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Abstract

Quantifying  convergence  and  sufficient  sampling  of macromolecular  molecular  dynamics 

simulations is more often than not a source of controversy (and of various ad hoc solutions)  in the 

field. Clearly, the only reasonable, consistent and satisfying way to infer convergence (or otherwise) 

of a molecular dynamics trajectory must be based on probability theory. Ideally, the question we 

would wish to answer is the following : “What is the probability that a molecular configuration 

important for the analysis in hand has not yet been observed ?”. Here we propose a method for 

answering a variant of this question by using the Good-Turing formalism for frequency estimation 

of unobserved species in a sample. Although several approaches may be followed in order to deal 

with the problem of discretizing the configurational space, for this work we use the classical RMSD 

matrix as a means to answering the following question : “What is the probability that a molecular 

configuration with an RMSD (from all other already observed configurations) higher than a given 

threshold has not actually been observed ?”. We apply the proposed method to several different 

trajectories and show that the procedure appears to be both computationally stable and internally 

consistent.  A free,  open-source  program implementing  these  ideas  is  immediately  available  for 

download via public repositories.
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1. Introduction

Even a cursory examination of recent molecular dynamics literature shows that the treatment of 

convergence (or sufficient sampling) of the corresponding simulations  can follow either  of two 

distinct paths. The first is to ignore the subject altogether in the hope that the quoted simulation 

times will appear to be so long that no further evidence of convergence will be required. The second 

is to select one (or more) of the various methods currently available such as eigenspace overlap or 

cosine content (see Grossfield and Zuckerman1 for an excellent review) and apply them in the hope 

that the outcome (for example, an eigenspace overlap of 0.85 between two independent halves of 

the  trajectory  using  the  top  three  principal  components)  will  appear  to  be  so  overwhelmingly 

convincing that no further quantification of convergence will  be necessary.  Although several of 

these methods can and do serve their purpose, i.e. they can meaningfully quantify the extent of 

sampling  of  the  corresponding  trajectories,  we  do  feel  that  a  proper  probabilistic  measure  of 

convergence is the only consistent and satisfying method of inference for something as inherently 

probabilistic as is the (necessarily limited) sampling of a molecular dynamics trajectory.

However, stating that a probabilistic treatment is the only natural solution to a problem, does little 

to aid its solution. Naturally, the first question that must be answered is how to define the problem 

of convergence in probabilistic terms. We are convinced that the only reasonable answer to this 

question must be pragmatic, i.e. directly related to the sought analysis of the simulations' data. We 

believe  that  what  we should  like  to  calculate  is  the  probability  that  a  molecular  configuration 

important for a given analysis has not yet been observed. Defining, however, what is “important for 

the analysis in hand” is more difficult. For this work we have decided to quantify structural distance 

(and, thus, importance) using the possibly most popular measure of structural similarity, the root-

mean-square deviation (RMSD). This choice greatly simplifies both the treatment of the problem 

and  its  implementation  as  follows.  In  the  first  step  an  RMSD matrix  is  constructed  from the 

trajectory, possibly using only selected substructures depending on the analysis performed (if, for 

example, the aim of the analysis concerns only the dynamics of an enzyme's active site residues, 

then only these residues would be used for constructing the matrix). In the second step the RMSD 

matrix is  being treated as a distance matrix  and a dendrogram is constructed using established 

hierarchical clustering methods2. In the third step the dendrogram is used to produce clusters at 

various  RMSD  cutoffs  together  with  their  frequencies.  In  the  final  step,  the  Good-Turing 
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formalism3,4 is  applied  to  these  sets  of  frequencies  to  obtain  an  estimate  of  the  probability  of 

unobserved species. The result of the proposed method is a table of the form “RMSD threshold vs. 

