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ABSTRACT: Little attention has been given to the selection of trial
descriptor sets when designing a QSAR analysis even though a great
number of descriptor classes, and often a greater number of
descriptors within a given class, are now available. This paper reports
an effort to explore interrelationships between QSAR models and
descriptor sets. Zhou and co-workers (Zhou et al., Nano Lett. 2008, 8
(3), 859−865) designed, synthesized, and tested a combinatorial
library of 80 surface modified, that is decorated, multi-walled carbon
nanotubes for their composite nanotoxicity using six endpoints all
based on a common 0 to 100 activity scale. Each of the six endpoints for the 29 most nanotoxic decorated nanotubes were
incorporated as the training set for this study. The study reported here includes trial descriptor sets for all possible combinations
of MOE, VolSurf, and 4D-fingerprints (FP) descriptor classes, as well as including and excluding explicit spatial contributions
from the nanotube. Optimized QSAR models were constructed from these multiple trial descriptor sets. It was found that (a)
both the form and quality of the best QSAR models for each of the endpoints are distinct and (b) some endpoints are quite
dependent upon 4D-FP descriptors of the entire nanotube−decorator complex. However, other endpoints yielded equally good
models only using decorator descriptors with and without the decorator-only 4D-FP descriptors. Lastly, and most importantly,
the quality, significance, and interpretation of a QSAR model were found to be critically dependent on the trial descriptor sets
used within a given QSAR endpoint study.

■ INTRODUCTION
A great deal of effort has gone into developing methods to
optimize QSAR models for a given trial descriptor set. However,
little attention has seemingly been given to the selection of trial
descriptor sets used to perform theQSAR study. To some extent,
this situation, at least in the past, was due to relatively limited
types and numbers of descriptors. But today a great number of
descriptor classes, and often a great number of descriptors within
a given class, are available. The goal of the research reported
herein is to explore the form, quality, and “complementarity” of
QSAR models developed using a variety of trial descriptor sets.
For each of the diverse endpoint measures, based upon a
common activity scale and for common training set of
compounds across the endpoints, a variety of QSAR models
optimized under different constraints have been developed and
reported.
Indeed, the key to performing this particular trial descriptor set

study was in finding a training set of chemical structures that
could be divided into well-defined and comparable substructures

but also for whichmultiple and diverse, yet comparable, endpoint
measures have been determined. A library of surface modified
nanotubes made by combinatorial library synthesis,1 and
screened with respect to relative protein-binding, cytotoxicity,
and immune response endpoints1 forms an excellent data set to
systematically explore the interrelationships between trial
descriptor sets and corresponding optimized QSAR models. In
addition, this data set provides an opportunity to hypothesize,
through the QSAR models, the mechanistic bases for nano-
toxicity of decorated nanotubes.1 A subsequent paper will focus
upon possible mechanisms of nanotoxicity for the decorated
nanotubes as gleaned from the QSAR models.
Nanotoxicity studies of carbon nanotubes2−13 and nano-

particles12,14−17 have been reported, and the need for a better
understanding of how nanoparticles (including nanotubes)
impact biological behavior is an increasing priority in
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toxicology.4,18−23 For example, a cytotoxicity endpoint measure
for single-wall and multi-wall nanotubes5 has been investigated.
Single-wall (SWNTs) and multi-wall nanotubes (with diameters
ranging from 10 to 20 nm) (MWNT) and fullerene structures
were included in the study. On the basis largely of electron
microscope-type observations, the cytotoxicity endpoints were
placed in a potency sequence ordering. It was then observed that
SWNTs yielded larger cytotoxicity potency than the other two
nanoparticles.
Another study focusing upon the nanotoxicity of long and

short carbon nanotubes has also been reported.24 The three
macroscopic toxicity endpoints used were phagocytosis by
macrophages, clearing from tissues, and the effect of carbon
nanotube structures on red blood cells. It was found that MWNT
with a low aspect ratio (ratio of length to width) can be engulfed
by macrophages, yet MWNTs with a high aspect ratio cannot be
cleared and thus accumulate in tissues where they promote
carcinogenesis.
While studies of all types of nanotoxicity endpoints are

important, the work reported here is centered on and only valid
for the data set reported by Zhou and co-workers.1 Moreover,
this paper only addresses the construction and exploration of
QSAR models based upon the selection of trial descriptor sets
and does not focus upon mechanisms of nanotoxicity action.

■ METHODS

Nanotoxicity Endpoints. Zhou et al.1 designed, synthe-
sized, and tested a combinatorial library of 80 surface modified
multi-walled carbon nanotubes1 where the surface decorators
were made from a combination of eight amines and nine
acylators with a common linking group to the nanotube (Figure
1B). These 80 decorator−nanotube complexes (DNC) were

tested for their relative protein binding to four different proteins,
namely bovine serum albumin (BSA), carbonic anhydrase (CA),
chymotrypsin (CT), and hemoglobin (HB). The reference
standard compound for all six nanotoxicity endpoints was the
nanotube decorated with only carboxyl groups.
To evaluate the acute cytotoxicity (Cell) of the DNC library in

macrophages, Zhou et al. used the WST-1 assay.25 Cell viability
was measured by determining the mitochondrial dehydro-
genases’ activity. The immune response was measured by
treating macrophages with DNC for 24 h in a solution of
lipopolysaccharide.1 The concentration of released nitrite was an
indicator for nitrogen oxide (NO) generation26 on the basis of
the activity of NO synthesis that corresponds to immune
response.
A summary of the nanotoxicity screens used in the Zhou et al.

study1 and adopted in this study are provided in Table 1. Zhou
and co-workers also used the cumulative index (arithmetic sum)
of the six endpoints for an overall ranking of the “biononcompat-
ibility”, or nanotoxicity, of the 80 DNC.

