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Abstract
The structural identification of unknown biochemical compounds in complex biofluids continues
to be a major challenge in metabolomics research. Using LC/MS there are currently two major
options for solving this problem: searching small biochemical databases, which often do not
contain the unknown of interest, or searching large chemical databases which include large
numbers of non-biochemical compounds. Searching larger chemical databases (larger chemical
space) increases the odds of identifying an unknown biochemical compound, but only if non-
biochemical structures can be eliminated from consideration. In this paper we present BioSM; a
cheminformatics tool that uses known endogenous mammalian biochemical compounds (as
scaffolds) and graph matching methods to identify endogenous mammalian biochemical structures
in chemical structure space. The results of a comprehensive set of empirical experiments suggest
that BioSM identifies endogenous mammalian biochemical structures with high accuracy. In a
leave-one-out cross validation experiment, BioSM correctly predicted 95% of 1,388 Kyoto
Encyclopedia of Genes and Genomes (KEGG) compounds as endogenous mammalian
biochemicals using 1,565 scaffolds. Analysis of two additional biological datasets containing
2,330 human metabolites (HMDB) and 2,416 plant secondary metabolites (KEGG) resulted in
biochemical annotations of 89% and 72% of the compounds respectively. When a dataset of 3,895
drugs (DrugBank and USAN) was tested, 48% of these structures were predicted to be
biochemical. However, when a set of synthetic chemical compounds (Chembridge and
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Chemsynthesis databases) were examined, only 29% of the 458,207 structures were predicted to
be biochemical. Moreover, BioSM predicted that 34% of 883,199 randomly selected compounds
from PubChem were biochemical. We then expanded the scaffold list to 3,927 biochemical
compounds and reevaluated the above datasets to determine whether scaffold number influenced
model performance. Although there were significant improvements in model sensitivity and
specificity using the larger scaffold list, the dataset comparison results were very similar. These
results suggest that additional biochemical scaffolds will not further improve our representation of
biochemical structure space and that the model is reasonably robust. BioSM provides a qualitative
(yes/no) and quantitative (ranking) method for endogenous mammalian biochemical annotation of
chemical space, and thus will be useful in the identification of unknown biochemical structures in
metabolomics. BioSM is freely available at http://metabolomics.pharm.uconn.edu.
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Introduction
Metabolomics is a rapidly evolving discipline involving the study of small molecules or
metabolites that characterize metabolic pathways of biological systems. It combines
strategies to identify and quantify cellular metabolites using analytical techniques such as
mass spectrometry (MS)1, with the application of computational methods for information
extraction and data interpretation2. Metabolomics has been labeled as one of the new
“omics”, joining genomics, transcriptomics, and proteomics3. It is of particular interest as
endogenous metabolites represent the phenotype resulting from gene expression4. Hence,
changes in metabolic profiles can be used in a variety of applications, such as drug
development5–7, agriculture8,9, and toxicology studies10.

MS coupled with chromatographic separation techniques such as liquid or gas
chromatography and nuclear magnetic resonance (NMR) spectroscopy11 are currently the
major techniques used to simultaneously analyze large numbers of metabolites2. Regardless
of the analytical method, a major challenge in metabolomics is the interpretation of the vast
amount of data produced by these high-throughput techniques12. The most common
approach entails matching experimentally determined features, such as a mass spectrum or
retention index, with computationally simulated features for a set of candidate compounds
downloaded from a general chemical structure database13. Various on-line chemical
structure databases such as PubChem14, Kyoto Encyclopedia of Genes and Genomes
(KEGG)15, Human Metabolome Database (HMDB)16, and HumanCyc17 provide the
fundamental support for molecular identification. The relative advantages or disadvantages
of utilizing chemical structure databases vary depending on the size of the database. Small
databases often will not contain the candidate compound of interest. On the other hand,
searching large databases such as PubChem, often results in a large number of false
positives, making identification of the “unknown” extremely difficult. Hence,
cheminformatics methods are needed to more efficiently search large chemical databases in
order to identify unknown endogenous biochemical compounds. Ideally, these methods
would allow discrimination between candidate structures that are synthetic and candidate
structures that are biochemical18,19.

Nobeli et al.20, using two-dimensional (2D) molecular structures and cheminformatics tools,
reported the first attempt to solve this problem. They visually examined the 2D molecular
structures of 745 E. coli metabolites and manually derived a library of 57 structural
fragments commonly found in those metabolites to reveal the main constituents of
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metabolites and to assist in the classification of the metabolome into biochemically relevant
classes. Preliminary efforts correlating similarities between metabolites and protein
structures, as well as with metabolic pathways were reported. In related work, Gupta and
Aires-de-Sousa21 defined chemical space of endogenous biochemicals using the KEGG/
LIGAND database. Any compound in KEGG that was involved in a metabolic reaction was
included in the study. These included metabolites from different species as well as
xenobiotics. The chemical space of non-metabolites was represented by a random set of
commercially available compounds from the ZINC22 chemical database. They compared
both chemical spaces based on 2D and 3D structures and descriptors of global properties.
They found that overlap between metabolites and non-metabolites was smallest in the space
defined by the global descriptors and suggested that the most discriminative features were
the number of OH groups, the presence of aromatic systems, and molecular weight. Using a
random forest (RF)23 classifier and global molecular descriptors they were able to correctly
annotate 95% of the 1,811 KEGG compounds used for training the model. A RF is a
collection of unpruned classification trees created by using bootstrap samples of the training
data and random subsets of variables to define the best split at each node.

