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Abstract

Molecular docking serves as an important tool in modeling protein–ligand interactions. However, 

it is still challenging to incorporate overall receptor flexibility, especially backbone flexibility, in 

docking due to the large conformational space that needs to be sampled. To overcome this 

problem, we developed a novel flexible docking approach, BP-Dock (Backbone Perturbation-

Dock) that can integrate both backbone and side chain conformational changes induced by ligand 

binding through a multi-scale approach. In the BP-Dock method, we mimic the nature of binding-

induced events as a first-order approximation by perturbing the residues along the protein chain 

with a small Brownian kick one at a time. The response fluctuation profile of the chain upon these 

perturbations is computed using the perturbation response scanning method. These response 

fluctuation profiles are then used to generate binding-induced multiple receptor conformations for 

ensemble docking. To evaluate the performance of BP-Dock, we applied our approach on a large 

and diverse data set using unbound structures as receptors. We also compared the BP-Dock results 

with bound and unbound docking, where overall receptor flexibility was not taken into account. 

Our results highlight the importance of modeling backbone flexibility in docking for recapitulating 

the experimental binding affinities, especially when an unbound structure is used. With BP-Dock, 

we can generate a wide range of binding site conformations realized in nature even in the absence 
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of a ligand that can help us to improve the accuracy of unbound docking. We expect that our fast 

and efficient flexible docking approach may further aid in our understanding of protein–ligand 

interactions as well as virtual screening of novel targets for rational drug design.

INTRODUCTION

Molecular docking is an effective tool for predicting the structures of protein–ligand 

complexes, studying the protein–ligand interactions, and evaluating the binding affinities of 

such complexes.1 Indeed, it has become the primary component in many drug discovery 

programs especially for virtual screening.2–6 Although the first docking was pioneered in the 

early 1980s,4 there are still tremendous research efforts going on to improve the docking 

algorithms. Particularly, recapitulating the experimentally known binding information is the 

major challenge in docking, especially when the bound structure is not available.

Most of the earlier docking methods keep the receptor protein as rigid and move the target 

ligand around the binding site of the protein while performing an energy minimization.5–7 

The major problems associated with rigid docking are (i) proteins are not rigid and undergo 

various types of conformational changes and (ii) simply relying on pure energy 

minimization is an insufficient approach to predict correct binding affinities.6 Thus, in recent 

years, docking algorithms have significantly evolved to incorporate full flexibility of the 

ligand and partial flexibility of the protein.1,5,7–9 However, direct modeling of the protein 

(i.e., receptor) flexibility still represents a challenging problem due to (i) the high 

dimensionality of conformational space that must be sampled, which significantly increases 

the computational time and also results in a higher rate of false-positive solutions, and (ii) 

complexity of the energy function.7

Some recent flexible docking approaches, such as induced fit docking (IFD), allow the 

docking simulation to search for a new conformational space to perform direct changes in 

the binding site conformation.9 However, various IFD methods model flexibility only for a 

limited number of receptor residues.10–23 Moreover, most of these methods are 

computationally intensive, making docking difficult for larger systems.9,23 There are also 

hinge-bent docking algorithms24–27 that allow hinge bending in docking where rigid 

subdomains are docked separately, and the consistent results are then assembled.1 Like IFD 

methods, they also have limited ability to handle docking of unbound molecules with 

significant backbone flexibility.28 In contrast to modeling protein flexibility explicitly, 

ensemble docking methods account for protein flexibility prior to the actual docking by 

making use of a limited number of discrete protein conformations such as Rosetta-

Backrub,29 MedusaDock,30 AutoDock,31 and IFREDA.32 Interestingly, few of the IFD 

docking methods also use a pre-existing ensemble of conformations such as FlexX-

Ensemble,14 FLIPDock,16,17 FITTED,20–22 and DOCK 4.0.11 The docking time for these 

approaches scales linearly with the number of structures in the ensemble.33 The integration 
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of multiple receptor conformation (MRC) sampling into the docking algorithm might 

improve computational speed and help us simplify data management.7 The sources of 

ensemble generation vary from experimentally determined X-ray or NMR protein 

structures34–38 to computationally derived protein conformations from molecular dynamics 

(MD) simulations,6,39 homology models,6 or normal mode analysis.6,40–43 The success of 

ensemble docking approaches depends on two features of the multiple receptor 

conformations: (i) a wide range of binding site conformations realized in nature should be 

sampled in the ensemble of receptors and (ii) the artifact conformations that predict incorrect 

poses should be excluded. Therefore, it becomes important to mimic nature and sample 

binding-induced conformations using effective and intelligent sampling strategies while 

generating ensembles from any of the above-mentioned approaches.6,7

In order to overcome the challenges in generating an ensemble of correct bound-like 

conformations in a computationally efficient way, we developed a flexible docking scheme 

called BP-Dock (Backbone Perturbation-Dock) based on perturbation response scanning 