Probability unobserved” which allows a direct and immediate representation of the answer to the 

question “what is the probability that structures with RMSDs higher than a given threshold have not 

yet been observed in the simulation ?”. The expression “structures with RMSDs higher than a given 

threshold” will be used throughout this communication, and to avoid confusion we should define 

explicitly which 'RMSD' we refer to : The quoted RMSD should be understood to be the smallest of 

all  RMSDs between a  new (previously  unobserved)  structure  and  the set  of  structures  already 

observed in the trajectory that is being analyzed. To make this even more definite : if for an RMSD 

threshold of 1.0 Å the probability of unobserved species is, say, 0.40, then this should be understood 

to  mean  that  if  we  were  to  continue  the  simulation,  then  we  would  expect  40% of  the  new 

(previously unobserved) structures to differ by  at least 1.0 Å (RMSD) from all already observed 

trajectory structures (or, equivalently, that 60% are expected to differ by less than 1.0 Å RMSD).

In the following paragraphs we describe in more detail the principal ideas behind the method and 

the actual algorithm encoded in the computer program that we distribute. This is followed by an 

extensive discussion of results obtained from the application of the program to several different 

biomolecular trajectories. We close by discussing the practical limitations arising from the usage of 

RMSD matrices, and other possible approaches to the problem.

2. Methods, algorithms and implementation

2.1 Outline of the method and algorithms

The essence of our method is the following. We treat the molecular dynamics trajectory as a  

finite sample of “molecular species” (clusters of similar structures) taken from an underlying 

distribution  containing  an  unknown  number  of  such  molecular  species.  The  observed  
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frequencies of molecular species in the sample are calculated, and the Good-Turing formalism  

is applied to these frequencies allowing us to estimate the total probability of unseen (i.e. as yet  

unobserved) species.

The implementation of this method through the application of RMSD matrices appears to be 

straightforward : given a molecular dynamics trajectory,  construct the frame-to-frame RMSD 

matrix,  treat  the  RMSD  matrix  as  a  distance  matrix  to  construct  a  dendrogram,  use  the 

dendrogram to obtain frequencies of clusters for various RMSD cutoffs, treat these frequencies 

as frequencies of “observed molecular species” for the given RMSD cutoff,  and in the final  

step, employ the Good-Turing formalism to estimate the probability of unobserved species for  

the  given  RMSD cutoff.  The  result  would  be  the  sought  distribution  of  the  (probability  of 

unobserved species vs. RMSD). However, closer examination of the procedure described above  

shows that such a simple-minded application of the algorithm is bound to fail : The application  

of Good-Turing statistics assumes that the structures used for constructing the RMSD matrix are 

sufficiently  distant  in  time,  so  distant  that  they  can  be  treated  as  independent  'objects'  of  a  

sample.  In  other  words,  it  is  assumed  that  successive  entries  in  the  matrix  (and  the 

corresponding structures) are not mechanistically correlated due to the very short time interval  

used for recording structures from the trajectory. The implication is that a direct application of  

the algorithm as described above would lead to results that are dependent on how fine is the 

(otherwise arbitrary) sampling of the trajectory. This is clearly both highly unsatisfactory and 

erroneous. The important addition to the algorithm, then, is to note that it is possible –using the 

RMSD matrix alone and no other source of information– to correct for this dependency on the  

sampling interval of the original molecular dynamics trajectory using a procedure similar to the  

one described by Flyvbjerg and Petersen5. Because this is an important aspect of the method, a 

detailed description of this correction follows.

The crucial observation is that if the sampling of the trajectory is such that successive structures  

are not time-correlated, then the distribution of the maximum of the RMSDs observed between 

any two successive (in the matrix) structures should be independent of the sampling, and would,  

thus, be approximately the same even if instead of using the original NxN matrix, we used an  

[(N/2)x(N/2)] matrix (obtained by taking every second row and column of the original matrix,  

we will refer to this as a 'sampling factor of 2'), or an [(N/3)x(N/3)] matrix (obtained by taking  

every third row and column of the original matrix, sampling factor of 3), or [(N/4)x(N/4)] etc.  

