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Abstract
We introduce a simple MODelability Index (MODI) that estimates the feasibility of obtaining
predictive QSAR models (Correct Classification Rate above 0.7) for a binary dataset of bioactive
compounds. MODI is defined as an activity class-weighted ratio of the number of the nearest
neighbor pairs of compounds with the same activity class versus the total number of pairs. The
MODI values were calculated for more than 100 datasets and the threshold of 0.65 was found to
separate non-modelable from the modelable datasets.

Cheminformatics approaches such as QSAR modeling are applied widely for the analysis of
growing collections of bioactive compounds in private and publicly-available online
repositories such as ChEMBL1 and PubChem2. The resulting models are used for designing
new bioactive molecules or identifying those by virtual screening; thus, it is imperative that
such models have reliable external predictive power.

We3,4 and others5 have shown previously that the predictivity of QSAR models is directly
influenced by various dataset characteristics (e.g., size, chemical diversity, activity
distribution, presence of activity cliffs, etc.) as well as the modeling workflow (e.g., dataset
curation, variable selection, external validation, consensus modeling, use of applicability
domain, etc.) utilized to build, select, and validate the models.6 It is not uncommon for
cheminformaticians to employ many different descriptor types, machine-learning
techniques, validation workflows, etc., in a combinatorial manner in order to maximize the
prediction performance of QSAR models7. Such attempts are time and resource consuming,
especially when the datasets contain more than a few thousands compounds (which becomes
more and more common). However, extensive investigations of large collections of datasets
suggests that it is often impossible to build models with appreciable external predictive
power even when the most sophisticated algorithms and rigorous modeling workflows are
employed.8

Herein, we introduce a concept of “dataset modelability”, i.e., an a priori estimate of the
feasibility to obtain externally predictive QSAR models for a dataset of bioactive
compounds. This concept has emerged from analyzing the effect of so called “activity cliffs”
on the overall performance of QSAR models. Indeed, in a seminal observation, Maggiora9

suggested that the presence of “activity cliffs”, i.e., very similar compounds with very
different activities, present significant challenges for QSAR modeling. Thus, SALI10 and
ISAC11 scores were developed for identifying activity cliffs based on ligand- and structure-
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based approaches, respectively. A recent excellent review from the Bajorath’s group12

discusses many issues posed by the activity cliffs for cheminformatics investigations.

The effect of activity cliffs in a dataset on the process and outcome of the QSAR modeling
can be illustrated by the case of stereoisomers. Indeed, the nature and the actual number of
activity cliffs not only depends on the endpoint and overall data quality, but also on the
choice of descriptors used to characterize chemical structures. When stereoisomers (as well
as some other types of isomers) are present in a dataset it is important to explore whether
descriptors used to characterize compounds are sensitive to chirality. Obviously, when using
two-dimensional (2D) descriptors, any pair of stereoisomers appears as duplicates. In this
case, prior to the actual modeling of the chemical dataset, one should carefully check the
experimental properties reported for all the pairs of stereoisomers present in the set. If the
target property values for stereoisomers are significantly different we have an extreme case
of activity cliffs when two formally identical compounds have different activities and we
have no ground to chose one over another; therefore such pairs should be removed from the
dataset prior to model building (or 3D descriptors should be employed). On the other hand,
if stereoisomers have similar activities, one of them could be kept for model development.

The obvious attention given to the problem of activity cliffs notwithstanding, to the best of
our knowledge there has not been any exhaustive study to explore (i) how the number of
activity cliffs in a given dataset correlates with the overall prediction performance of QSAR
models for this dataset, (ii) whether such correlation is conserved across different datasets,
and (iii) whether one could use the fraction of activity cliffs in a datasets to assess the
overall possibility of success or failure for QSAR modeling. To this end, we propose a
“MODelability Index” (MODI) as a quantitative means to quickly assess whether predictive
QSAR model(s) can be obtained for a given chemical dataset. The current version of MODI
is only applicable to binary endpoints but its extension to datasets of compounds with real
activity values is also possible.