Chemical Structures and QSAR Training Set. Eighty
distinct DNC were synthesized and tested, but as described
above, only the 29 most nanotoxic DNC based upon the
cumulative index over all six endpoint measures were retained
and discussed by Zhou and co-workers.1 These 29 DNC were
used as the training set, and the decorator portions of these DNC
are shown in Table 2. The corresponding features of these 29
DNC are summarized in Table 3, while their six nanotoxicity
(biological) endpoints are included as part of Table 2.
There are three significant differences between the nanotube

structures used in this predictive QSAR modeling study as
compared to the reported experimental structures. First, the
structures used in this study are SWNT, while Zhou et al.1 used

Figure 1. Representation of the decorated nanotube and nanotube-linker assembly. (A) The 13 Å diameter nanotube with the decorator NT-08, as
defined in Table 2, bound to the surface of the nanotube. (B) Nanotube-linker assembly and decoration attachment point.

Table 1. Description of Protein Binding and Cellular Endpoints

(A) The binding to four individual proteins, bovine serum albumin (BSA), carbonic anhydrase (CA), chymotrypsin (CT), and hemoglobin (HB), were determined for the DNC
librarymembers and compared with the degree of binding of the corresponding DNC reference having a carboxyl group (−COOH) decorator. Relative binding affinity has
been expressed on a 0 to 100 scale where 100 corresponds to the reference DNC (100 most “toxic”).

(B) Cell Viability (Cell) was determined on the basis of the activity of the mitochondrial dehydrogenases in the presence and absence of the nanotube−decorator complexes and
expressed on a 0 to 100 scale (100 most “toxic”).

(C) The immune response of macrophages to the DNC was determined by measuring the concentration of released nitrite indicative of NO relative to a standard and this ratio
expressed on a 0 to 100 scale (100 most “toxic”).

(D) The overall nanotoxicity (biononcompatibility) of a DNC was taken to be the sum of the six endpoints described above and referred to as the multi-assay endpoint.

(E) Numerical values of the six endpoints, (A) through (C) above, were reported only for the 29most “toxic” nanotube−decorator complexes that have been used as the training
set in the work presented in this article.
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Table 2. 29 DNC Used as the Training Set Represented Only by Decorator Portions of DNCa
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undefined MWNT. The number of walls of the nanotube will
have little, if any, impact on the conformational behavior of the
surface attached decorator groups. Second, the diameter(s) of
the carbon nanotubes were not reported by Zhou et al.1 Finally,
the surface density and distribution of the decorator groups
affixed to the carbon nanotube have not been reported by Zhou
et al.1 The three structural feature differences described above
were taken into consideration and accommodated by (a)
adopting single-wall carbon nanotubes, (b) using two different
diameter single-wall carbon nanotubes of 10 and 13 Å diameter
each 65 Å in length, and (c) using a single decorator group linked
to the surface of the carbon nanotube midway down its length

(Figure 1). Moreover, the nanotube−decorator complex was
geometry optimized using the molecular dynamics simulation
(MDS) package GROMACS (version 4.5.2 for Linux) with the
ffgmx force field (a derivative of the GROMOS87 force field).
The ffgmx force field is advantageous because it is comprised of
small molecular functional groups instead of amino acid residues
allowing it to accommodate the nanotube and decorator
structures. The geometry optimization protocol contained two
steps: (1) geometry optimize the nanotube−decorator complex
followed by (2) MDS to bring the complex to system
equilibrium. The geometry optimization and MDS were

Table 2. continued

a. The six nanotoxicity (biological) endpoints and associated multi-assay score are also reported.

Table 3. Description of Nanotube decorators’ Structural Chemistry

(A) Eight amines and nine acylators covering a diverse physicochemical property and feature space were used in the synthesis of the decorator library. The designed nanotube−
decorator complex library is composed of 80 distinct decorators (8 × 10; eight amines, nine acylators, and one set of decorations with an amine but without acylation).

(B) Fmoc−tyrosine (Figure 1B) was used as a common linking group between the nanotube surface carbons and the decorators.

(C) The “density” of decorator substitution on the surface of the nanotube is not known.

(D) Uncharacterized multi-wall carbon nanotubes of unspecified diameter were used as the substrates for linking to the decorators.

Table 4. Trial Descriptor Sets Used in QSAR Analysesa

MOE32 1D, 2D, and pseudo-3D physicochemical properties and molecular features

VolSurf33−35 Molecular interaction field properties, 3D, but each represented as a single non-integer value

4D-FP36 Conformational ensemble averaged distances between pairs of all atom types composing a decorated nanotube complex in their reduced eigenvalue representation

(A) 4D-FP for the decorator-only

(B) 4D-FP for the decorator linked to a 10 Å diameter nanotube

(C) 4D-FP for the decorator linked to a 13 Å diameter nanotube
aAll combinations of all MOE, VolSurf, and the three types of 4D-FP were considered. The concentration of decorators on the surface of a nanotube
is unknown but should be roughly inversely proportional to the size of the decorator.
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performed using Born solvation estimation as part of the overall
force field.
Also, the presence of size-related decorator descriptors in the

resultant QSAR models was monitored. Size-related decorator
descriptors in a QSARmodels should at least in part be indicative
of the importance of the density of packing of decorator groups
on the surface of the carbon nanotube.
Descriptor Sets Used in the QSAR Analyses. 1D, 2D, 3D,

and 4D trial descriptor sets were used alone and in combination
with one another to develop QSAR models for the six endpoints
associated with the 29 compounds of the training set. The sets of
trial descriptors employed in these QSAR analyses are defined in
Table 4 and describe both the decorators and the nanotube−
decorator structures. The combination of the trial descriptor
poolsfrom not only the decorator but also from the combined
decorator and nanotubeprovide an avenue to probe the
intrinsic physicochemical properties, including conformational
restrictions of the decorators due to their proximity to the
nanotube.
Construction of QSARModels.The various descriptor sets,

alone and in combinations, as described in Table 4, formed the
trial descriptor pools for genetic algorithm27 (GA) model
optimization. The specific type of GA used in this study is a
version of the genetic function approximation (GFA).28 The
GFA model optimization is initiated by creating N (300 models)
stochastically generated multi-dimensional linear regression
(MLR) trial QSAR models. The mutation probability (random
change of molecular descriptors within the models)28 during the
cross-over optimization cycle,28 was set to 10%. The smoothing
factor, a GFA operations variable,28,29 controls the number of
independent variables (molecular descriptors) in the optimized