Note that the application of the maximum (and, not for example, the average) of the RMSDs  
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observed between successive structures is also intuitively correct : any two successive structures 

can be very much alike simply because the given molecular conformation is stable.  It is the  

maximum of  the  observed  RMSDs  between  successive  frames  that  can  tell  us  whether  two  

structures are similar because they are stable, or whether all neighboring structures are similar  

because there was not enough simulation time for them to differentiate. With so much of an  

introduction, the actual numerical application of this criterion is straightforward :

1. Take  the  original  (NxN) matrix  and find  the  maximum of  all  RMSDs present  in  the  

matrix's superdiagonal (the superdiagonal is the first diagonal immediately adjacent to  

the principal diagonal. Because the RMSD matrices are symmetric, this is identical with 

the  subdiagonal).  This  maximum  RMSD  is  the  highest  RMSD  observed  between 

successive structures in the original (NxN) sampling of the trajectory (sampling factor  

of 1).

2. Construct a sub-matrix of size [(N/2)x(N/2)] from the original matrix by taking every 

second  row  and  column.  Determine  the  maximum  of  all  RMSDs  present  on  the  

superdiagonal of this new matrix. This maximum RMSD is the highest RMSD observed 

between successive structures with a sampling factor of 2 (with respect to the original).  

Because there are two choices of origin for constructing the [(N/2)x(N/2)] matrix,  we 

can  calculate  an  average  value  of  this  maximum  RMSD  plus  its  estimated  standard 

deviation.

3. Repeat the above to obtain maximal RMSDs (plus their estimated standard deviations) 

for increasing values of the sampling factor.

Fig.1a illustrates the application and results obtained from this procedure.  The upper (black) 

curve in this panel shows the distribution of (maximum RMSDs vs. sampling factors) for the  

whole of a 4.4 μs-long folding simulation of a 40-residue three-helix bundle. The dimensions of  

the  corresponding RMSD matrix  were  9220×9220 data  points  (note  that  for  all  calculations 

reported in this communication we have only used the proteins' C α atoms for constructing the 

corresponding  RMSD  matrices).   Clearly,  the  distribution  of  [max(RMSD)  vs.  sampling]  

converges  very  quickly  to  a  stable  maximum  RMSD  of  approximately  20Å with  a 

corresponding sampling factor upon convergence of ~2. The lower (red) curve shows the same 

distribution from the same trajectory, but using only the first 0.8  μs of the simulation and with a 

matrix of comparable size (10,000×10,000). The result is that the molecular dynamics trajectory 

corresponding to the lower (red) curve has been sampled so much more finely (than the one 

- 6 -



corresponding to  the upper  curve),  that  successive structures are  highly time-correlated.  The 

resulting graph (red curve in  Fig.1a) brings this  forward and clearly indicates that for small  

values of the sampling factor the corresponding structures are not independent, and thus can not  

be used in Good-Turing statistics, with convergence being reached only much later, for values  

of the sampling factor of ~30.

Having  obtained  the  distribution  of  (maximum  RMSDs  vs.  sampling  factors)  as  shown  in  

Fig.1a, the question arises how to accurately determine for which value of the sampling factor  

convergence of the maximal RMSDs is reached (corresponding to the plateau of the graphs).  

Once  this  value  is  known,  the  method  is  essentially  complete  :  if,  for  example,  we  could 

determine that  the optimal sampling factor  is,  say,  4,  then we would construct the four sub-

matrices  of  dimensions  [(N/4)x(N/4)],  and  for  each  sub-matrix  calculate  the  corresponding  

dendrogram, determine the (probability of unobserved species vs. RMSD), and in the final step,  

calculate the averages (of the four repetitions) plus their estimated standard deviations. We have 

chosen to tackle the problem of determining the convergence value of the sampling factor by 

performing a weighted non-linear least squares fitting of the data (see Fig.1b) using a function 

borrowed from electronics (this is a modified form of a limiting diode's equation) :

RMSD(s)=(s+c)(1+∣(s+c)
a ∣

b

)
−(1/b)

where  (s)  is the sampling factor,  RMSD(s) is the corresponding value of maximal RMSD, and 