(PRS).41–44 PRS couples the elastic network model45 (ENM) with linear response theory 

(LRT).46 With PRS, we simulate the natural course of a binding event by computing 

fluctuation responses of all the residues in a protein by exerting random external unit force 

on a single α-carbon atom of the chain, especially those in the binding pocket.41–44 BP-

Dock computes a ligand-induced mean-square fluctuation profile for the backbone of a 

protein by using PRS, which is then followed by all atom energy minimization of the 

perturbed protein conformation. This two-step multi-scale approach enables us to integrate 

both backbone and side chain conformational changes of a receptor into docking, and it is 

computationally efficient to model large-scale backbone movements. Indeed, we have shown 

that the residue fluctuation responses obtained upon perturbation of a single residue can 

capture conformational change between unbound and bound conformations.41 Moreover, the 

ensemble of multiple receptor conformations generated through this approach was 

successful in capturing the correct binding affinities for the bound (holo) structure of PICK1 

(protein interacting with C kinase) protein and its mutants.42

“Bound” docking that reconstructs a complex using the bound structure of the receptor and 

the ligand is a fairly simple problem in docking. The more challenging one is indeed 

“unbound” docking where an unbound (apo) form of the structure is used along with the 

ligand to obtain a complex form. As a matter of fact, the accuracy of the docking methods 

decreases when the unbound receptor is used.2 The unbound structure can be an 

experimental structure in the absence of a ligand or a homology model. In the present work, 

we apply our BP-Dock approach on unbound structures. The two main goals are (i) to check 

whether the unbound docking with BP-Dock can recapitulate the bound docking results and 

(ii) to test if the method accurately captures the experimental binding affinities when an 

unbound receptor structure is used.

We test our flexible docking approach for a data set of protein–peptide as well as protein–

small ligand complexes. The data set used for this study comprises five diverse sets of 

protein–ligand complexes of HIV-1 protease, carbonic anhydrase II, alcohol dehydrogenase, 

alpha-thrombin, and cytochrome C peroxidase, where we compared the experimental 

binding affinities of each individual set with the binding energy scores obtained from 
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unbound docking by BP-Dock. In addition to these sets, we also analyze another 20 

individual protein complexes with available bound and unbound experimental structures. 

Overall, the unbound/bound pairs in our data set cover a wide range of root-mean-square 

distance (RMSD) between bound and unbound conformations ranging from 0.103 to 1.65 Å 

(Table S1, Supporting Information), which enables us to rigorously test the performance of 

BP-Dock on unbound structures having a diverse set of RMSDs from the bound structures. 

Furthermore, 13 proteins ranging from 59 to 537 residue long chains that are in complex 

with various types of ligands, including peptides with different lengths (from 2 to 10 mers), 

are chosen to provide an extensive pool of flexible degrees of freedom. We also perform 

“rigid docking” that does not incorporate the flexibility of the backbone and side chains 

outside the binding pocket, using both bound and unbound experimental structures. This 

enables us to compare the performance of unbound docking with BP-Dock with respect to 

rigid bound and unbound docking. To further determine the accuracy and sensitivity of our 

docking method, we also perform cross-docking tests for HIV and postsynaptic 

density-95/Dlg/ZO-1 (PDZ) domain proteins. Overall, our analysis yields that BP-Dock is a 

computationally efficient approach to incorporate full receptor flexibility to generate MRCs, 

as also observed in our earlier work.42,43 Ensemble docking using MRC generated from 

unbound conformation can capture the bound docking results. Moreover, it can improve the 

binding affinity prediction in several cases. The success of the approach rests on generating 

a wide range of binding site conformations realized in nature.

METHODS

Benchmark

We analyzed five different diverse sets of protein–ligand complexes (HIV-1 protease (N = 

20), carbonic anhydrase II (N = 9), alcohol dehydrogenase (N = 8), alpha-thrombin (N = 13), 

and cytochrome C peroxidase (N = 18), where N is the number of complexes for each 

protein set used in the study) and an individual set of another 20 proteins with available 

bound (holo) and unbound (apo) structures that are retrieved from the Protein Data Bank 

(PDB).47 The names of the proteins, PDB codes of their corresponding bound and unbound 

structures, chain length, root mean-square distance between bound and unbound structures, 

and names of binding ligand/peptide and sequences of peptides are displayed in Table S1 of 

the Supporting Information. The experimental binding affinities for the five test sets (total 68 

test cases) are obtained from LPDB48 and Astex49 databases. The performance of rigid 

docking versus BP-Dock is also tested in cross-docking studies on the HIV-1 protease set. 

The HIV-1 protease benchmark set has 20 complexes, and cross-docking tests are performed 

on 20 × 20 = 400 cases. Furthermore, we also analyze the homology model of the channel-

interacting PDZ protein (CIPP). Overall, we have a large and diverse data set of 494 docking 

cases (including 400 cross-docking cases) to evaluate the performance of BP-Dock.