The MODI is computed based on the following considerations. For every compound in a
dataset, we determine whether its first nearest neighbor, i.e., a compound with the smallest
Euclidean distance from a given compound estimated in the entire descriptor space, belongs
to the same or different activity class. In the latter case, the pair can be formally designated
as an activity cliff. The number of nearest neighbor pairs that are not activity cliffs is
counted for each class of compounds and is used to calculate MODI as follows:

(Equation 1)

where K is the number of classes (K=2 for binary datasets), Ni
same is the number of

compounds of i-th activity class that have their first nearest neighbors belonging to the same
activity class i; Ni

total is the total number of compounds belonging to the class i.

The predictive performance of QSAR models is expressed as the correct classification rate
(or balanced accuracy)13 calculated with 5-fold external cross-validation (QSAR_CCR).
Note that QSAR_CCR could be also estimated from a formula similar to Equation 1, where
Ni

same would be the number of correctly predicted compounds belonging to i-th activity
class. In general, we consider the QSAR model to have an acceptable predictive power if it
affords QSAR_CCR equal or higher than 0.7 (see ref.6).

The utility of MODI was assessed initially using 42 diverse datasets related to
pharmaceutical targets: MDR114, MDR1i14, six types of C. Elegans toxicity15, and 34
GPCR datasets16. All the details related to QSAR modeling including molecular descriptors,
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machine learning techniques, and the results of the modeling are given in the Supplementary
Materials. Prior to the analysis, all datasets considered in this study were rigorously curated
according to the workflow developed in our laboratory3. QSAR models were built using
Dragon17 and, for a few cases, MOE18 descriptors, and one or several machine learning
techniques including k-nearest neighbors QSAR (kNN), Support Vector Machines (SVM),
and Random Forest (RF). When examining the results, we have found a significant
correlation (R2=0.66) between MODI and models’ predictivity (i.e., QSAR_CCR) as
illustrated in Figure 1. Although this correlation is not high enough to predict the exact
QSAR_CCR value from MODI, it still affords a reasonable assessment whether the dataset
is modelable or not. Obviously, this initial collection had a bias towards modelable datasets
(QSAR_CCR > 0.7) because these datasets included compounds tested in high-quality in
vitro assays against specific molecular targets.

Recently, Thomas et al.8 published the results of massive QSAR calculations for ToxCast
(www.epa.gov/ncct/toxcast/) datasets with the goal of predicting 60 ToxRefDB (epa.gov/
ncct/toxrefdb/) in vivo toxicity endpoints. They used both chemical descriptors and the
results of in vitro assays considered as independent variables as well as a combination of
chemical and biological descriptors to predict in vivo toxicities but for this study we only
used QSAR models built with conventional chemical descriptors (see Supplemental
Materials for details). The authors8 employed all possible combinations (as many as 84) of
descriptors, modeling techniques, and rigorous validation workflows. However, no models
with significant predictive power (much greater than 50% for binary classification models)
were obtained with only one exception. Thus, we enriched our initial pool of datasets with
those taken directly from reference8. Similarly to the initial pool of 42 sets, we chose models
with the highest QSAR_CCR values among the 84 models obtained by Thomas et al.8 for
each of the 60 in vivo endpoints (see Figure 1).

As Thomas et al.8 have already established that no good models have been generated for
those datasets, we should have expected low MODI values. Indeed, we have found that 59
out of 60 datasets (represented as a cluster of white circles in the lower left part of Figure 1)
were characterized by low MODI values, in full agreement with the failure of Thomas et al.8

to develop QSAR models with significant predictive power. The only exception was the rat
cholinesterase inhibition dataset for which MODI = 0.83 and QSAR_CCR = 0.82 (white
circle in upper-right part of Figure 1). Similar results have been generated using models built
with biological descriptors (data not shown). Interestingly, the authors commented on their
findings by positing that in vitro assays have “limited applicability for predicting in vivo
chemical hazards using standard statistical classification methods”, i.e., questioning the in
vitro to in vivo extrapolation paradigm as applied to the Toxcast datasets. On the contrary,
our studies suggest that the datasets employed in that study, with one exception, were
merely not amenable to the development of predictive models because of a large fraction of
activity cliffs.

In order to study how the choice of chemical descriptors influences the MODI values, we
computed different types of descriptors (SiRMS19, Dragon17, ISIDA20, MACC21, and
MOE18) for six different datasets: DEV8 (n= 241 compounds), CHR8 (n= 238), 212.ind15

and 212.scor15 (the same 212 compounds but different endpoints), D3
16 (n= 1509), and

5HT5
16 (n= 195). As shown in Figure 2, the types of chemical descriptors had rather weak

influence on MODI. Additional details about these datasets can be found in Supplementary
Materials.