(a, b, c) are  the  parameters  whose  values  are  to  be  determined  through  the  non-linear  least  

squares  fitting  procedure.  The function  chosen is  especially  useful  because  the  value  of  the  

parameter (a)  is  directly  related  with  the  problem in hand and equals  the  expected  value  of  

max(RMSD)  upon  convergence.  The  use  of  the  expression 'expected  value'  in  the  previous 

sentence is important : if the trajectory is nowhere near convergence, then the [max(RMSD) vs.  

sampling] distribution will not reach convergence and the value of the parameter  (a) will be 

higher than all observed –from the matrix– max(RMSD) values. This can –and is– being used as 

a criterion of insufficient sampling in the program we distribute. As is obvious from Fig.1b, the 

limiting diode equation fits exceedingly well both the cases of almost immediate convergence 

(black and cyan curves in Fig.1b), as well as the cases of slower convergence (red and green 

curves in Fig.1b). Once the value of the parameter (a) from the equation above is available [i.e. 

once we know the expected max(RMSD) upon convergence], an optimal value for the sampling  
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factor  can  easily  be  determined  by  locating  the  smallest  sampling  factor  which  gives  a 

max(RMSD) that is within 1σ (or higher) from this expected max(RMSD). 

Once the proper sampling factor (soptimal) is known, the proposed method proceeds to completion 

smoothly  :  (1)  Construct  the  (soptimal) different  sub-matrices  corresponding  to  the  different 

choices of origin of the original matrix. (2) Use each of these sub-matrices with a hierarchical  

clustering  method  to  calculate  the  corresponding  dendrograms.  (3)  Use  the  dendrograms  to  

calculate observed frequencies of 'molecular species' as a function of RMSD cutoff, (4) Apply  

Good-Turing  statistics  to  determine  the  corresponding  values  of  (probability  of  unobserved 

species  vs.  RMSD).  (5)  In  the  final  step,  average  these  (soptimal) different  estimates  of 

(probability of unobserved species vs. RMSD) and emit the final averages together with their  

estimated standard deviations. 

Note that the method as described above is directly applicable to cases where instead of one  

long  trajectory,  several  independent  shorter  runs  were  performed :  As  long  as  the  initial 

configuration  relaxes  quickly  (or,  better  still,  is  excluded  from  the  calculations),  the 

independent  runs  can  be  concatenated  and  the  procedure  described  above  applied  without  

changes.  Given the relatively coarse sampling of the trajectories  needed by this  method,  the 

errors  arising  from  the  presence  of  time-dependent  discontinuities  at  the  connecting  points  

should be negligible.

We should also note that although we have chosen to work with RMSD-based distance matrices,  

our method is also directly applicable using other formulations of distance. For example, it is  

possible  to  move  away  from  Cartesian-space-based  distances  by  using,  for  example,  the  

principal  components  obtained  from  dihedral-PCA.  In  this  approach,  the  elements  of  the 

distance  matrix  would  be  the  Euclidean  distances  between  the  dPCA-derived  principal  

components of the respective structures. The basic problem with such approaches is, of course,  

that the resulting units of distance will not have an immediate and easily visualized physical  

meaning.

Although the main product of our method is a graph of (punobserved vs. RMSD), we have devised a 

much more economical (and easily quoted) probabilistic measure of convergence. This measure 

is  an estimate of  what  is  to be expected if  the length of  the simulation is  doubled.  In  more 

detail,  we calculate the answer to the following question :  “What would be the value of the  
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expected  maximal  RMSD (compared with  the  already  recorded  structures)  if  the  simulation  

time is to be doubled ?”. To say the same thing in other words, we want to estimate how much 

different  would  be  the  most  different  structure  that  we  would  observe  if  we  doubled the 

simulation time. We will hereafter denote this estimate as 2T-RMSD. The value of 2T-RMSD is 

easily calculable from the (punobserved vs. RMSD) distribution : what we want to calculate is the 

expected  RMSD  for  the  single  structure  that  would  differ  the  most  (from  those  already  