Extending Gupta and Aires-de-Sousa’s work, Peironcely et al.24 used 6,954 molecular
structures in HMDB to represent chemical space occupied by endogenous human
metabolites and an updated collection of compounds from ZINC as non-biological
structures. Both datasets were clustered independently and 532 molecules (cluster centers)
from each dataset, selected to represent each cluster, were used for building the
classification model. The remaining (6,422) molecules were used for training the model.
They showed that using MDL public keys25 and RF resulted in the best accuracy for their
classifier. The authors reported that 96% of 457 HMDB compounds not used for training the
model, 54% of 6,532 DrugBank compounds and 22% of 6,312 compounds from ChEMBL26

were classified as endogenous metabolites.

Both Gupta21 and Peironcely24 employed fingerprints for classification. Molecular
fingerprints represent the structure of a molecule as a list of binary values (0 or 1) that
indicate the presence or absence of structural features in the molecule27. A structural feature
may include properties (such as molecular weight), the presence/absence of an element, an
unusual or important electronic configuration (such as triple-bonded nitrogen), rings and
ring systems and functional groups. An alternative approach is based on viewing a molecule
as a graph and using graph-matching algorithms to find common substructures. Previous
work20 suggests that matching common substructures may describe structural similarity
more accurately than fingerprint-based methods. Although this has been suggested, it has
not been explored due to concerns related to computational efficiency. In addition, this
approach of matching common substructures is consistent with how endogenous
biochemicals are produced enzymatically in vivo, i.e., from precursors with similar and/or
overlapping structures.

Here we present BioSM, a molecular classifier that can identify endogenous mammalian
biochemical structures contained within chemical structure space. BioSM uses the structures
of known endogenous mammalian biochemical compounds as scaffolds to aid in the
classification process, as opposed to other works that use fragments of known structures.
The graph-based method implemented within BioSM can also be expanded to predict
metabolic pathways since it links a set of annotated scaffold structures to each candidate
structure.

In our empirical evaluation of BioSM we initially focused on a curated set of endogenous
human biochemicals obtained from the KEGG/LIGAND database to represent the scaffolds
list. The chemical space of non-biological compounds was approximated by a randomly
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selected set of compounds from the Chembridge28 and Chemsysnthesis29 chemical
databases. Since structurally similar molecules tend to have similar properties30, we use a
graph matching algorithm to identify compounds that are structurally similar to those in our
scaffolds list. Our classification method is based on a novel scoring scheme that combines
all matches of scaffolds to substructures of a candidate compound as well as matches of the
candidate compound’s structure to substructures of the scaffolds. We were also interested in
determining whether increasing the number of scaffolds (i.e., increasing our representation
of biochemical structure space) would improve model sensitivity and specificity. Therefore,
we supplemented our initial KEGG scaffolds list with 2,362 curated compounds from
HMDB and HumanCyc and repeated the assessment experiments.

Methods
Molecular Structure Matching

Marvin31 chemical structure processing software was used to generate canonical SMILES
(Simplified Molecular-Input Line-Entry System)32 from structure data files (.sdf) for all
compounds described in this work. The Small Molecule Sub-graph Detector (SMSD)
Toolkit33 was used to carry out molecule similarity searches. SMSD is a Java based
software library for finding the maximum common sub-graph between small molecules
using atom type matches and bond sensitivity information. In our work, two molecular
structures match if and only if the smaller structure was an exact substructure (atom and
bond types) of the larger structure being compared. A similarity score between two
molecular structures was defined by

(1)

where NSBS represents the total number of atoms in the substructure and NSPR represents the
total number of atoms in the superstructure. Clearly, a candidate molecule may match more
than one scaffold structure, resulting in several similarity scores computed for each
candidate compound. Initially, the highest similarity score was selected to represent the
degree of biochemical similarity between scaffold structures and the candidate compound’s
structure. However, we observed that multiple scaffolds could match different substructures
of the candidate, significantly strengthening the evidence that the candidate compound is an
endogenous mammalian biochemical. Thus, we developed a “union scaffold structure”
approach that incorporates all scaffolds matching a candidate compound’s structure and
serves to reduce bias that might exist due to overlap among scaffolds. This representation
provides a quantitative assessment of a candidate compound’s overall “biochemical
coverage”. Figure 1 illustrates BioSM’s scaffold matching process and shows how scaffolds
are mapped onto the candidate structure to generate the union scaffold structure. When
multiple matches exist, BioSM incorporates each one into the union scaffold structure being
generated (Figure 1, matches B2 and B3). Please note that a disjoint union scaffold structure
may be generated if matching substructure scaffolds do not overlap. Once a union scaffold
structure is mapped to a candidate structure, a similarity score, known as the union-scaffold
score (US), is computed using equation (1) with the candidate structure as the superstructure
and the union scaffold structure as the substructure.