QSAR models and is varied in order to determine the optimal
size (number of descriptors) of the QSAR models.
The diagnostic measures used to analyze the resultant QSAR

models generated by the GFA include (i) descriptor usage as a
function of the cross-over operation, (ii) linear cross-correlation
among descriptors and/or dependent variables (endpoint,
nanotoxicity measures), (iii) number of significant and
independent QSAR models, and (iv) indices of model
significance including most notably the correlation coefficient,
R2, and the leave-one-out (LOO) cross-validation coefficient,Q2.
Several additional metrics have been proposed over the past few
years to evaluate significance and performance of QSAR
models.30 The commonly used R2 and Q2 model evaluation
metrics have been selected in this study as the primary measures
to evaluate and compare the QSAR models. These two metrics
are considered classic measures of quality and fit for MLR-based
QSAR models and have been employed, validated,31 and
debated30 since their initial implementations.

Comparison of QSAR Models. There are a variety of ways
to compare and contrast the optimized QSAR models
constructed from the various trial descriptor pools reported in
Table 4 for the six different nanotoxicity endpoints described in
Table 1 and reported in Table 2. However, it is essential to have
models of the same sizenumber of molecular descriptor
termsin order to make meaningful comparisons. Thus, for
each type of comparison made across the QSARmodels from the
various trial descriptor sets and/or endpoints, the number of
descriptors was held constant. The selection of the particular
fixed size for models being compared was based upon
maximizing Q2 as a function of the number of descriptor terms
in a model and then using the corresponding model that is
smallest in size. Maximizing Q2 as a function of model size

Table 5. Q2 Values as a Function of the Number of Model Descriptor Terms Using Specific Trial Descriptor Pools.a

Number of Terms

3 4 5 6 7

BSA: MOE + VolSurf + 4D-FP (decorator-only) 0.425 0.637 0.731 0.713 0.696

CA: MOE + VolSurf + 4D-FP (10 Å nanotube) 0.666 0.691 0.624 0.847 0.773

CT: MOE + VolSurf + 4D-FP (13 Å nanotube) 0.853 0.866 0.887 0.872 0.864

HB: MOE + VolSurf + 4D-FP (10 Å nanotube) <0.000 0.876 0.835 0.750 0.745

Cell: MOE + VolSurf + 4D-FP (decorator-only) 0.617 0.701 0.744 0.834 0.822

NO: MOE + VolSurf + 4D- FP (decorator-only) 0.585 0.639 0.814 0.787 0.733
a Each set of models is affected to varying degrees by the 4D-FP contributions. The maximized Q2 value for each trial descriptor pool is indicated by
the bolded values.

Table 6.R2 andQ2 Values for the Decorator-Only Optimized Five TermQSARModels for All Combinations of the Descriptor Sets
Reported in Table 4 for the Four Protein Binding Endpoints

Descriptor Set Decorator-Only CA Decorator-Only BSA Decorator-Only HB Decorator-Only CT

MOE R2 0.806 0.706 0.860 0.872

Q2 0.700 0.566 0.791 0.844

VolSurf R2 0.681 0.601 0.705 0.733

Q2 0.572 0.452 0.588 0.600

4D-FP R2 0.851 0.721 0.872 0.900

Q2 0.516 0.627 0.772 0.759

MOE + VolSurf R2 0.840 0.760 0.860 0.872

Q2 0.749 0.669 0.791 0.844

MOE + 4D-FP R2 0.844 0.814 0.931 0.918

Q2 0.763 0.726 0.891 0.880

VolSurf + 4D-FP R2 0.893 0.804 0.921 0.869

Q2 0.811 0.660 0.860 0.825

MOE + VolSurf + 4D-FP R2 0.892 0.818 0.931 0.936

Q2 0.832 0.731 0.891 0.906
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optimizes the fit between dependent and independent variables
without overfitting. The smallest size model for which Q2 is
maximized corresponds to a model that has the most “fitting-
information” per descriptor term. Table 5 presents optimized
QSAR models developed in this study having 3-7 terms using
specific trial descriptor pools having different contributions from
the 4D-FP descriptor pool (decorator-only versus inclusion of
the nanotube). The maximized Q2 values are given in bold print.
Five-term QSAR models are prevalent among the optimized
models.

■ RESULTS

R2 and Q2 for Decorator-Only QSAR Models as a
Function of Descriptor Set and Endpoint. The optimized
model size for this comparison study was found to be five
descriptors based upon the criteria and methodology reported
above. Table 6 lists the R2 and Q2 values for the five descriptor
term (molecular descriptors) QSAR models for all combinations
of the decorator-only descriptor sets reported in Table 4 for each
of the four protein binding endpoints.
Even a cursory inspection of Table 6 makes it clear that QSAR

quality and fit in characterizing protein binding is different for the
each of the four proteins, as well as for the different trial
descriptor sets. For example, the R2 and Q2 values, respectively,
for the optimized models for CA binding using only VolSurf
descriptors are 0.681 and 0.572, while for theMOE descriptor set
the values are 0.806 and 0.700. Moreover, when the MOE,

VolSurf, and 4D-FP descriptor are jointly used as the trial
descriptor pool, the R2 and Q2 values of the resulting best five-
term model are 0.892 and 0.832.
In a similar fashion, one can compare the R2 and Q2 values for

the five-term QSAR models for using only the VolSurf
descriptors and find the R2 and Q2 to be only 0.601 and 0.452,
respectively, for BSA, but 0.733 and 0.600 for CT. However, if
the MOE, VolSurf, and 4D-FP descriptors sets are combined as
the trial descriptor pool, the R2 and Q2 values for the resulting
optimized model are 0.818 and 0.731 for BSA, respectively, and
0.936 and 0.906 for CT. Clearly, different descriptor sets are
making different contributions to fitting the observed protein
binding endpoints and perhaps even in a complementary fashion.
In line with this thinking, the data in Table 6 also suggests that
the larger more comprehensive the trial descriptor set the more
significant is the model in terms of both R2 and Q2.
Operationally, these results suggest that the descriptor sets

being used may capture different portions of the structure−
activity relationship (SAR) for each of the binding proteins and/
or the experimental measures of protein−nanotube binding may
vary in their levels of comparative reliability. The idea that
experimental measures within a family of similar endpoints may
differ in reliability/accuracy is something that does not seem to
have been considered as an issue in QSAR modeling.