observed) if we were to double the simulation time. Clearly, if we have observed a total of N 

samples (corresponding to a NxN matrix), the sought RMSD is the one corresponding to a value  

of punobserved=1/N which can easily be computed directly from the RMSD matrix. To summarize,  

we believe that the value of 2T-RMSD is useful not only because it is easily quoted, but also  

because it  successfully  estimates  the  answer  to a  very  pragmatic  question :  do the  expected 

gains –for the sought analysis– worth  the cost of  doubling  our computational effort ? (noting 

also how this is the inverse of the usual approach which is based on comparing the two halves  

of a trajectory to conclude –upon 'convergence'– that you could, after all, have used half of the  

computational effort already expended). 

2.2 Implementation details

The method described above has been implemented in a fully automated program written using 

the  R programming language of  the  R package for statistical  computing.6 See section §5 for 

program availability.  Here we will  only mention briefly the major  R functions and packages 

used for implementing our method. The weighted non-linear least squares fitting of the limiting  

diode equation is performed with the function nlsLM() from the minpack.lm package7. The 

hierarchical  clustering  is  performed  with  the  function  hclust() from the  fastcluster 

package8,  using the complete linkage method2 (other clustering methods and parameters have 

been examined and found to give essentially identical results). The clusters at various RMSD  

cutoffs are produced through the  cutree() function. Given –for a specific RMSD cutoff– a 

number of clusters together with the number of their members (for each cluster), the probability  

of unobserved species is calculated3,4 as  p0=N1/N  where N1 is the number of clusters with only 

one  member  and  N  is  the  dimension  of  the  respective  matrix.  All  other  calculations  are  

performed with established functions provided by the R package.
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The program we distribute differentiates between two distinct scenarios and can emit either of  

two different types of output. The first scenario concerns the possibility that the distribution of 

[max(RMSD) vs. sampling] as shown in Fig.1 has not reached convergence. This implies that  

for the given trajectory convergence can not be quantified. In this case no graph of (punobserved vs.  

RMSD) is produced, and the program emits a text message reading :

The maximal RMSDs  between the observed trajectory
structures  have  not converged. This implies that
the  length  of  the  given  trajectory  does  not
suffice for meaningfully quantifying  convergence.
The only comment  that  can safely be made is that
upon  doubling  the  simulation  time  you  should
expect  to  observe  structures  that  differ from
those already observed by more than    approximately

XXX Angstrom.

where the value of 'XXX  Ångström' is  estimated from the value of 2T-RMSD (see previous 

section for definitions). The expression 'by more than' in the program output shown above must 

be taken literally : if the [max(RMSD) vs. sampling] distribution has not converged, it is only 

possible to estimate a lower limit of the RMS deviation, not an upper. In the second scenario the 

value of  (soptimal) can be determined, a graph (plus a table) of (punobserved vs. RMSD) is produced, 

and the program emits a text message containing the estimated value of 2T-RMSD :

The maximal RMSDs of the trajectory converged with
a subsampling factor of YY. The analysis suggests
that  the  most  different  structure  you  should
expect to observe if  you  double  the  simulation
time    will    differ    by    no     more     than
approximately  XXX + ZZZ Angstrom   (RMSD)   from

those already observed.

where the value of 'XXX ± ZZZ Ångström' above is estimated from the value of 2T-RMSD (see 

previous section for definitions).
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3. Results

We have tested our method with an extensive set of molecular dynamics trajectories available to us. 

These trajectories (all in explicit solvent and with full PME-based electrostatics, performed with the 

program NAMD9) range from 5 μs-long folding simulations of the CLN02510 and LytA-derived 

peptides11,  to  2 μs-long  simulations  of  an  α-Lactalbumin-derived  peptide12,13,  to  a  100 ns-long 

simulation  of  stable  4-α-helical  bundle14 and  to  a  50 ns-long  simulation  of  a  1386-residue 

homohexameric protein15. The trajectories we tested cover the whole range from almost complete 

disorder  (for  example  hepta-alanine16),  to  extreme  stability  (for  example  a  variant  of  the  Rop 

protein17). Clearly, the details of how the simulations were performed are irrelevant for the analysis 

reported here. What matters is the agreement (for a given trajectory) between this method and other 

methods of quantifying convergence,  and, of course,  its  internal consistency and computational 

stability.