Overall, for all 102 datasets (42 pharmaceutical targets plus 60 Toxcast datasets), the
correlation between QSAR_CCR and MODI values was high (R2=0.83) demonstrating the
validity of MODI as a reliable simple metric to evaluate the dataset modelability a priori.
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The correlation shown in Figure 1 affords a simple means to estimate the highest
QSAR_CCR value from that of MODI. However, as a possible pitfall, this correlation may
have limited generality: for instance, only a small number of datasets had MODI values
ranging between 0.65 and 0.75. Thus, additional studies with more datasets are needed to
validate the quantitative relationship between MODI and the best QSAR_CCR.

In summary, we have introduced the QSAR MODI as a simple metric for rapidly assessing
whether a given chemical dataset is likely to be modelable or not. The results of this study
suggest (cf. Figure 1) that a MODI value for a given dataset below 0.65 indicates that one
should not expect to achieve QSAR models with significant predictive power, whereas
MODI>0.65 implies that the underlying dataset is modelable and will have QSAR_CCR
greater than 0.7. As follows from Figure 1, there are very few outliers from this general
simple rule.

This study begs a natural question as to why some datasets are modelable whereas others are
not. As follows from the simple formula for MODI (see Eq. 1), this index depends on the
fraction of activity cliffs in a dataset. Activity cliffs are not uncommon and indeed there are
many examples of compound pairs that are highly similar to each other and yet have
significantly different or opposite (in case of binary classification) activities12: these cases
represent true activity cliffs. However, we shall point out that Eq. 1 does not require that the
pairs of compounds defined formally as activity cliffs should be highly similar to each other.
These pairs are defined as nearest neighbors only within a given dataset and they may not be
highly similar to each other based on absolute similarity metric such as Tanimoto coefficient
(Tc). The use of Eq. 1 to estimate MODI is based on a reasonable expectation (which is the
foundation of the Active Analog principle widely used by both experimental and
computational medicinal chemists) that similar compounds are expected to have similar
activities; thus a “modelable” dataset is expected to have a large fraction of compound pairs
that follow the Active Analog principle. On the other hand, many modern datasets especially
relatively large ones evaluated for some general biological effect such as toxicity (e.g.,
Toxcast dataset explored by Thomas et al.8) may include rather diverse collections of
chemicals that may exert the underlying biological effects through multiple mechanisms. In
such cases, one should not have any rational expectation that two compounds with different
chemical structure that appear as formal nearest neighbors should have similar end point
effects, and in fact this is often not the case. It then follows that chemically diverse datasets
tested for the same endpoint activity should contain a large fraction of activity cliffs making
them non-modelable. Indeed, the analysis of datasets explored in this study suggests that as
a rule, non-modelable datasets with relatively low MODI values also have relatively low
average Tc values for all pairs of nearest neighbors and, vice versa, modelable datasets have
relatively high Tc values (Fig. 3). It also suggests that, although a dataset with low MODI is
not modelable as a whole, it may still contain subsets of compounds with high MODI for
which local QSAR models can be built.

In conclusion, we suggest that MODI is a simple characteristic that can be easily computed
for any dataset at the onset of any QSAR investigation. We hope that this simplicity will
prompt our colleagues to compute and report MODI for any dataset they consider
developing QSAR models for, which will enable further evaluation of the dataset
modelability concept introduced in this study. Finally, we shall point out that studies
reported herein for binary datasets can be easily extended for additional datasets with multi-
class and continuous value activities.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Correlation between QSAR_CCR (Y-axis) and MODI (X-axis) for 42 miscellaneous (black
diamonds) and 60 ToxCast datasets (hollow circles). Regression lines and the corresponding
equations are shown for 42 datasets (solid line) and all 102 datasets (dashed line).
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Figure 2.
Low variability of MODI when different types of chemical descriptors are used.
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Figure 3.
MODI (Y-axis) vs. dataset rank (ordered by descending average structural similarity (Tc)
between all pairs of nearest neighbors within a dataset; X-axis). Horizontal line at
MODI=0.65 is a cut-off value separating modelable (green bars) vs non-modelable (red
bars) datasets.

Golbraikh et al. Page 8

J Chem Inf Model. Author manuscript; available in PMC 2015 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