R2 andQ2 for the QSARModels as a Function of the 4D-
FP Descriptor Set and Endpoint. In Table 7 the optimized
five-term QSAR models for each of the six nanotoxicity

Table 7. R2 and Q2 Values for Optimized Five-Term QSAR Models for All Six Nanotoxicity Endpoints Using the Three Types of
4D-FP Trial Descriptor Sets Reported in Table 4

Endpoint Decorator-Only 4D-FP Decorator 4D-FP + Nanotube (13 Å) 4D-FP Decorator 4D-FP + Nanotube (10 Å) 4D-FP

BSA Binding R2 0.721 0.848 0.851

Q2 0.627 0.718 0.750

CA Binding R2 0.851 0.868 0.857

Q2 0.516 0.640 0.631

HB Binding R2 0.870 0.898 0.894

Q2 0.772 0.837 0.767

CT Binding R2 0.900 0.897 0.900

Q2 0.759 0.734 0.791

NO Response R2 NA 0.875 0.870

Q2 NA 0.775 0.805

Cell Viability R2 0.833 0.842 0.841

Q2 0.572 0.717 0.762

Table 8. R2 and Q2 Values for the Optimized Five-Term QSAR Models for the CA Binding Endpoint Using All Possible Sets of
Descriptors and Including and Excluding 4D-FP Contributions from the Nanotubea

Descriptor Set Decorator-Only Decorator + (13 Å) Nanotube Decorator + (10 Å) Nanotube

MOE R2 0.786 NA NA

Q2 0.700 NA NA

VolSurf R2 0.681 NA NA

Q2 0.572 NA NA

4D-FP R2 0.851 0.868 0.857

Q2 0.516 0.640 0.631

MOE + VolSurf R2 0.840 NA NA

Q2 0.749 NA NA

MOE + 4D-FP R2 0.844 0.867 0.869

Q2 0.763 0.786 0.769

VolSurf + 4D-FP R2 0.893 0.892 0.889

Q2 0.811 0.841 0.794

MOE + VolSurf + 4D-FP R2 0.892 0.872 0.872

Q2 0.832 0.687 0.817
aNA: not applicable. The nanotubes have near constant sets of MOE and VolSurf descriptors across all 29 DNC.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci3005308 | J. Chem. Inf. Model. 2013, 53, 142−158150



endpoints are reported in terms of their respective R2 and Q2

values using the three types of 4D-FP descriptor sets defined in
Table 4 as the trial descriptor sets. Basically, Table 7 allows the
probing of model quality and significance as a function of
including, or excluding, the explicit presence of the nanotube
and/or conformation of the decorator. It is seen that for the BSA

and NO endpoints the inclusion of 4D-FP involving the
nanotube greatly enhances the corresponding QSAR model.
Also, the 10 and 13 Å diameter nanotubes yielded QSAR models
of about the same significance (R2 and Q2 and descriptor
composition). However, for the other four endpoints, the explicit
consideration of 4D-FP descriptors from either of the two types

Table 9. R2 and Q2 Values for Optimized Five-Term QSAR Models for the BSA Binding Endpoint Using All Possible Sets of
Descriptors and Including and Excluding 4D-FP Contributions from the Nanotubea

Descriptor Set Decorator-Only Decorator + (13 Å) Nanotube Decorator + (10 Å)Nanotube

MOE R2 0.706 NA NA

Q2 0.566 NA NA

VolSurf R2 0.601 NA NA

Q2 0.452 NA NA

4D-FP R2 0.721 0.848 0.820

Q2 0.627 0.718 0.681

MOE + VolSurf R2 0.760 NA NA

Q2 0.669 NA NA

MOE + 4D-FP R2 0.818 0.867 0.830

Q2 0.731 0.807 0.678

VolSurf +4D-FP R2 0.804 0.903 0.832

Q2 0.660 0.860 0.604

MOE + VolSurf +4D-FP R2 0.818 0.903 0.839

Q2 0.731 0.860 0.724
aNA: not applicable. The nanotubes have near constant sets of MOE and VolSurf descriptors across all 29 DNC.

Table 10. QSAR Descriptor Terms, Influence of the Descriptor on the Predicted Endpoint, and R2 and Q2 for the Best Model in
Each of the Three 4D-FP Classes for the BSA and CA Binding Endpointsa

Endpoint Best QSAR Model Molecular Component(s) R2 Q2 Descriptor Influence Top GFA Descriptor Usage

BSA Binding MOE + 4D-FP Decorator-Only 0.844 0.752 + PN·ARO7 ePN·ARO7: 299
+ PP·PN6 ePP·PN6: 299
− All·HBD3 eAll·NP17: 285
− PP·HBA6 eAll·HBD3: 199
+ All·NP17 eAll·HBA6: 63
+ a_acc

VolSurf + 4D-FP Decorator + Nanotube (13 Å) 0.903 0.860 + HS·HS294 eAll·HS34: 300
+ All·HS34 eHS·HS294: 299
+ All·All62 eAll·HS165: 284
+ All·HS450 eAll·All62: 177
+ vsurf_D4 eAll·HS450: 137