3.1 The method is internally consistent

The general appearance of the (punobserved vs. RMSD) distributions produced by this method is shown 

in Fig.2a in the form of two independent curves (black and magenta) corresponding to the results 

obtained from two different peptide folding simulations [CLN025 (lower black curve) and a LytA-

derived peptide  (upper  magenta  curve),  see  next  section  for  comparison and discussion  of  the 

differences]. Both curves show the general characteristics that we would reasonably expect from the 

proposed method : At low values of RMSD, the probability values are high which signifies the fact 

that it is quite probable  for the simulation to visit structures that although different in detail, are 

nevertheless quite similar to some of the structures already observed. As the RMSD increases, the 

probability monotonically decreases approaching asymptotically zero. The rate and the exact form 

with which the probability approaches zero depends on the properties of the trajectory (and the 

corresponding matrix) and not on the size of the protein. For example, results from the simulation of 

a very stable ~210 residue-long protein (a variant of the Rop protein) in its folded state showed that 

extremely small values of  punobserved were reached at an RMSD of only ~1Å, much faster than the 

curves shown in Fig.2a which were derived from folding simulations of a 10-mer (CLN025) and a 

14-mer (LytA) peptide.
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In Fig.2b we examine what is possibly the most important criterion of internal consistency, namely, 

the expected dependence of the  (punobserved vs. RMSD) distributions on the extend of sampling. For 

this calculation we used the same CLN025 trajectory as in Fig.2a, but we limited the calculation to 

(a) only 40 ns of simulation time (green curve in Fig.2b), (b) 400 ns of simulation time (red curve), 

and finally, (c) the whole 5 μs trajectory (black curve, identical with the curve shown in Fig.2a). In 

agreement with our expectations, 40 ns is too short a simulation time even for such a stable and fast 

folder as the CLN025 peptide. The result is a (punobserved vs. RMSD) distribution with high values of 

punobserved, showing clearly that the sampling is not sufficient and that significantly different structures 

must be expected if the simulation is to be continued [the value of 2T-RMSD (see section §2) was 

estimated to be 2.7±0.3Å]. In contrast with the 40 ns simulation (and in agreement with the known 

folding behaviour and folding timescale of the CLN025 peptide), the 400 and 5000 ns trajectories 

demonstrate significantly lower values of punobserved and are quite similar. Their major differences are 

located at  the high RMSD part  of the diagram where the longer trajectory (black curve) gives 

noticeably lower values of punobserved [the value of 2T-RMSD for the 5000 ns trajectory was 2.3±0.2 

Å].  Having noted the rather small differences between the 400 and 5000 ns curves in Fig.2b, we 

shall  not  resist  the  temptation  of  noting  just  how  clearly  and  quantitatively  this  method 

demonstrates how difficult it is to faithfully and accurately sample the folding landscape of proteins 

and peptides : increasing the computational effort by more than an order of magnitude hardly made 

a pronounced difference in the probabilistic estimates of  punobserved. Seen in this light, the proposed 

method appears to be dependable and its estimates robust. Note, however, that due to the fact that  

CLN025 is a fast and stable folder (see section  §3.2), the small differences between the 400 and 

5000 ns curves are also a strong indication that all major conformations of the peptide have been 

sampled.