Ensemble Docking with BP-Dock

To generate binding-induced conformations, we use the perturbation response scanning 

technique that combines the elastic network model and linear response theory.41,43 In the 

elastic network model, a protein structure is viewed as a three-dimensional elastic network, 

and all residue pairs are subjected to a uniform, single-parameter, harmonic potential if they 
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are located within an interaction range or cutoff distance, rc.45,50,51 The overall potential is 

given by the sum of all harmonic potentials among interacting nodes such that

(1)

where γ is the interaction (spring) constant, Rij is the unit vector connecting residue pairs i 

and j, Aij represents the elements of the adjacency matrix, and  is the average distance 

between residues i and j.45 In this study, however, we weight the interaction strength 

between all residue pairs by using the inverse of the square distance of their separation rather 

than using arbitrary cutoff distances.50,52 The expansion of the potential near the equilibrium 

state can be written in compact notation as

(2)

Here, ΔR is the 3N-dimensional vector of fluctuations of all residues, and H is the Hessian, a 

3N × 3N matrix composed of second derivatives of potential with respect to the components 

of position vectors of length N. After obtaining H, a random unit force (F) is applied 

sequentially to the α-carbon atom of each residue one at a time, and then we record the 

resulting relative displacement of all residues using LRT. The overall response of residue 

network is calculated through

(3)

where the ΔF vector contains components of externally applied force vectors on each single 

residue, and H−1 is inverse of the Hessian matrix. The final perturbed coordinates, Rper, for 

each residue are calculated using

(4)

where R0 is a vector containing the initial coordinates of the residues before perturbation, 

and α is a scaling factor.43,53 In order to present a significant conformational change on the 

structure after perturbing, we multiply the response fluctuation vector with a scaling factor 

as PRS is based on LRT. The scaling factor is chosen such that it yields an ensemble of 

perturbed structures that have a RMSD deviation ranging from 0.25 to 1 Å from the original 

unbound structure.

Perturbed structures are then clustered using the k-means clustering algorithm54 to discard 

similar conformations generated from perturbations of different residues in the protein. This 

step is followed by an all-atom minimization of clustered structures using the AMBER 99SB 

force field,55 along with a GB solvation model,56 to account for rotameric changes of side 

chains and also to relieve any strain in the structure. All these steps lead to a set of 

conformations that constitute multiple binding-induced receptor conformations. Finally, an 

ensemble docking for all these individual conformations of MRC is performed using 

RosettaLigand.10,23
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Docking with RosettaLigand

The docking simulation for each structure in the ensemble is performed using the 

RosettaLigand10,23 protocol in the Rosetta program. RosettaLigand incorporates ligand 

flexibility by changing the torsional angles and backbone of the ligand, while optimizing the 

side chain of the binding pocket. In this study, we perturb the ligand position and orientation 

randomly with translation of mean 0.1 Å and rotations of mean 3°, respectively. For each 

case, coordinates of the ligand are taken from the crystallographic complex of the bound 

protein. We compute 10,000 trajectories to generate a comprehensive ensemble of 

conformations of receptor–ligand complexes for each protein, which also produce a well-

converged distinct binding funnel in energy score/RMSD plots. Final docked conformations 

are selected based on the lowest free energy pose in the protein-binding site.10,23 The lowest 

free energy pose has the lowest Rosetta energy score among all other docked poses. The 

scoring function of Rosetta is a weighted sum of 12 different energy terms including van der 

Waals, solvation, hydrogen bonding, torsional, Coulombic, and harmonic restraints.10

Assessing the Scoring Accuracy with X-Score

After selecting the lowest Rosetta energy score pose, we reassess the binding energy score of 

the complex using X-Score.57 X-Score is an empirical scoring function developed to re-rank 

the protein–ligand complex obtained from various docking approaches and gives a more 

accurate estimation of the binding free energies. X-Score was also shown to have the best 

correlation with the experimental binding affinities as compared to other available scoring 

functions in a study by Wang et al.58 Likewise, our binding affinities obtained by rescoring 

the lowest energy pose with X-Score provide a better correlation with experimental 

affinities.

Modeling Unbound Proteins and Non-Native Peptides

The homology model of CIPP is constructed using MODELER59 with a minimal sequence 

similarity of 50% to the target. Before introducing flexibility in the homologue structure of 

CIPP, it is subjected to an energy minimization of 50 steepest descent iterations followed by 

1000 conjugate gradient iterations using the AMBER 99SB force field,55 along with a GB 

solvation model.56 We also model mutated unbound proteins for the HIV-1 protease and 

cytochrome C peroxidase test sets. The starting unbound structures are obtained from PDB47 

(2PC0 for HIV-1 protease and 1CCP for cytochrome C peroxidase). The mutations 

corresponding to the desired bound protein are introduced in the unbound structure using 