MOE + VolSurf + 4D-FP Decorator + Nanotube (10 Å) 0.781 0.758 + All·NP596 eNP·NP821: 299
− NP·NP821 eHS·HS724: 255
+ All·HS418 eNP·NP596: 231

+ eNP·ARO291: 124
PEOE_VSAplus2 eHS·HS517: 70

CA Binding MOE + VolSurf + 4D-FP Decorator-Only 0.892 0.832 − All·NP19 eAll·All26: 298
− vsurf_DW13 vsurf_DW13: 225

− All·All26 GCUT_SMR_2:152

+ GCUT_SMR_2 eNP·NP20: 78
+ Q_VSA_FPOL eNP·PP10: 76

VolSurf + 4D-FP Decorator + Nanotube (13 Å) 0.892 0.841 − eHS·HS193 eNP·HS335: 293

− eNP·HS335 eHS·HS808: 279
+ eAll·All1170 eAll·All1170: 276
− eHS·HS808 eNP·NP278: 95
− eNP·NP553 eHS·HS218: 62

MOE + 4D-FP Decorator + Nanotube (10 Å) 0.903 0.851 + eAll·All946 SMR_VSA7: 292

− SMR_VSA7 eHS·HS864: 241
+ eHS·HS864 eAll·All946: 210
+ eAll·HS131 eAll·HS103: 203
+ eAll·HS28 eNP·HS267: 189
+ eHS·HS635

aAlso given are the most often used descriptors in the cross-over operation during GFA model construction. Bolded descriptors within these two
columns match top GFA descriptors to descriptors used in the best resultant QSAR models.
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Table 11. Best Overall QSAR Models in Terms of Optimizing the Model as a Function of Size (Number of Molecular
Descriptors) as Well as Trial Descriptor Seta

Endpoint Best QSAR Model Molecular Structure R2 Q2 QSAR Model

BSA Binding MOE + VolSurf + 4D-FP N = 5 Decorator + Nanotube (13 Å) 0.903 0.860 − 365.5

+ 200375. * eHS·HS294
+ 26135. * eAll·HS34
+ 8480. * eAll·All62

+ 284802. * eAll·HS450
+ 0.002 * vsurf_D4

CA Binding VolSurf + 4D-FP N = 5 Decorator + Nanotube (13 Å) 0.892 0.841 + 417.1

− 85088. * eHS·HS193
− 413465. * eNP·HS335
+ 4998. * eAll·All1170
− 938098. * eHS·HS808
− 50864. * eNP·NP553

MOE + 4D-FP N = 6 Decorator + Nanotube (10 Å) 0.903 0.851 − 189.6

+ 5307. * eAll·All946
− 0.01 * SMR_VSA7

+ 673251. * eHS·HS864
+ 23306. * eAll·HS131
+ 2023. * eAll·HS28

+ 130129. * eHS·HS635
HB Binding MOE + 4D-FP N = 7 Decorator-Only 0.964 0.909 + 5.15

+ 2.62 * Q_VSA_FPOL

− 0.01 * TPSA

− 0.59 * a_nCl

− 233.2 * ePP·PP11
− 13.04 * eNP·HS7
+ 284.5 * eAll·All32

− 272509. * eNP·ARO21
MOE + 4D-FP N = 5 Decorator + Nanotube (13 Å) 0.927 0.863 + 80.8

+ 288427. * eAll·All631
− 208725. * eNP·NP772
+ 2.53 * eHBA·ARO2

− 0.68 * a_nCl

− 670932. * eHS·HS1022
MOE + VolSurf + 4D-FP N = 5 Decorator + Nanotube (10 Å) 0.934 0.835 + 141.5

− 80868. * eNP·HS275
− 473905. * eNP·HS604
− 0.07 * vsurf_DW13

+ 8137. * eHS·HS112
− 1.00 * b_rotR

CT Binding MOE + VolSurf + 4D-FP N = 5 Decorator-Only 0.936 0.906 + 0.63

+ 0.03 * vsurf_DW12

+ 3.49 * GCUT_SLOGP_1

− 0.96 * a_nCl

+ 447.1 * eAll·All33
+ −75.73 * eAll·HS31

MOE + 4D-FP N = 5 Decorator + Nanotube (10 Å) 0.947 0.901 + 49.06

− 557946. * eAll·All857
− 0.84 * a_nCl

+ 484430. * eHS·HS822
− 0.002 * Q_VSA_NEG

+ 6962. * eHS·HS66
Cell Viability MOE + 4D-FP N = 7 Decorator-Only 0.922 0.863 + 8.77

+ 11.91 * eNP·ARO4
+ 20.10 * ePP·HS3
+ 68.85 * eNP·NP20

− 5.7 * BCUT_PEOE_3

+ 502.1 * eAll·All31
+ 156.3 * eAll·PP13
− 0.01 * ASA_H

MOE + 4D-FP N = 5 Decorator + Nanotube (13 Å) 0.866 0.735 + 6.04

− 256826. * eAll·All325
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of nanotubes contributes little to improve the resultant QSAR
models when compared to the decorator-only model. It would
not have been possible to determine the role of the nanotube on
each of the six endpoints without the availability of the 4D-FP
descriptors. The flexibility and capability to include or exclude
the 4D-FPs based on only the decorator or the nanotube−
decorator unit allows for the exploration of the nanotube
contribution to the endpoint of interest.
CA Binding QSAR Models as a Function of the

Descriptor Set Employed. The complete set of optimized
QSAR models, which are five-term models, for CA binding is
provided in Table 8. The model constructed from the combined
VolSurf and 4D-FP decorator-only trial descriptor pool is a very
good model. However, the stand-alone VolSurf trial descriptor
set yields a relatively poor model. But more globally, combining
the VolSurf descriptors with any other descriptor set and using
this composite descriptor set as a trial descriptor pool yields
models of considerable significance as measured by both R2 and
Q2 relative to the model derived solely from the VolSurf
descriptor set.
BSA Binding QSAR Models as a Function of the Trial