Given that this is a proper probabilistic method, we have the opportunity to perform an acid test on 

the validity of the derived (punobserved vs. RMSD) distributions. The principal idea is that you make a 

prediction using only the first half of a trajectory, and then compare the prediction with the actual 

results obtained from the second half (in other words, you estimate probabilities from the first half, 

and then compare them with the observed frequencies from the second half). The two lower curves 

in Fig.2c compare the predicted distribution (black curve) with the observed frequencies (orange 

curve)  using  the  two  halves  of  the  CLN025  trajectory.  The  agreement  between  these  two 

distributions is so outstandingly good that their comparison may create the wrong impression that 

this is the level of accuracy to be expected by this method irrespectively of the specific properties of 
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the trajectory being examined. This is definitely not so. Because the CLN025 peptide is a fast and 

stable folder, 2.5 μs of simulation time was possibly adequate for meaningfully sampling its folding 

landscape, thus increasing the accuracy of the Good-Turing estimation. But for a trajectory that is 

far from being adequately sampled, the observed frequencies can –and, indeed, should be expected 

to– deviate very significantly from the prediction. To make sure that this point is not missed, in the 

same figure we also compare three graphs obtained from the LytA peptide (which is a very slow and 

erratic folder, see section §3.2). The magenta curve in Fig.2c is the (punobserved vs. RMSD) distribution 

as calculated by this method using the segment 0.0–1.3 μs of the LytA trajectory. The blue curve 

shows the actual frequencies observed in the 1.3–2.6 μs segment, and the gray curve are the actual 

frequencies observed in the 1.3–5.0 μs segment of the trajectory. Clearly, and in good agreement 

with common sense,  predictions  can only be as  good as the data  available.  We will  close this 

paragraph with what we consider to be an important side note : the excellent agreement between the 

observed  and  the  expected  (Good-Turing-derived)  distributions  for  the  case  of  a  well-sampled 

trajectory, serves, we believe, as a direct and convincing validation of the choice to apply Good-

Turing statistics to molecular dynamics simulations.

One last internal consistency check concerns the evolution and accuracy of the 2T-RMSD values as 

a function of simulation time. In the first calculation, and using again the CLN025 trajectory, we 

calculated  the  values  of  2T-RMSD for  simulation  lengths  of  80,  400,  800,  2400 and 5000 ns. 

Ignoring estimated standard errors, the corresponding values of 2T-RMSD were found to be 2.76Å, 

2.62Å, 2.66Å, 2.39Å and 2.25Å, in good agreement with the expected reduction of the 2T-RMSD 

values as sampling improves. Note, however, how the estimate increased (instead of monotonically 

decreasing) as we moved from the 400 to the 800 ns simulation. This is a healthy (and expected) 

behavior for a method whose predictions are based solely on the evidence available in hand, and 

arises from the incorporation of new information (previously unobserved peptide conformations) in 

the segment of the trajectory from 400 to 800 ns. A similar behavior can be seen in Fig.2b at values 

of RMSD of ~0.6Å where the values of punobserved for the 400 ns (red) curve are slightly lower than 

those  obtained  from  the  5000 ns  (black)  curve.  This  behavior  is  discussed  in  more  detail  in 

section §4. In a second calculation, aiming to evaluate the accuracy of the 2T-RMSD values, we 

estimated  the  2T-RMSD  value  using  only  the  first  half  of  the  CLN025  trajectory,  and  then 

compared the prediction with the actual values observed in the second half of the trajectory. Using 

the first 2.5 μs of the trajectory, the value of  2T-RMSD was estimated to be 2.42±0.08 Å. The most 

different structure observed in the second half of the trajectory (2.5 – 5 μs) had an RMSD of 2.49 Å, 

in excellent agreement with the predicted value. 
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3.2 The method is consistent with other established algorithms

To demonstrate the consistency of this method with other established methods we shall discuss in 

more detail the specifics of the simulations that were used to prepare the two graphs shown in 

Fig.2a. The lower black curve was obtained from a  5 μs-long folding simulation of the CLN025 

peptide10. CLN025 is known to be a fast and stable β-hairpin folder18, and in agreement with these 

studies our trajectory contains more than ~50 folding/unfolding events (data not shown). On the 

other hand, the LytaA-derived peptide (upper magenta curve in Fig.2a) is a very slow and erratic 

folder, possibly due to the presence of significant energetic frustration in its folding landscape.11 