We considered using the number of scaffolds that match a candidate structure as an optional
scoring parameter. We realized, however, that this approach would make BioSM’s
predictions biased depending on the over or under abundance of any particular group of
structures in the scaffolds list. Knowing that our scaffolds list is incomplete, since not all
endogenous mammalian biochemical compounds are known, we decided to not include the
number of scaffold matches in a candidate compound’s score.
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We also recognized that some candidate structures may be small and thus have very few
scaffolds matching as substructures. Obviously, larger candidate compounds have a better
chance of matching substructures in the scaffolds list. Accordingly, we modified our method
to match and score scaffolds that are superstructures of a candidate structure as well as those
that are substructures. This approach seems intuitive since many biochemical compounds
are produced enzymatically (i.e., products) from larger precursor scaffolds (i.e., substrates)
via biochemical pathways34. If a scaffold is found to be a superstructure of a candidate
structure, a similarity score is computed using equation (1). In addition, a candidate
compound may be a substructure of several scaffolds as shown in Figure 2. In that case, the
scaffold with the highest similarity score is selected, and that score is used as the
superstructure score.

Hence a candidate compound can have a score of zero (when no matches are found), a union
scaffold score, a superstructure score, or both. In order to have one value represent the
structural match of a candidate compound to the biochemical scaffold structures, we
combined the union scaffold and superstructure scores in two different ways. In the first
approach, referred to as the Sum of Scores (SS), we obtained a candidate’s overall score by
adding the union scaffold score to the superstructure score. In the second approach, referred
to as the Maximum Score (MS), the candidate’s score was the larger of the union scaffold
score and superstructure score.

Scaffolds and Synthetic Datasets
The KEGG database served as the source of the first set of endogenous mammalian
scaffolds used in this study. These scaffolds were selected based on their inclusion within at
least one of 63 known KEGG mammalian pathways (scaffold pathway and metabolic class
information is given in Supplemental Table 1 in the Supporting Information). However,
some compounds were excluded from the final scaffold list. Compounds with elements other
than C, H, N, O, P and S are typically found only in marine organisms and extremely rare in
mammals. Hence, we decided to treat these compounds as non-mammalian compounds and
eliminated them (59 compounds). Molecules with a molecular mass less than 50 Da (12
compounds) were removed. Fifty nine compounds with any atom type other than C, H, O,
N, S and P were eliminated as were compounds that had duplicate structures (174
compounds), or were polymers (223 compounds). Additionally, we eliminated compounds
that did not have a formula associated (27 compounds) and all charged structures (11
compounds) except those in which the charge was due to quaternary amines or sulfonium
ions. This curation resulted in a final list of 1,565 mammalian scaffolds (KEGGscafs) for
our initial representation of biochemical structure space.

The Chembridge and Chemsynthesis databases, comprising synthetic compounds for
chemical synthesis and drug screening and design, were chosen to represent non-biological
chemical space. A set of 29,207 compounds was downloaded from the Chemsynthesis
database on 7/18/11 and a set of 760,517 compounds was downloaded from the Chembridge
database on 7/20/11. Because Chemsynthesis and Chembridge databases mainly contain
compounds with low molecular weights, a value of 700 Da was set as the maximum
molecular weight of candidate compounds included in this study. Accordingly, 177 KEGG
compounds (with masses greater than 700 Da) were eliminated from any testing set
throughout this study and were only used for superstructure scaffold matching. This mass
restriction was enforced to ensure that any compound with a mass range 50 – 700 Da was
equally likely to be biological/non-biological and thus discrimination would be based solely
on structure. Similar to KEGGscafs, the combined synthetic set of compounds was curated
by removing all compounds containing elements other than C, H, O, N, S and P (297,721
structures), organic salts (3,496 structures), charged compounds (39,170 structures),
duplicate compounds (153 structures), and compounds with molecular mass less than 50 Da
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(8 structures). Additionally, we removed 127 compounds that were identical to compounds
in KEGGscafs. This curation resulted in a final set of putative non-biological compounds
consisting of 483,615 structures.

In addition to these non-biological compounds, we empirically derived a set of non-
biological substructures (NBS) which, to our knowledge, are not commonly found in
mammalian biochemical compounds. The NBS list was checked against KEGGscafs. If an
NBS was found to be part of a compound in KEGGscafs, the NBS was removed. This
resulted in 35 substructures in the final NBS list (Supplemental Table 2). The NBS list was
used as an initial filter in the identification process. If a candidate compound was found to
contain at least one NBS it was predicted to be non-biological.