PyMOL,60 which is followed by an all atom energy minimization on the modeled unbound 

protein following the same procedure performed on CIPP. This all atom energy 

minimization helps to accommodate the necessary side-chain rotamer changes around the 

residue subjected to the point mutation. For a non-native peptide docking to PDZ proteins, 

we use the original crystal structure of the native peptide and mutate each position in the 

native peptide to the corresponding amino acid of the desired peptide and perform an all-

atom energy minimization on the modeled peptide–protein complex using the AMBER 

99SB force field,55 along with a GB solvation model.56
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Ensemble Docking with Backrub

We use the backbone sampling method61 from the RosettaBackrub design server29 to 

generate multiple receptor conformations for ensemble docking. The server utilizes the 

“Backrub” method for flexible protein backbone modeling that was first described by Davis 

et al.62 Briefly, this method randomly makes one of three types of moves: (i) a rotamer 

change (50% of the time), (ii) a local backbone conformational change (Backrub move) 

consisting of a rigid body rotation of a random peptide segment about the axis connecting 

the endpoint C-α atoms (25% of the time), or (iii) a composite move with a Backrub change 

and one or two rotamer changes (25% of the time). After each move, the positions of the C-β 

and H-α atoms are modified to minimize bond angle strain.61 We dock these ensembles of 

proteins obtained from Backrub to their respective peptides using RosettaLigand.10

RESULTS AND DISCUSSION

Previously, we have shown that the BP-Dock approach gives better correlation with 

experimental binding affinities compared to conventional rigid docking for the bound 

structure of PICK1 protein and its mutants.42 In this study, we extend our approach to the 

unbound structure in order to test if we can predict the binding affinities of several peptide/

ligands when they are docked into an unbound structure.

Docking Results for Five Different Test Sets and Their Correlation with Experimental 
Binding Affinities

We first compare the performance of our flexible docking with rigid docking for five 

different sets of protein–ligand complexes: HIV-1 protease (PR), carbonic anhydrase II (CA 

II), alcohol dehydrogenase (AD), alpha-thrombin (AT), and cytochrome C peroxidase 

(CCP). For each set, we have different bound structures (i.e., with different ligands) but only 

one unbound structure. For HIV-1 protease, we perform docking using an apo wide open 

conformation to test the accuracy of the BP-Dock approach in predicting the binding 

specificity observed in a closed holo structure using an open unbound form. Thus, we aim to 

determine whether our BP-Dock approach can capture the different bound conformations 

with correct binding energies through generating an ensemble of conformations from a 

single unbound structure in a quick and efficient manner. Rigid docking is also performed on 

crystal structures for both bound and unbound structures using RosettaLigand.10 For PR and 

CCP, we use the modeled unbound structure due to point mutations in bound structures (see 

Methods). The lowest RosettaLigand energy scores and X-Scores for (i) rigid bound and 

unbound docking and (ii) flexible docking for unbound structures using BP-Dock for all five 

different data sets are reported in Table I. The available experimental binding affinities for 

all the test cases are obtained from LPDB48 and Astex49 databases and are reported in Table 

I. The correlation plots of X-Score energies for (i) rigid bound, (ii) rigid unbound, and (iii) 

BP-Dock unbound versus the experimental binding free energies for the five test sets are 

plotted in Figure 1. The X-Score energies of BP-Dock unbound docking have a higher 

correlation with experimental binding energies compared to rigid unbound docking for all 

the five test sets. Interestingly, both the BP-Dock unbound X-Score and RosettaLigand 

energy scores for HIV-1 protease show a much better correlation with experimental binding 

energies than rigid unbound docking. Indeed, unbound docking by BP-Dock is even better 
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than rigid bound docking for PR and CA II. Moreover, when we compare the RosettaLigand 

energy scores, we observe that BP-Dock provides better correlation with experimental 

binding energies than rigid unbound docking for all five test sets (Figure S1, Supporting 

Information). Strikingly, rigid unbound docking scores are negatively correlated with the 

experimental binding energies for CA II, AD, and CCP data sets when the complexes are not 

re-evaluated by X-Score. On the other hand, BP-Dock performs better than rigid unbound 

docking and is also better compared to rigid bound docking for all the test sets except AD. 

The overall RMSDs of the ligand from the lowest energy docked poses for each docking 

case shows a similar trend, indicating that the backbone flexibility introduced by BP-Dock 

also improves the orientation of the ligand compared to rigid unbound docking (Table S2, 

Supporting Information).

The overall correlation coefficients (R) of X-Score energies with binding experimental 

energies for all 68 test cases clearly show the success of BP-Dock through incorporation of 

backbone flexibility (R = 0.65). It is significantly higher than rigid unbound docking (R = 

0.56) and also higher than rigid bound docking (R = 0.60). Moreover, when we consider 

proteins having relatively larger conformational changes upon binding (bound–unbound 

RMSD > 1 Å), we still observe the same trend, in which the rigid unbound docking cannot 

capture correct binding conformations for such cases (R = 0.44), whereas BP-Dock provides 

a better correlation (R = 0.56) in estimating native-like binding affinities, and is even slightly 

better than rigid bound docking (R = 0.49). This is due to the fact that rigid docking can only 

optimize side chains lining the binding pocket and cannot sample large backbone 

movements (or conformational changes) associated with binding unlike BP-Dock. 