Descriptor Set. The optimum size for these models, based
upon the specified criteria given in the Methods section, is again
five-term models. The data in Table 9 indicates that deployment
of the MOE, VolSurf, or decorator-only 4D-FP descriptors, each
as individual trial descriptor sets, leads to QSAR models of
marginal significance as compared to those models derived from
all other possible trial descriptor sets. Moreover, the inclusion of
4D-FP descriptor sets based upon the explicit consideration of
the nanotube for any combination of descriptor sets yields better
models than any of the decorator-only models on the basis of R2

and Q2. Finally, the models derived from the 4D-FP descriptors
of the 13 Å nanotube are significantly better than those built from
the 10 Å nanotube 4D-FP descriptors.
Best QSAR Models and Corresponding GFA Descriptor

Cross-Over Usage for the Three 4D-FP Descriptor
Classes. Table 10 contains the descriptor terms of the best
QSAR models in terms of optimizing Q2 as a function of the
number of descriptor terms in the model for the BSA and CA
binding endpoints. In this case, no common size constraint
across the models was employed, but each of the three 4D-FP
descriptor sets was used as part of the trial descriptor pool. Each
model from each individual endpoint and trial descriptor set was

optimized in terms of maximizing Q2 as a function of model size.
The QSAR models for these two endpoints are meant to be
representative in terms of descriptor set behavior of all six
nanotoxicity endpoints. Also, listed in Table 10 are the top
descriptors used in GFA model construction. The number to the
right of the descriptor name in the “Top GFA Descriptor Usage”
column is the relative number of time the descriptor was used in
the GFA cross-over operation during GFA optimization. Only
those descriptors used at least 20% as much as the most often
used descriptor are reported. The bolded descriptors in the “Top
GFA Descriptor Usage” column match the descriptors found in
the best resultant QSARmodels that are listed in the “Descriptor
Influence” column. These descriptors are ranked on the basis of
importance from top to bottom, and the sign in front of the
descriptor indicates if the descriptor contributes to increasing
(+) or decreasing (−) the predicted (calculated) endpoint value.
Descriptor importance is measured by the absolute value of the
product of the descriptor regression coefficient times the range of
the descriptor in the training set.
It is shown from inspecting Table 10 that on average about half

to two-thirds of the most often used descriptors in GFA cross-
over optimization are found in the corresponding final optimized
QSAR model. The other descriptors of the best models are less
used descriptors that meaningfully complement the most used
descriptors in optimizing Q2. Moreover, the ranking of
descriptors in GFA usage tracks quite well with relative
descriptor importance for all the models reported in Table 10.
The 4D-FP descriptors are the most used descriptors in GFA
optimization and are also found most often in the QSAR models
of Table 10 having the highest R2 and Q2 values.
The general definitions and classifications of the descriptors in

Table 10, and later in Table 11, are summarized as follows:

(A) The 4D-FP descriptors permit a large range of conforma-
tional and spatial features of molecules to be used in trial
descriptor pools for QSAR analysis. In this approach,
e(X·YM) is the Mth eigenvalue representation of the pair
interaction distances between all atom/group types X and
Y averaged over the conformational ensemble of the
molecule.36 The larger the value of M, the greater the
distant apart on average is the corresponding X and Y
atom/group types in the molecule. Thus, for example, the
BSA decorator-only descriptor, ePP·PN6 refers to M = 6
for X = PP and Y = PN, which in turn corresponds to a pair

Table 11. continued

Endpoint Best QSAR Model Molecular Structure R2 Q2 QSAR Model

− 8987. * eHS·HS47
− 0.10 * dipoleX

+ 198263. * eNP·HS513
+ 238320. * eAll·HS403

VolSurf + 4D-FP N = 5 Decorator + Nanotube (10 Å) 0.857 0.759 + 27.36

− 313068. * eAll·NP727
+ 315524. * eAll·NP404
− 22.96 * vsurf_CW7

− 26310. * eAll·NP127
− 21708. * eAll·All83

NO Response MOE + VolSurf + 4D-FP N = 5 Decorator + Nanotube (10 Å) 0.900 0.837 − 197.5

+ 544342. * eHS·HS807
− 35.98 * ePP·HBD3

− 0.01 * E_ele

+ 257224. * eNP·HS394
− 0.13 * dipoleX

aThe descriptor set, model size, molecular structure, R2 and Q2, and QSAR model are given in the columns from left to right.
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of polar positive and polar negative atoms that are
separated by approximately 6 Å. The other atom/group
designations are as follows: All− all atoms of the molecule
with no type differentiation, NP − nonpolar, HBA −
hydrogen bond acceptor, HBD − hydrogen bond donor,
ARO − aromatic, and HS − any type of non-hydrogen
atom (hydrogen suppressed; also-known-as heavy atoms).
The 4D-FP descriptors are characterized as being small in
positive value for most drug-size molecules. The small
positive value of these descriptors is due to them being
normalized eigenvalues that enable the descriptors to be
compared to one another. Thus, large regression
coefficients can be expected and are found when these
descriptors appear in regression-based QSAR models.

(B) vsurf_XM are scalar values for particular types of
molecular interaction fields generated by a probe molecule
interacting with the molecule of interest. X denotes a
particular iso-surface at value M in 3D space around the
molecule of interest. The definitions of the set of
vsurf_XM are in the works of Cruciani and co-work-
ers.33−35

(C) The remaining descriptors of the QSAR models given in
Table 10 are MOE descriptors,32 and a description of the
descriptors are available on the Chemical Computing
Group Web site.37