Accuracy Measures
To evaluate the performance of BioSM, several accuracy measures were employed.
Sensitivity (SENS) refers to the proportion of biological compounds correctly predicted to
be biological, and is computed as

(2)

where TP represents the number of true positives and FN represents the number of false
negatives. Specificity (SPEC) refers to the proportion of non-biological compounds
correctly predicted to be non-biological, and is given by

(3)

where TN the number of true negatives and FP represents the number of false positives35.
The Positive Predictive Value (PPV) is the proportion of positive test results that are true
positives and is defined by

(4)

The Matthews Correlation Coefficient (MCC)36, defined by

(5)

is commonly used as a combined measure of the overall quality of two-class classifiers.
MCC values range from 1 to −1, where MCC = 1 represents perfect prediction, MCC = 0
represents essentially random prediction, and MCC = −1 represents perfectly inverse
prediction. Finally, the F-Score is the harmonic mean of SENS and PPV, i.e.,

(6)

Training Data
From the selected set of 1,565 KEGGscafs, there were 1,388 compounds with molecular
weights in the range 50 – 700 Da. These were used as the training set for our method. A set
of 1,388 synthetic compounds, selected from the synthetic compounds dataset to match the
mass distribution of the 1,388 biological set, was used to represent non-biological chemical
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space (the full list of compounds is available in the Supporting Information). Synthetic
compounds containing one or more NBS were not used for training since BioSM applies the
NBS filter before the scaffolds matching step.

Cross Validation Framework and Scoring Methods
Cross Validation (CV) is one of the simplest and most widely used methods for tuning meta-
parameters and estimating the accuracy of classification algorithms while avoiding
overfitting35. In this study, we used a nested CV framework, whereby classification
accuracy was empirically assessed using 2-fold CV, with parameter tuning performed by
executing 5-fold CV on the training data (Supplemental Figure 1). Briefly, compounds in the
scaffolds list and an equal number of mass-matched non-biological compounds (selected as
described above under “Training Data”) were individually divided randomly into two
halves; one half for model training and the other half for model testing. The training half
(694 biological and 694 non-biological compounds) was further randomly split into K = 5
roughly equal parts, and then each part was used to evaluate classification accuracy of
models trained on the remaining (K – 1) parts. For the results of each training fold, the score
where SENS = SPEC was recorded as the cutoff threshold of that fold. The average
threshold of all 5 training sets was used as the cutoff score when evaluating the testing data.

Several methods for scoring a candidate compound were examined in this CV analysis.
Specifically, the US reflects the value of equation (1) having the candidate compound as the
superstructure and the union scaffolds as the substructure, SS reflects the sum of the union
scaffold score and the superstructure score, and the MS reflects the larger of the union
scaffold score and superstructure score. In preliminary experiments we noted that the
molecular weight of a compound had an impact on its final score. This is because smaller
compounds are more likely to match larger scaffolds; larger compounds more likely to
match smaller scaffolds and compounds of intermediate size could match both smaller and
larger scaffolds. Therefore, we chose to split the set of test compounds into 5 mass bins.
Five-fold CV was used to determine bin boundaries ensuring that each bin had
approximately the same number of compounds, as well as independent score threshold
values for each bin. Both threshold scores and bin boundaries obtained from each of the 5
training folds were averaged before applying BioSM to the testing fold. Thus, the sum of
threshold values obtained from each fold divided by the number of folds (5) would be the
averaged threshold score applied by BioSM to the testing fold. We refer to classification
obtained by applying the three scoring methods discussed above with independent threshold
values for each of the 5 bins as 5-Bin Union-scaffold Score (5BUS), 5-Bin Sum of Scores
(5BSS), and 5-Bin Maximum Score (5BMS), respectively. Figure 3 shows an overview of
the general flow of BioSM and an illustrative example.

Prospective Validation Sets
To estimate the performance of our predictive model, five external validation sets were
used; one set of drugs, two sets of putative human metabolites, one set of plant secondary
metabolites, and one set of synthetic compounds. Supplemental Figure 2 shows the mass
distribution of the compounds in each validation dataset. For each dataset, any compound
identical to any of KEGGscafs was removed. Also, structures found in more than one
dataset were removed from all datasets except one, as explained below. The following is a
description of the five datasets:

1. A dataset which contained 7,036 compounds obtained from DrugBank [29] version
3.0 downloaded on 01/18/2012, combined with a set of 5,390 structures obtained
from the 1989 USAN and the USP Dictionary of Drug Names37, was used as a
drug dataset. Salts, mixtures, compounds containing elements other than C, H, N,
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O, S, and P; duplicate structures and compounds with molecular weight outside the
50 – 700 Da range were removed resulting in a set of 3,895 compounds.