Therefore, incorporating backbone flexibility in an unbound structure becomes even more 

crucial in proteins with larger RMSD difference. With BP-Dock, we can significantly 

improve the binding affinity predictions for proteins with larger conformational changes by 

integrating both backbone and side-chain flexibility through our multi-scale approach.

Cross-Docking Results for the HIV-1 Protease Set

In cross-docking studies, a ligand A (say, from protein A) is docked to a different receptor 

(say, protein B, bound to a different ligand) to evaluate the performance of a docking method 

in recapitulating the protein conformational changes associated with ligand binding. 

Therefore, in this study, we performed cross-docking using the flexible BP-Dock as well as 

the rigid docking approach on the protein B–ligand A complex for the 20 bound structures 

from the HIV-1 protease set leading to 20 × 20 = 400 test cases. The lowest RosettaLigand 

energy docked pose from the protein B–ligand A cross-docking experiment is then 

compared with the experimental bound structure of protein A–ligand A to check the 

accuracy of prediction of conformational changes, following the analysis of Osterberg et 

al.63 and Shin and Seok.64 We investigate the flexibility of two ARG8s and two ILE50s from 

the two chains of HIV-1 protease. ARG8 and ILE50 are purposefully selected because they 

have the largest steric clashes caused by swapping ligands.65 Thus, we compare the 

prediction accuracy of the side-chain χ1 angle of the cross-docked complex (i.e., ligand A 

from protein A, in complex with receptor from protein B) to χ1 angle of the native complex 

(i.e., experimental structure of protein A bound to ligand A) for flexible residues ARG8 and 

ILE50 from the two chains. The predicted χ1 angle is considered accurate if its value is 
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within a range (angle threshold (deg)) of the native χ1 angle. The plots of prediction 

accuracy of the χ1 angle as a function of the χ1 angle threshold (deg) for the flexible BP-

Dock and rigid cross-docking results are shown in Figure 2. The plots for the two flexible 

residues (ARG8 of the two chains) are shown in Figure 2A and that for four flexible residues 

(two ARG8s and two ILE50s) are shown in Figure 2B. Clearly, for both the cases, the BP-

Dock approach shows better prediction accuracies for χ1 angle compared to the rigid cross-

docking, which confirms that even in the case of lower backbone deviation, incorporating 

backbone flexibility improves proper side-chain orientations during docking.

Analysis of Unbound Docking for 20 Individual Bound–Unbound Pairs

Table II shows the RosettaLigand energy scores and X-Scores of 20 individual proteins for 

(i) rigid bound and unbound docking with RosettaLigand and (ii) flexible docking for 

unbound structure using BP-Dock. The RMSD (Å) values between the ligand positions of 

the lowest energy docked poses from rigid bound, rigid unbound, and flexible BP-Dock 

docking of these 20 individual proteins and that of the bound crystal structure are also shown 

in Table S2 of the Supporting Information. In most of the cases, rigid docking with a bound 

structure shows a better affinity prediction as compared to rigid docking of an unbound 

structure. This is unsurprising because the prediction accuracy of docking calculations 

decreases with the quality of receptor from bound to unbound protein to modeled 

structures.2 However, the flexible BP-Dock scheme does a similar or better job in indicating 

bound-like binding scores for most of the unbound proteins as compared to rigid unbound 

docking. Overall, these results support the fact that improvement obtained with our flexible 

docking approach relies on correctly predicting binding relevant motions through 

perturbation of unbound structures. Moreover, in order to have a better understanding of the 

advantages and limitations of BP-Dock, we investigate various test cases separately, 

including the receptors with larger conformational changes upon binding, receptors with 

larger chains, and those in complex with large peptides.

Unbound Docking for Proteins Having Critical Conformational Changes upon Binding

For proteins such as aldose reductase, the bound and unbound conformations do not 

necessarily have a large RMSD difference; however, loops and regions near the binding 

pocket may differ significantly. These loops are often related to diverse biological functions 

that can change their conformation upon ligand binding. For example, the bound (PDB id: 

