg = 5000 NPos = 50, NNeg = 5000 NPos = 50, NNeg = 5000 NPos = 50, NNeg = 5000

Q+ 0.783 ± 0.054 (0.811 ±

0.014)b
0.783 ± 0.058 (0.820 ±
0.017)

0.776 ± 0.063 (0.863 ±
0.028)

0.768 ± 0.073 (0.908 ±
0.041)

Q− 0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000 (0.999 ±
0.000)

SE 0.775 ± 0.080 (0.859 ±
0.021)

0.736 ± 0.091 (0.836 ±
0.027)

0.622 ± 0.111 (0.780 ±
0.056)

0.539 ± 0.128 (0.750 ±
0.082)

SP 0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000 (0.999 ±
0.000)

MCC 0.776 ± 0.055 (0.833 ±
0.015)

0.756 ± 0.063 (0.826 ±
0.019)

0.690 ± 0.078 (0.819 ±
0.036)

0.637 ± 0.096 (0.822 ±
0.053)

AUC 0.998 ± 0.002 0.995 ± 0.007 0.992 ± 0.014 0.987 ± 0.019

positives in the
top 20

15.882 ± 1.814 15.848 ± 1.861 15.724 ± 1.958 15.686 ± 1.979

(b) positive to negative ratio R = 1:200

training set NPos = 500, NNeg = 100000a NPos = 300, NNeg = 60000a NPos = 100, NNeg = 20000a NPos = 50, NNeg = 10000a

test set NPos = 25, NNeg = 5000 NPos = 25, NNeg = 5000 NPos = 25, NNeg = 5000 NPos = 25, NNeg = 5000

Q+ 0.643 ± 0.070 (0.657 ±

0.013)b
0.638 ± 0.070 (0.667 ±
0.017)

0.632 ± 0.077 (0.703 ±
0.031)

0.624 ± 0.082 (0.748 ±
0.046)

Q− 0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000 (0.999 ±
0.000)

SE 0.891 ± 0.070 (0.947 ±
0.010)

0.856 ± 0.084 (0.941 ±
0.013)

0.765 ± 0.112 (0.928 ±
0.025)

0.682 ± 0.122 (0.925 ±
0.039)

SP 0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000 (0.999 ±
0.000)

0.999 ± 0.000(0.999 ±
0.000)

MCC 0.754 ± 0.058 (0.787 ±
0.010)

0.736 ± 0.062 (0.790 ±
0.013)

0.692 ± 0.079 (0.806 ±
0.024)

0.648 ± 0.086 (0.831 ±
0.036)

AUC 0.997 ± 0.004 0.997 ± 0.003 0.995 ± 0.009 0.990 ± 0.018

positives in the
top 20

12.728 ± 2.078 12.66 ± 1.955 12.066 ± 2.003 11.860 ± 1.991

a
NPos and NNeg are respectively the numbers of positives and negatives in the training or test set.

b
The numbers in the parentheses are the values for the training data sets in the 500 cross-validation runs.
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Table 4

Prediction Performance of Different Combinations of Descriptors

MIECs Q+ SE MCC

alla 0.775b ± 0.057 0.765 ± 0.109 0.761 ± 0.116

ΔEvdw 0.783 ± 0.074 0.482 ± 0.095 0.609 ± 0.080

ΔEelec 0.731 ± 0.101 0.457 ± 0.131 0.571 ± 0.116

ΔEhbond 0.719 ± 0.123 0.192 ± 0.064 0.366 ± 0.084

Dnear 0.770 ± 0.068 0.523 ± 0.079 0.630 ± 0.065

ΔAphobic 0.775 ± 0.076 0.504 ± 0.099 0.620 ± 0.083

ΔAphilic 0.770 ± 0.059 0.656 ± 0.081 0.707 ± 0.060

ΔEvdw, Dnear 0.770 ± 0.059 0.729 ± 0.093 0.746 ± 0.066

ΔEvdw, ΔAphilic 0.771 ± 0.056 0.756 ± 0.098 0.760 ± 0.067

ΔEelec, Dnear 0.769 ± 0.059 0.721 ± 0.098 0.741 ± 0.068

ΔEelec, ΔAphilic 0.775 ± 0.057 0.747 ± 0.095 0.757 ± 0.066

ΔEhbond, Dnear 0.771 ± 0.061 0.595 ± 0.076 0.673 ± 0.060

ΔEhbond, ΔAphilic 0.774 ± 0.056 0.686 ± 0.074 0.725 ± 0.055

Dnear, ΔAphobic 0.786 ± 0.054 0.750 ± 0.072 0.765 ± 0.052

Dnear, ΔAphilic 0.778 ± 0.054 0.772 ± 0.088 0.771 ± 0.060

ΔAphobic, ΔAphilic 0.775 ± 0.060 0.676 ± 0.080 0.720 ± 0.060

ΔEvdw, Dnear, ΔAphobic 0.783 ± 0.054 0.794 ± 0.085 0.785 ± 0.057

ΔEvdw, Dnear, ΔAphilic 0.773 ± 0.055 0.789 ± 0.100 0.777 ± 0.066

ΔEelec, Dnear, ΔAphobic 0.780 ± 0.054 0.776 ± 0.088 0.775 ± 0.061

ΔEelec, Dnear, ΔAphilic 0.775 ± 0.055 0.789 ± 0.101 0.779 ± 0.068

ΔEhbond, Dnear, ΔAphobic 0.784 ± 0.053 0.748 ± 0.073 0.762 ± 0.051

ΔEhbond, Dnear, ΔAphilic 0.778 ± 0.053 0.775 ± 0.080 0.774 ± 0.055

Dnear, ΔAphobic, ΔAphilic 0.782 ± 0.054 0.776 ± 0.080 0.776 ± 0.056

ΔEvdw,ΔEelec, Dnear, ΔAphobic 0.779 ± 0.055 0.787 ± 0.093 0.779 ± 0.057

ΔEvdw, ΔEelec, Dnear, ΔAphilic 0.771 ± 0.055 0.781 ± 0.078 0.772 ± 0.060

ΔEvdw, ΔEhbond, Dnear, ΔAphobic 0.779 ± 0.054 0.773 ± 0.088 0.773 ± 0.062

ΔEvdw, Dnear, ΔAphobic, ΔAphilic 0.778 ± 0.055 0.784 ± 0.077 0.778 ± 0.052

ΔEelec, ΔEhbond, Dnear, ΔAphilic 0.775 ± 0.053 0.777 ± 0.063 0.772 ± 0.058

ΔEelec, Dnear, ΔAphobic, ΔAphilic 0.780 ± 0.053 0.778 ± 0.081 0.776 ± 0.053

ΔEvdw, ΔEelec, Dnear, ΔAphobic, ΔAphilic 0.776 ± 0.056 0.772 ± 0.076 0.770 ± 0.055

ΔEvdw, ΔEhbond, Dnear, ΔAphobic, ΔAphilic 0.778 ± 0.062 0.766 ± 0.083 0.768 ± 0.052

Dnear, ΔEvdw, ΔEelec, ΔEhbond, ΔAphobic 0.777 ± 0.031 0.767 ± 0.072 0.768 ± 0.042

a
ΔEvdw, van der Waals energy; ΔEelec, electrostatic energy; ΔEhbond, hydrogen bond energy; Dnear, geometry constraint measured by the

nearest distance between heavy atoms of the protein residue and the ligand; ΔAphobic, loss of hydrophobic SASA upon binding; ΔAphilic, loss

of hydrophilic area upon binding. bThe average values calculated from 500 cross validations.
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