2. We used compounds from HMDB version 2.5, downloaded on 7/15/2012, to
represent human metabolites. Out of the 8,534 molecules in that set, 174
compounds contained elements other than C, H, N, O, S, and P; 4,209 molecules
were outside the considered mass range (50 – 700 Da) and 133 compounds had
duplicate structures. Additionally, 1,138 molecules were eliminated because they
were found in KEGGscafs and 132 were found in the drug dataset. Finally, all
charged structures except those in which the charge was due to quaternary amines
or sulfonium ions were eliminated. This resulted in an independent dataset of 2,563
putative human metabolites.

3. We downloaded a set of 2,396 compounds from HumanCyc version 16.0 on
5/24/2012 to represent another dataset of putative human metabolites. A curated set
of 158 compounds were available for testing after eliminating compounds
containing elements other than C, H, N, O, S, and P (111 compounds), those not in
the mass range 50 – 700 Da (289 compounds), compounds found in KEGGscafs
(198 compounds), charged compounds (792 compounds), duplicate structures (283
compounds), polymers (368 compounds), drugs (28 compounds), and HMDB
compounds (169 compounds).

4. A dataset of 2,829 secondary plant metabolites38, as specified by KEGG, was
downloaded on 6/25/2012 to represent plant structures. A total of 2,416 compounds
remained after removing compounds present in KEGGscafs (75 compounds), drugs
(54 compounds), compounds not in the mass range 50 – 700 Da (217 compounds),
compounds containing elements other than C, H, N, O, S, and P (10 compounds),
and compounds with charges (57 compounds).

5. A fifth dataset of 458,207 compounds from the Chembridge and Chemsynthesis
databases, not used in training the model, were used as a synthetic compound test
set. The same curation steps described above were used for these compounds.

In addition to these five validation datasets, we classified a random set of compounds taken
from the PubChem chemical database. On 12/15/2011, we downloaded 30,142,651
compounds from PubChem. We eliminated 1,003,580 compounds with molecular masses
not in the range of 50 – 700 Da. We further eliminated 13,171,123 compounds that
contained elements other than C, H, O, N, S, P. Three replicate datasets, each containing
approximately 320,000 compounds, were randomly chosen from the remaining 15,967,948
PubChem compounds resulting in a total of 959,420 molecules. Further curation resulted in
the elimination of 7,280 compounds with duplicate structures, 67,449 compounds with
charges and 12 compounds that had disconnected structures. This resulted in three random
samples totaling 883,199 test molecules. It should be noted that there was no attempt to
remove compounds present in any of the other validation sets from the PubChem dataset.
The PubChem dataset was intended to be a random sampling (other than curation
requirements) of PubChem compounds.

KEGG, HMDB, and HumanCyc Scaffolds List
In order to determine whether BioSM’s prediction accuracy would improve if the number of
scaffolds was increased, we compiled an updated scaffolds list of 3,927 compounds
(referred to as KHHscafs) using our initial KEGGscafs, plus additional compounds from the
HMDB and HumanCyc databases. Only non-redundant compounds from HMDB and
HumanCyc predicted to be endogenous mammalian biochemical compounds by BioSM
using KEGGscafs were included in KHHscafs. This list consisted of the original 1,565
KEGGscafs, 2,273 compounds from HMDB and 89 compounds from HumanCyc. A set of
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compounds from the synthetic dataset (randomly selected to match the KHHscafs mass
distribution) were chosen to represent non-biological compounds. We then used the same
cross validation framework and scoring methods described earlier for KEGGscafs. BioSM
using KHHscafs was used to analyze the following independent datasets:

1. the drug dataset described above (3,894 compounds),

2. the plant secondary metabolites dataset (2,354 compounds) after eliminating 62
compounds found in the KHHscafs,

3. compounds from the synthetic dataset (374,143 Chemsynthestis and Chembridge
compounds) not used in training BioSM, and

4. one of the randomly generated Pubchem datasets (294,671 compounds).

Results and Discussion
Comparison of Candidate Scoring Methods by CV

The accuracy measures explained above were used to compare results generated from 15 CV
experiments for each of the scoring functions (US, MS, SS, 5BUS, 5BMS, and 5BSS) as
shown in Table 1. We carried out an analysis-of-variance (ANOVA)35 to check for
statistical significance between the 6 scoring methods. We used the Single Factor ANOVA
function in Microsoft Excel 2007 to carry out all ANOVA analysis in this study. ANOVA
results indicated no statistically significant difference between any of the 6 methods (P >
0.05). However, 5BSS accuracy was consistently higher than the other methods on all
measures and thus was selected as the scoring method for all remaining experiments.

It is noticeable (Table 1) that the sensitivity of the model in the CV experiments is relatively
low. As explained in the methods section, in each CV experiment only half of the
KEGGscafs were used for training the model and the other half were used for testing. Thus,
a candidate could be predicted to be non-biological because there were no scaffolds in the
randomly selected training set to match it in that specific experiment.