2FZB) and unbound (PDB id: 2ACR) structures of aldose reductase (AR) are quite similar to 

each other with a RMSD of 0.36 Å; yet there is a significant difference in the loop region 

near the binding pocket (residues 121–130) (Figure 3A). The all-atom RMSD of the loop 

between the bound and unbound conformation is ~0.6 Å. Upon applying perturbations (i.e., 

an external Brownian kick) to the unbound structure of AR and computing response 

fluctuation profiles of the whole chain, we generate an ensemble of conformations that 

mimics the complete ligand-binding event. Interestingly, one conformation in the ensemble 

is very similar to the native bound-like conformation as shown in green in Figure 3A, where 

the loop perfectly aligns with the bound conformation (shown in red). This indicates the 

capability of our flexible approach in correctly predicting the binding-induced 

conformational changes when an unbound form of protein is used, even without the presence 

of any ligand. Moreover, it also shows that BP-Dock is distinctly different from other 
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multiple receptor docking approaches based on normal mode analysis. Indeed, a recent study 

has shown that selecting the most relevant mode/modes related to binding is rather difficult 

in those approaches and makes the method more restricted because some higher frequency 

modes can be responsible for binding-induced conformational changes.39 However, with the 

BP-Dock approach, the most relevant modes are automatically induced by perturbing the 

individual residues of the receptor; therefore, we do not need to search for correct modes 

that are most related to binding.

The flexible BP-Dock results for docking of four tolrestat molecules (TOL4) to unbound AR 

shows a binding energy prediction of −8.96 kcal/mol (RosettaLigand score, −876.52 kcal/

mol), even more favorable than the rigid docking prediction of the bound structure (X-Score, 

−8.73 kcal/mol; RosettaLigand score, −782.2 kcal/mol). On the other hand, the rigid 

docking of unbound AR leads to a less favorable binding energy score for TOL4 (X-Score, 

−8.04 kcal/mol; RosettaLigand score, −721.69 kcal/mol). When we compare the docked 

poses of unbound conformation from rigid and flexible docking, we observe that the ligand 

forms only three hydrogen bonds in the case of rigid unbound docking (Figure 3B), whereas 

TOL4 forms four hydrogen bonds with Tyr 48, Trp111, Leu301, and Cys303 in the case of 

BP-Dock docking (Figure 3C). The loss of a hydrogen bond could possibly explain a less 

favorable binding energy score for rigid unbound docking, as these residues have been 

shown critical for binding.66,67 Previously, Sotriffer et al.66 have shown that the specificity 

binding region of AR, constituted by the residues Leu300, Trp111, and Thr113, can only be 

accessible to ligand by the correct orientation of Leu300.66 Interestingly, in the analysis of 

the BP-Dock pose, we observe that the side chain of Leu300 and Trp111 get shifted to open 

up a wider space in the binding pocket compared to that of the unbound complex, thus 

avoiding any clashes with TOL4. This emphasizes that by introducing perturbations and 

computing the response, our approach may have led to this specific orientation change, 

which in return made the binding site of aldose reductase much more feasible and 

approachable to tolrestat, especially near the specificity region.

We also analyze large proteins having different conformational changes upon binding to 

several different ligands such as carboxypeptidase (CPA) (307 residues) and trypanosomal 

triosephosphate isomerase (TIM) (250 residues in each chain A and B). For both of these 

test cases, the previous docking studies have failed in predicting the correct binding 

poses.10,23 From our docking results, we observe that the RosettaLigand energy scores for 

rigid bound docking for CPA indicate higher affinity for L-phenyl lactate (or HFA) than for 

the FVF ligand, in contradiction to experimental results.68,69 On the other hand, 

RosettaLigand energy scores of flexible BP-Dock for the unbound structure of CPA are in 

agreement with the experimental observations (Table II). However, rescoring the lowest 

binding energy poses with X-Score helps in correctly estimating the binding energy 

preferences for all three types of dockings (rigid bound, rigid unbound, and BP-Dock 

unbound). Nonetheless, for the SH3 domain of GRB2 and cyclophilin A, we also observe 

that the RosettaLigand energy scores for rigid docking of the bound structures are less 

favorable than those for the rigid unbound structures, but rescoring helps again in correcting 

this anomaly. Furthermore, for the TIM protein, both the RosettaLigand energy scores as 

well as X-Scores for rigid bound docking fail in correctly predicting the binding affinities 
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for two ligands, 2-phosphoglycerate (2PG) and glycerol-3-phosphate (G3P), whereas BP-

Dock succeeds in correctly predicting these differences.70

Analysis of PDZ Domains

We also test whether we can predict the binding selectivities of several PDZ domain proteins 

(PDZs), where the backbone dynamics are crucial in binding affinity predictions.6,42,71,72 

PDZ domains have been categorized into three main classes according to the specificity of 

the interaction depending on its C-terminal four amino acids of their binding peptides. Class 

I type PDZs bind to a C-terminal motif with the sequence [X-Ser/Thr-X-U-COOH]. Class II 

type PDZs prefer the sequence [X-U-X-U-COOH]. Class III type binds to the sequence [X-

Glu/Asp-X-U-COOH], where X is any amino acid and U is a hydrophobic amino acid. 

Although the PDZ binding site is well defined and PDZ motifs are classified based on their 

sequence type, there is still little information available on the binding affinity and 

stoichiometry of PDZ binding motifs and blocking peptides.73 We focus on the most 

common Class I and Class II types for this study.