Best Overall QSAR Models for All Six Nanotoxicity
Endpoint Measures. The best overall QSAR models in terms
of optimizing the model as a function of size as well as trial
descriptor set are given in Table 11 for each of the six endpoints.
In five cases, there are models from different descriptor sets and/
or of different sizes that are correspondingly different from one
another but that are practically indistinguishable in terms of R2

and Q2. Hence, there are multiple best model entries for these
endpoints.
All of the models in Table 11 have between 5 and 7 terms with

five-term models being the most prevalent. On average, these
best models have R2 values between 0.85 and 0.95 and Q2 values
from 0.75 to 0.85. Thus, on the premise, no overfitting has
occurred in building the models, as measured by maximizing Q2

as a function of size; it is reasonable to conclude that the models
in Table 11 are quite significant and stable.
The models in Table 11 are rich in 4D-FP descriptors with a

prevalence of 4D-FP involving “All” and “HS” atom types and
having large eigenvalue numbers. These observations suggest
that interactions involving decorator atoms distant from the
carbon nanotube atoms dominate the QSAR models. In other
words, conformations of the decorators extended away from the
surface of the nanotube appear important for most of the
endpoints. This behavior will be fully discussed in our next paper
dealing with probing possible mechanistic interpretations of the
QSAR models of Table 11.
The decorator-only models of Table 11 have more MOE and

VolSurf descriptors than the models involving explicit consid-
eration of the SWNT. The most prevalent descriptor from the
MOE and VolSurf trial descriptor sets is the number of chlorines

in the decorator, a_nCl, present for the CT and HB endpoints
and is predicted to decrease protein binding in both cases.
It is important to remember that the results presented in this

section and in Tables 10 and 11 are for the best models,
regardless of size (number of molecular descriptors). These
models also consider all combinations of the descriptor sets as
trial descriptor pools and are not at odds with the findings
presented in the previous sections where model size and/or
descriptor set(s) were used as constraints in building and
comparing the QSAR models.

Multi-Assay Endpoint. Zhou et al.1 constructed a single
global endpoint measure they call the multi-assay endpoint to
collectively rank the impact of all six nanotoxicity endpoints of
the 80 DNC. Because all six endpoints are defined on a common
0 to 100 scale, there is no reason to weigh the endpoints other
than equally. Thus, the researchers chose the sum of the six
endpoints as the global endpoint measure. While this is certainly
a sensible way of characterizing the “net” nanotoxicity of the
decorated carbon nanotube, the question does arise if the multi-
assay endpoint has any physicochemical and/or mechanistic
meaning? Without going into detail, the descriptor diversity
across the best QSAR models for each of the six endpoints in
Table 11 would suggest that the multi-assay composite endpoint
might “average out” distinct mechanistic contributions from the
individual endpoints. If this is the case, then the best QSAR
models for themulti-assay endpoint should be inferior to those of
the six individual endpoints. Table 12 compares R2 and Q2 of the
best five-term QSAR models for each of the six nanotoxicity
endpoints to those of the best multi-assay QSARmodel. It is clear
that the multi-assay QSAR model is inferior to each of the six
nanotoxicity endpoint models in terms of both R2 and Q2. Thus,
while the multi-assay model is useful to rank the “net”
nanotoxicity of the decorated carbon nanotubes, by doing so
mechanistic and physicochemical information are seemingly
somewhat lost.

Interpretation and Visualization of Some QSAR Model
Descriptors. The discussion presented here is not intended to
attempt to define sources of nanotoxicity using the QSAR
models. However, a visual example of the role of a member from
each of the classes of descriptors found among the best QSAR
models in this study does provide additional insight to the goal of
this research: to demonstrate the sensitivity of QSAR models to
the choice of the chosen trial descriptor pool.
An increase in the interactions between “All” atom pairs (All−

All) at large distances (greater than 30 Å) increases the predicted
HB binding value on the basis of 4D-FP QSAR descriptors
having large eigenvalues. This correlation is most prevalent for
interactions between nanotube carbons and non-hydrogen
atoms of the decorators. That is, the larger the decoration and/
or the greater its projection from the nanotube, the greater the
HB binding. Decoration 17 (NT-17) is considered a “small”
decoration but can protrude as far from the nanotube as
decoration 64 (NT-64). This is illustrated by the images in
Figure 2. While the decoration of NT-17 (HB binding 14) can
extend far from the nanotube in its extended conformation, the
decoration of NT-64 (HB binding 41) is able to create more

Table 12. Comparison of R2 and Q2 of the Best Five-Term QSAR Models for Each of the Six Nanotoxicity Endpoints to Those of
the Best Multi-Assay QSAR Model with Five Descriptors

BSA CA HB CT NO Cell Viability Multi-Assay

R2 0.903 0.892 0.932 0.947 0.900 0.857 0.800

Q2 0.860 0.841 0.879 0.901 0.837 0.759 0.573
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long-range atom−atom interactions principally involving deco-
rator heavy atoms with nanotube carbons. Thus NT-64 is
predicted to have a greater binding to HB than NT-17. The more
interactions between the nanotube and the decoration should
likely be taken as an indication of the decoration’s steric bulk
distributed over space.
The inclusion of short-range interactions between polar-

positive atoms (PP) and hydrogen bond donors (HBD) within
the decorator reduces the predicted NO response (the [− 35.98
* ePP·HBD3] term). Two examples of pairwise intradecorator
distance interactions of PP and HBD atom pairs are shown in
Figure 3. Decorator 42 (NT-42) with a NO response of 18
possesses a PP-HBD pair interaction within 3−4 Å, that is a 4D-
FP descriptor with a small eigenvalue number, and is shown in
part (A) of Figure 3. In contrast, part (B) of Figure 3 illustrates
NT-34 with a NO response of 64 and also has PP and HBD
atoms, but these atoms cannot come to within 5 Å of one
another. There are 10 decorators in the training set with atoms
designated as PP and HBD, but only eight of these decorators
have the ability for a short-range PP-HBD intradecorator
interaction to occur.