Leave-One-Out Cross Validation Experiments
Using the averaged meta-parameters determined by CV, we carried out a set of leave-one-
out cross validation (LOOCV) experiments on the N = 1,388 structures (with masses
between 50 and 700 Da) in our reference scaffolds database as an additional method of
evaluating the accuracy of BioSM in predicting endogenous mammalian biochemical
structures. N experiments were performed and for each experiment, N-1 compounds (plus
177 KEGG compounds with masses 700 – 1200 Da) were used as scaffolds and the
remaining compound was treated as an unknown. This allowed the use of all but one
scaffold in the prediction process. As a result, BioSM annotated 95% of the compounds as
being biochemical (Supplemental Table 3).

Prospective Validation
Five prospective datasets (drugs, plant secondary metabolites, 2 independent human
metabolite datasets, and a synthetic molecule dataset) were classified by BioSM using the
5BSS method. The compounds in each dataset were split into 5 bins (mass range/bin
determined as described in the CV experiments) and the percentage of biochemical
predictions per bin was computed (Figure 4). For the sake of comparison, the results from
the LOOCV experiments with 1,388 KEGG endogenous metabolites (described above) are
also included in Figure 4. It is observed that the prediction accuracy for KEGG compounds
(LOOCV results) is uniform across all mass bins. For the other datasets compounds in the
mass range 287 – 700 Da (bins 4 and 5) tended to have a higher probability of being
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predicted as endogenous mammalian biochemical structures. This was especially true for the
HumanCyc compounds, plant metabolites and drugs. The overall results (Table 2) show that
out of the 2,563 HMDB molecules, 89% were predicted to be biochemcal structures.
However, only 58% of HumanCyc compounds were predicted to be biological. Visual
examination of the HumanCyc structures predicted to be non-biological showed that many
of them are indeed non-biological. For example, anthrazene, triazene and compounds with
cyclopropane rings are included in the list (these non-biochemical structures are given in the
supplementary material). Thus, the above results are consistent with the intent of the HMDB
and HumanCyc databases to include compounds that are found in humans, however, these
are not necessarily endogenous mammalian biochemical compounds.

For the 2,416 plant compounds, 72% were predicted to be biochemical. Although this high
percentage might seem initially surprising given that we are using mammalian scaffolds to
represent biochemical space, this result is consistent with current biochemical and
evolutionary data suggesting that plant secondary metabolites and mammalian biochemicals
(i.e., our KEGGscafs) share multiple conserved biochemical pathways and thus an
overlapping biochemical phylogeny39. Interestingly, only 1% of the plant secondary
metabolites matched one or more superstructure scaffolds; and those plant compounds were
found to have relatively small molecular weights (116 – 299 Da). This suggests that plants
have expanded upon conserved biochemical pathways to produce compounds containing
unique combinations of common scaffolds; and these unique combinations are not
substructures of known mammalian scaffolds.

Forty eight percent of 3,895 drug structures were predicted to be endogenous mammalian
biochemical structures. These results are very similar to those found earlier by Peironcely et
al. using a similar drug dataset26. It is perhaps not surprising that approximately half of the
drugs were predicted to be endogenous biochemical structures since many are derived from
natural products40. In contrast, only 29% of the synthetic compounds were predicted to be
endogenous biochemical structures. By chance, synthetic compounds may be structurally
similar to biochemical compounds. Indeed, as mentioned previously, we found 127
compounds that had to be removed from the synthetic data set prior to cross validation
because they were identical to compounds in KEGGscafs.

In addition to these five prospective datasets, three random samples of approximately
294,000 compounds (883,199 total) from PubChem were tested. Thirty-four percent (±
0.02%) of these were predicted to be biochemical. This suggests that the Pubchem database
contains mostly non-biological compounds. Thus, for metabolomics studies where
identification of unknown endogenous biochemicals is the primary goal, BioSM would
facilitate more efficient use of large chemical databases such as PubChem by removing non-
biological candidate compounds from further consideration. For example, BioSM will be
incorporated into MolFind13, a recently described program that aids in the identification of
unknown compounds detected in biological samples by LC/MS. Supplemental Table 4
shows the detailed predictions results for each of the PubChem random samples as well as
the average and standard deviation.