Among our test PDZ cases, PSD-95 binds to a Class I peptide, whereas GRIP binds to a 

Class II.6 The docking results for PDZ domain proteins (Table II) show that the rigid 

unbound docking fails to predict bound-like affinities for both PSD-95 and GRIP. However, 

BP-Dock unbound docking shows similar or more favorable (for PSD-95) binding energy 

scores than rigid bound docking. Furthermore, BP-Dock results on the PDZ2 domain of 

syntenin indicate that it has dual specificity for Class I (IL5R-α) and Class II (syndecan) 

peptides with a slightly higher affinity toward the Class II peptide. This result is also 

consistent with experimental observations indicating that it binds slightly better to syndecan 

(Kd ~ 2.9 μM) than to IL5R-α (Kd ~ 43.8 μM).74 Moreover, we are able to predict that the 

Merlin (−FFEEL) peptide has the least significant affinity toward the PDZ2 domain of 

syntenin as is also shown experimentally (Kd ~ 1 mM).74

Furthermore, we also look at the binding selectivities of the homologue structure CIPP. One 

of the most difficult tasks for any docking protocol is to correctly predict the binding 

affinities for homologue structures. Therefore, in this study, we apply our flexible docking 

approach to a homology model for CIPP of PDZ, whose binding selectivity has already been 

verified experimentally.75 Table III shows the lowest RosettaLigand energy scores and X-

Scores of the modeled CIPP with Class I (CRIPT and IL5R-α) and Class II (syndecan and 

Erbin) peptides for rigid and our flexible docking method. The RMSD (Å) values of the 

lowest energy docked poses from rigid and flexible BP-Dock docking of homologue CIPP 

are given in Table S3 of the Supporting Information. Figure 4A shows the RosettaLigand 

energy score vs the RMSD plot for the BP-Dock complex of CIPP with Class I (IL5R-α) 

and Class II (syndecan) peptides. The formation of a well-converged distinct binding funnel 

in energy score/RMSD plots indicate successful docking.10 CIPP prefers to bind syndecan 

with a higher affinity of −6.92 kcal/mol as compared to −6.33 kcal/mol for IL5R-α, which is 

in agreement with experimental results.75 Further analysis of CIPP complex with both Class 

I and Class II peptides shows that CIPP residues form hydrogen bonds with both IL5R-α 

(Class I) and syndecan (Class II) as shown in Figure 4B. The syndecan peptide forms five 

hydrogen bonds via the interaction of three crucial residues Leu 13, Ile 15, and Lys 68. 
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However, the IL5R-α peptide forms only three hydrogen bonds with Leu 13 and Lys 68. The 

lesser number of hydrogen bonds formed by the IL5R-α peptide could possibly explain its 

lower binding affinity with CIPP.

Flexible Docking Comparison for Ensembles Generated with BP-Dock and RosettaBackrub

Another commonly used method to incorporate backbone movements in Rosetta is the 

“Backrub” method.61,62 This method randomly perturbs a segment of 2–12 residues through 

a rigid body rotation by an angle of up to 11–40° to model the conformational changes in a 

protein.61,62 For comparison, we also generate ensembles of PDZs using the RosettaBackrub 

server,29 and we use these ensembles for docking with RosettaLigand. Table IV shows the 

docking results of six PDZ–ligand pairs for the ensembles generated by both Backrub and 

BP-Dock, and the RMSDs of the ligand from the lowest energy docked poses are reported in 

Table S4 of the Supporting Information. We observe that by using BP-Dock, we can 

discriminate the higher binding preferences of syntenin toward syndecan (i.e., the binding 

energies evaluated from X-Score for the lowest RosettaLigand score complexes are −7.85 

kcal/mol and −7.16 kcal/mol for syndecan and IL5R-α peptides, respectively). However, 

Backrub ensemble docking fails in estimating the binding preferences of CIPP for IL5R-α 

and syndecan peptides (i.e., the binding energies of the lowest score docked poses are −6.99 

kcal/mol for syndecan peptide and −7.18 kcal/mol for IL5R-α peptide).

For a more rigorous comparison, we also perform cross-docking on PSD-95 and GRIP. We 

select liprin, a Class II peptide for docking to PSD-95 and CRIPT, a Class I peptide for 

docking to GRIP. As shown in Table IV, the binding energy of a BP-Dock pose obtained 

with X-Score indicates a higher affinity for the Class I peptide compared to the Class II 

peptide. Similarly, GRIP prefers a Class II peptide in comparison to a Class I peptide. 