The inclusion of decorator-only descriptors to the trial
descriptor pool permits the characterization of specific molecular
features that are unique to the decorator. This decorator
specificity as noted earlier is achieved by explicitly removing the
nanotube as part of the descriptor calculation. From the models
in Table 11, two decorator-only MOE molecular descriptors,
SMR_VSA7 (Figure 4) and Q_VSA_FPOL (Figure 5), are
revealed as important in some QSAR models. These molecular
descriptors map physical properties to the idealized van der
Waals surface area (vdWSA) of a decorator. The idealized van
der Waals surface area in turn is calculated using the elemental
van der Waals surface area and ideal interatomic distances but
does not include the obscured vdWSA due to atomic overlap.32,37

The SMR_VSA7 descriptor measures the idealized vdWSA for
atoms that contribute greater than 0.56 to the computed molar
refractivity (MR).38 The CA binding QSAR model contains the
SMR_VSA7 descriptor, and as SMR_VSA7 of the decorator
increases, the predicted CA binding is predicted to be reduced.
For the training set of decorators, individual atoms with MR
values greater than 0.56 are terminal carbons and sulfur atoms
that are highlighted with green dots in Figure 4. Within the CA
binding data set, decorator 35 (NT-35), Part A of Figure 4, has a
binding value of 4 and a vdWSA of 129 Å2. In contrast, decorator
60 of NT-60, Part B of Figure 4, has a binding value of 29 and a
vdWSA of 29 Å2. Decorators that do not contain terminal carbon
or sulfur atoms bind better to CA on the basis of this descriptor.
Q_VSA_FPOL is the fraction of polar idealized vdWSA of the

decorator that positively impacts the HB binding value on the
basis of the (+ 2.62 *Q_VSA_FPOL) descriptor term of one of
the HB QSAR models in Table 11. Atoms were assigned
MMFF94x atomic partial charges32 and are classified as polar
when their absolute atomic partial charge is greater than 0.2. The
decorator of NT-48 (HB binding value of 31) has a polar vdWSA
fraction of 0.370, while the decorator of NT-57 (HB binding
value of 3) has a polar vdWSA fraction of 0.263. Increasing HB
binding by increasing the decorator’s fraction of polar vdWSA is
visually illustrated in Figure 5. The portion of polar vdWSA for
each of these decorators (Part A illustrates NT-48, and Part B
illustrates NT-57) is depicted in Figure 5 by the set of spheres
defined by the orange dots.

Figure 2. Long-range atom−atom interactions captured by 4D-FP
descriptors with large eigenvalues numbers in the HBQSARmodel. The
examples shown are for nanotube carbons interacting with decorator
heavy atoms. Part A is NT-64. Part B is NT-17.

Figure 3. Decorator PP-HBD specific interactions. Part A illustrates NT-42 and its 3−5 Å PP-HBD distance interaction that is between the SO2 sulfur
and the proton of the amide group as shown. Part B illustrates NT-34 has both PP and HBD atoms. However, in this case because the PP and HBD
atoms are bonded to each other and 4D-FPs only capture nonbonded interactions, they do not satisfy the requirement of being within 3−5 Å of one
another.
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■ DISCUSSION AND CONCLUSIONS

Themajor findings and conclusions summarized in Table 13 that
have been made from this study focus on the role and impact of
considering different classes and types of descriptors for the trial
descriptor sets used in building the corresponding QSAR
models.
Possible mechanistic interpretations from the QSAR models

for the six nanotoxicity endpoints investigated are only very
briefly discussed. A separate manuscript addresses mechanistic
aspects of the nanotoxicity endpoints, as suggested from the

corresponding QSAR models, for this training set of decorated
nanotubes.
The most important finding of this study is the demonstration

that different descriptor sets can yield optimized QSAR models
of varying quality and of diverse descriptor representation for
each individual endpoint. This finding also suggests a strategy to
maximize the extraction of SAR information from a given training
set by using different descriptor sets to develop an ensemble of
QSAR models that can be compared, contrasted, and integrated.
The overall conclusion of this study is that the outcome of a

QSAR study is critically dependent on the sets of descriptors

Figure 4. SMR_VSA7 descriptor example. The dotted green shapes surround those atoms that have SMR values of 0.56 or greater. Part A shows
decorator NT-35 with a SMR_VSA7 value of 129 Å2, while Part B shows NT-60 that has a SMR_VSA7 value of 29 Å2.

Figure 5. Polar van der Waals surface area depicted as orange dots for the decorators of NT-48 in Part A and NT-57 in Part B.

Table 13. Major Findings with Regard to the Six Nanotoxicity Endpoints

1. Finding: Both the form and quality of the best QSAR models for each of the protein binding endpoint are distinct from one another.

Conclusion: The binding process of the DNCwith each of the four endpoint proteins are notably different from one another, and the QSARmodels are capturing at least some
of the corresponding distinguishing features of each binding process.

2. Finding: Some endpoints are quite dependent upon the 4D-FP descriptors of the entire DNC. However, other endpoints yield equally good models using decorator-only
descriptors with and without decorator−nanotube 4D-FP descriptors.

Conclusion: Unless the nanotube is explicitly considered in building the QSARmodel for a given endpoint, it is not possible to determine its role and importance in expressing
and dissecting the SAR of the endpoint.

3. Finding: The “Cell Viability” and “NO Response” endpoints yield QSAR models of equivalent quality to those of the four protein specific binding endpoints.

Conclusion: The trial descriptor sets used in this study appears to provide about an equal amount of information to build models for the less pharmacologically well-defined
endpoints (“Cell Viability” and “NO Response”) as for the more well-defined endpoints.

4. Finding: All QSAR models for all six endpoints contain and are generally rich in 4D-FP descriptors.

Conclusion: All six endpoints are explicitly dependent upon the spatial properties of the decorated carbon nanotube complexes. These spatial properties may only include the
conformation of the decorator but in other cases also location and shape of the decorator relative to the nanotube.

5. Finding: Different descriptor sets yield optimized QSAR models of varying quality and diverse representations of possible mechanisms of action for each endpoint.

Conclusion: The outcome of a QSAR study is critically dependent upon the descriptor sets used to construct the QSAR models.
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used to do the QSAR modeling. Perhaps this conclusion will set
the tone for what we hope is a community-wide investigation of
this “degree of freedom” in QSAR analysis.
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