Next, we evaluated the distribution of candidate scores regardless of compound mass
(Figure 5) for each prospective dataset. PubChem compounds, synthetic compounds, and
compounds in the drug dataset have a large number of compounds (31%, 32%, and 25%
respectively) with a candidate score of zero. After eliminating compounds with a zero score
due to NBSs (Supplemental Table 4) we found that 8% of Pubchem compounds, 10% of the
synthetic compounds and 9% of the drug compounds had no structural similarity with any of
our scaffolds. It is also clear in Figure 5 that Pubchem compounds and synthetic compounds
have very similar candidate score distributions.
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A candidate score greater than 1.0 can only be achieved if the candidate compound has at
least one matching substructure scaffold and at least one matching superstructure scaffold.
Figure 5 shows that 82% of the KEGG endogenous compounds, 54% of the HMDB
compounds and 31% the HumanCyc compounds have a scores between 1 and 2. Only a few
of the drug, plant, PubChem and synthetic compound structures have candidate scores in
that range (9%, 7%, 2%, and 1% respectively). As mentioned earlier, only about 1% of the
plant compounds matched one or more superstructure scaffolds. Thus, of the 7% of plant
compounds with scores between 1 and 2, approximately 6% of these had a score of 1. Using
KEGGscafs, the largest threshold value over all 5 bins was 0.89. Therefore any compound,
regardless of its mass, with a score of greater than 0.89 would be annotated as an
endogenous mammalian biochemical compound.

KEGG, HMDB, and HumanCyc Scaffolds List
The analysis above was based on using BioSM and our curated set of 1,565 KEGGscafs.
This assumes that these 1,565 structures provide a complete (or nearly complete)
representation of mammalian biochemical structure space. Thus, an important question is
whether a larger scaffold list (larger biochemical structure space) would significantly change
the results presented above. After updating the scaffolds list to 3,927 compounds (KHHscafs
described above), we followed the same process for finding the best scoring method, cutoff
values, and bin masses using 15 CV experiments with 3,750 training scaffolds (3,927 – 177
= 3,750) in the 50 – 700 Da mass range. For the non-biological set we selected a random set
of structures from the Chembridge and Chemsynthesis databases which matched the mass
distribution of the 3,750 training KHHscafs. Note that since this non-biological set was
chosen at random from our curated dataset of 483,615 synthetic compounds, it is not
identical to the non-biological set used for CV of KEGGscafs. Table 3 shows the average
accuracy measures of the 15 CV experiments for US, MS, SS, 5BUS, 5BMS and 5BSS
methods. An ANOVA of the results in Table 3 indicated statistically significant (P < 0.05)
differences between SPEC and PPV for one or more of the 6 scoring methods. Having the
highest SPEC (0.75) and PPV (0.83), 5BSS was selected as the scoring method for BioSM
when using KHHscafs to reanalyze the various datasets as described above. A further
ANOVA of the 5BSS CV results for KEGGscafs and KHHscafs showed a statistically
significant (P < 0.05) difference between all measures (supplemental table 5).

Figure 6 shows the results of LOOCV as well as the results of the prospective datasets per
mass bin. Ninety six percent of the 3,750 KHHscafs were correctly predicted as biological
using a LOOCV (Supplemental Table 6). Even though this value is high, four percent of our
scaffolds were still incorrectly annotated (these structures are found in supplementary
material). In many cases, we noted that these false negatives were because BioSM requires
an exact match between the scaffold and the candidate. This was particularly problematic for
predicting specific classes of compounds. For example, lipids with a double bond in the
middle of the structure were poorly predicted by BioSM since there may not be scaffolds
that match either side of the double bond. We explored using scaffold matching without the
requirement of exact bond matching; however, the specificity of the system was negatively
affected. It is important to note that bin masses and cut-off thresholds changed after running
CV with the updated KHHscafs. This explains why some compounds predicted to be
biological using KEGGscafs might be predicted to be non-biological using KHHscafs or
vice versa. Although the 96% sensitivity suggested by our LOOCV analysis is quite good, a
possible approach to further improve BioSM would be to expand the set of scaffolds by
using enzyme reaction information (oxidation and or reduction reactions for example). In
this case, not only would BioSM be searching for exact structure matches between scaffolds
and candidate compounds, but also among putative metabolites of those scaffolds. BioSM
will apply a set of applicable enzyme reactions to a candidate compound; if any of the
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metabolites produced were found to be an endogenous mammalian biochemical compound
by BioSM then the candidate is also biochemical.

Using KHHscafs, BioSM predicted 74% of the 2,354 plant compounds, 42% of the 3,894
drug compounds, 26% of the 374,143 synthetic compounds and 25% of the 294,671 random
Pubchem compounds as biological. It is important to point out that this 25% value for
PubChem does not include compounds that were eliminated during the initial curation steps
(mass range requirement, compounds with elements other than C, H, N, O, P, S,
stereoisomers, salts and disconnected structures). Thus, starting with approximately
29,000,000 PubChem compounds with MIMW between 50–700 Da, we estimate that
approximately 3,680,000 (13%) of these would be annotated as mammalian biochemical
compounds using our curation steps and BioSM. Supplemental Figure 3 shows the
distribution of candidate scores from each dataset regardless of compound mass.