Overall, BP-Dock ensemble docking is successful in predicting the binding affinities of 

PSD-95 and GRIP. Backrub ensemble docking also correctly predicts the preference of 

GRIP toward a Class II peptide. However, in the case of PSD-95, the binding energy scores 

indicate a higher affinity for a Class II peptide (−7.31 kcal/mol) over a Class I peptide 

(−6.66 kcal/mol), contradictory to the results from previous studies.6 Figure 5A and B shows 

the self-docking and cross-docking energy score/RMSD plots of PSD-95 when docked using 

the ensembles of (i) BP-Dock and (ii) Backrub. In order to further investigate the difference 

in binding energy scores for the two flexible ensemble dockings, we analyze the hydrogen 

bond pattern of the complexes obtained from these two separate ensemble docking. The 

lowest energy complex obtained from BP-Dock shows that P-0 and P-2 residues of the Class 

I peptide form five hydrogen bonds with Leu18, Phe20, Ile22, and Ser34 of PSD-95 (Figure 

5C). On the other hand, the docked pose with the lowest energy score obtained from 

Backrub indicates that the peptide forms only three hydrogen bonds with Leu18, Phe20, and 

Glu68 (Figure 5D). Moreover, analysis of cross-docking with the Backrub ensemble shows 

that the number of hydrogen bonds has been increased to five in the case of the Class II 

peptide docked pose. This may be attributed to an increase in the binding affinity of PSD-95 

for the Class II peptide when the Backrub ensemble is used for docking. Overall, this 

comparison suggests that in unbound ensemble docking, accuracy in predicting binding 

affinity increases when the ensemble consists of correct binding-induced conformations. 

Indeed, Backrub and BP-Dock can be merged to increase overall accuracy.
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CONCLUSION

Incorporation of backbone flexibility helps in sampling the bound-like conformation, which 

is crucial for accurate complex geometry and binding affinity predictions especially for 

docking with unbound structures. This is because small conformational changes in the 

backbone upon protein binding can lead to significant changes in the side-chain orientations. 

Our analysis of unbound docking in comparison with bound docking suggests that 

conformations generated through perturbations should simulate similar changes that occur 

when a ligand interacts with the receptor during the binding event in order to increase the 

accuracy of docking. The most intriguing aspect of the BP-Dock approach is that we are able 

to mimic the induced effects of peptide–ligand binding using the unbound structure, even in 

the absence of any ligand or peptide. Thus, the BP-Dock approach can be utilized to increase 

the accuracy of binding scores when unbound structures or unbound models are used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation plots of binding energy scores evaluated from X-Score vs experimental binding 

energies for HIV-1 protease (PR), carbonic anhydrase II (CA II), alcohol dehydrogenase 

(AD), alpha-thrombin (AT), and cytochrome C peroxidase (CCP).
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Figure 2. 
Plot of average accuracy of χ1 angle prediction as a function of χ1 angle threshold (deg) for 

BP-Dock cross-docking and rigid cross-docking on HIV-1 protease bound structures (A) for 

two flexible residues (two ARG8s) and (B) for four flexible residues (two ARG8s and two 

ILE50s).
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Figure 3. 
(A) Bound (2FZB) and unbound (2ACR) ribbon diagrams of aldose reductase are shown in 

red and blue, respectively. The RMSD for the loop region (encircled, Phe121–Val130) 

between the bound and unbound structures is ~0.6 Å. One of the perturbed conformations 

using the BP-Dock scheme (shown in green) is similar to the bound structure, especially 

around the specified loop. Hydrogen bond interactions are shown of the best docked poses 

from unbound docking of four tolrestat molecules with (B) rigid docking and (C) with 

flexible BP-Dock. The specified loop region is colored red. The hydrogen bond interactions 

are studied with Chimera,76 and the images are prepared using PyMOL.60
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Figure 4. 
(A) RosettaLigand energy score vs RMSD of the docked complex of CIPP with Class I and 

Class II peptides of syntenin. (B) Hydrogen bond interactions of CIPP with Class I and 

Class II peptides are shown as analyzed using the best docked pose obtained from flexible 

BP-Dock docking. Ribbon diagrams are prepared using PyMOL.60
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Figure 5. 
RosettaLigand energy score vs RMSD of PSD-95 with CRIPT and liprin peptides obtained 

from the flexible docking with (A) BP-Dock and (B) Backrub ensembles. Hydrogen bond 

interactions are shown for the CRIPT peptide with PSD-95 as analyzed using the lowest 

energy docked pose obtained from (C) BP-Dock and (D) Backrub ensembles. Ribbon 

diagrams are prepared using PyMOL.60
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Table III

Rigid and Flexible Docking Predictions for Homologue Structure of CIPP

RosettaLigand score (kcal/mol) X-Score (kcal/mol)

homologue protein peptide peptide class rigid unbound BP-Dock unbound rigid unbound BP-Dock unbound

CIPP KQTSV I –135.93 –150.73 –7.07 –7.08

DSVF I –130.02 –147 –6.43 –6.33

NEFYA II –136.26 –151.18 –7.09 –6.92

EYLGLDVPV II –137.92 –151.87 –7.15 –7.49
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