Figure 7 illustrates the percentage of molecules predicted to be biological by BioSM using
KHHscafs versus KEGGscafs in each of the prospective datasets. Although sensitivity,
specificity, MCC, PPV and F score are all significantly higher when using KHHscafs
(supplemental Table 5), overall, the percentages predicted to be biological are very similar
using the two sets of scaffolds. Thus, it is unlikely that the use of additional scaffolds will
significantly improve our representation of biochemical structure space as defined here, and
that the model is reasonably robust. One could argue that the 2,362 added scaffolds may not
have contributed appropriate biochemical structure diversity since they were predicted to be
biological using KEGGscafs. However, this seems unlikely due to the large number of non-
redundant structures added, and the fact that all CV model parameters were significantly
improved compared to KEGGscafs. Further slight improvements may still be possible by
iteratively expanding the scaffold list; notably, out of the 275 HMDB compounds classified
as non-biological using KEGGscafs, 91 of these were classified as biological using
KHHscafs.

It is difficult to measure the accuracy of BioSM based on the results displayed in figure 7 as
there is no definite answer as to whether or not each compound in these datasets is actually
an endogenous mammalian biochemical. Yet it is still interesting to see how BioSM
classifies compounds from each dataset.

Due to the unavailability of sufficient non-biochemical structures for CV training, BioSM is
not currently able to classify compounds with masses above 700 Da. However, regardless of
the mass, a quantitative score can be calculated for any compound. Thus, a simple ranking
based on candidate scores might still be useful for compounds with masses greater than 700
Da.

Currently, BioSM does not allow annotation of candidate compounds with halogens (i.e., F,
Cl, Br) since the current scaffolds list is based upon endogenous human biochemical
compounds. However, BioSM can be easily tailored to specific application domains. For
example, if one is interested in identifying unknown chemical structures in plant samples,
the current scaffolds list can be supplemented with known plant biochemical structures and
the NBS list could be appropriately modified (e.g., C#N would be allowed).

Conclusions
In this work, we describe the development and validation of BioSM, a novel supervised
classifier that uses endogenous mammalian biochemical scaffolds to predict whether a
candidate chemical structure is biochemical or synthetic. BioSM was able to correctly
classify 96% of 3,750 biochemical compounds in a leave-one-out cross validation
experiment. In addition, our results suggest that approximately 13% of PubChem
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compounds are mammalian biochemicals. Thus BioSM may be useful for searching large
chemical databases in metabolomics applications where the number of potential false
positives is very large. Additionally, BioSM can place molecules in the context of metabolic
pathways since it can link potentially unknown biochemicals to matched substructure and
superstructure scaffolds for which metabolic pathways are known.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

MS mass spectrometry

NMR nuclear magnetic resonance

KEGG kyoto encyclopedia of genes and genomes

HMDB human metabolite database

RF random forest

SMILES simplified molecular-input line-entry system

US union-scaffolds score

SS sum of scores

MS maximum score

NBS non-biological substructures

CV cross validation

5BUS 5-bin union-scaffold score

5BSS 5-bin sum of scores

5BMS 5-bin maximum score

LOOCV leave-one-out cross validation
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Figure 1.
Matching a candidate structure (panel A) with 4 different scaffolds (panels B1– B5; note
that scaffold B2 = scaffold B3) as substructures and the similarity score of each match. The
union scaffold structure incorporating all scaffold matches is shown in panel C.

Hamdalla et al. Page 16

J Chem Inf Model. Author manuscript; available in PMC 2014 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Matching a candidate structure (panel A) with 2 scaffolds (panels B1 and B2) as
superstructures and the similarity score of each match. The scaffold structure with the
highest similarity score (scaffold B2) is selected.
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Figure 3.
(A) General flow of BioSM and (B) an example showing how the union scaffold structure
and superstructure scaffold are used in the prediction process based on 5BSS.
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Figure 4.
Biological predictions within each mass bin for each dataset using KEGGscafs. 5BSS bin
threshold values (thr) are also displayed.*LOOCV results.
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Figure 5.
Frequency distribution of candidate scores for each dataset. 5BSS threshold values for each
of the 5 bin masses are given in Figure 4. *LOOCV results.
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Figure 6.
Biological predictions within each mass bin for each dataset using KHHscafs. 5BSS bin
threshold values (thr) are also displayed. *LOOCV results.
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Figure 7.
Percentage of biological predictions in each data set using KEGGscafs versus using
KHHscafs. *Refer to LOOCV results when using the KEGGscafs dataset (turquoise bar) and
the KHHscafs (purple bar) as defined in the methods section above.
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Table 2

Predictive results using the 5BSS classifier for 6 different datasets using KEGGscafs.

Type Number of
Compounds

Prediction

Non-Biological
(NBSs)

Non-Biological
(5BSS)

Biological
(5BSS)

HMDB 2,563 1% 10% 89%

Plant
Secondary
Metabolites

2,416 0% 28% 72%

HumanCyc 158 7% 35% 58%

Drugs 3,895 16% 36% 48%

Synthetics 458,207 21% 50% 29%

PubChem 959,420 22% 46% 32%
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