Indeed, our 5 μs trajectory of LytA contains only two relatively short folding/unfolding events, of 

which the second event is  only partially correct (the alignment of the β-strands was offset by one 

residue, data not shown).  Even at this level of analysis, Fig.2a clearly and correctly demonstrates 

the differences between the behavior  of the two peptides :  the  punobserved values for the  CLN025 

trajectory are throughout the RMSD range several times lower than those obtained from the LytA 

trajectory, signifying the better sampling (for the same amount of simulation time) of the much 

faster  and  stable  folder.  The  2T-RMSD  values  further  underline  and  quantify  the  differences 

between the two trajectories, with CLN025 giving an estimate of  2.25Å, significantly lower than 

the value of 3.06Å obtained from LytA.

Not unexpectedly, the indications obtained by analyzing these same trajectories with other rigorous 

methods for quantifying convergence are in very good agreement with our results. To put this in 

numbers,  we  have  calculated  a  rather  strict  (and  unrelated  with  our  method)  measure  of 

convergence,  the  dihedral-PCA-based  eigenspace  overlap1 between  the  two  halves  of  the 

trajectories (the dPCA analysis was performed with the programs carma19 and grcarma20). For the 

CLN025 trajectory the overlaps between the one-, two-, three- and four-dimensional spaces defined 

by  the  respective  principal  components  (of  the  two  halves  of  the  trajectory)  were :  1D=0.96, 

2D=0.70,  3D=0.90,  and,  4D=0.96  indicating  an  excellent  agreement  between  the  information 

contained in the two halves,  a fact which is  usually taken to imply convergence.  For the LytA 

trajectory the results from the same calculation were : 1D=0.66, 2D=0.45, 3D=0.36, and, 4D=0.59, 

demonstrating again the rather incomplete sampling for the slow folder. We will note here how 

much more  complete  and satisfying is  the  probabilistic  treatment  of  Fig.2a compared with the 

simple  enumeration  of  eigenspace  overlaps  that  beg  for  additional  (possibly  arbitrary) 

interpretations (for example,  is the overlap of 0.59 between the two halves of the trajectory an 
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indication that the full trajectory is adequately sampled ? And what “adequately” means, and how is 

it to be quantified, etc.). Since we are on this subject, and in the form of a side note, we show below 

how badly a popular measure of convergence, the cosine content, performs for this problem. The 

values of the cosine content for the first  four dPCA-derived principal  components  of the LytA 

trajectory  were  0.0333,  0.0040,  0.0291  and  0.0032,  falsely  indicating  –according  to  popular 

interpretations– that convergence has been achieved. To make matters worse, the results from the 

cosine content analysis of LytA are practically indistinguishable from the values obtained from the 

CLN025 trajectory which were 0.0049, 0.0279, 0.0002 and 0.0001 respectively. 

We close this section with an example which we believe demonstrates the dependability of our 

method. Fig.3 shows a series of graphs of the type [RMSD from the starting (crystal) structure vs. 

Simulation time] for the simulation of a large protein in the folded state15. Such graphs are very 

common  in  the  literature  and  their  appearance  (mainly  flatness  of  the  distributions)  is  being 

advertised  –and  used–  as  an  indication  of  convergence  of  sampling.  This  approach  is  clearly 

questionable since the RMSD from a given reference structure does not contain information about 

the actual extend of sampling of the configurational space available to the macromolecule being 

simulated. The example we selected brings this forward. The red curve in the upper panel of Fig.3 

shows  the  evolution  of  the  (RMSD  vs.  crystal  structure)  for  all  Cα atoms  of  BcZBP,  a  large 

1386 residue-long homohexameric protein. The lower black curve in this same panel shows again a 

graph of the type (RMSD vs. crystal structure), but this time after excluding from the calculation 

~30 residues (from each monomer) belonging to hyper-mobile surface-exposed loops. The lower 

panel  in  Fig.3  shows  results  from the  same  set  of  calculations,  but  this  time  using  only  one 

monomer (monomer C), instead of the whole hexamer. Risking a prediction, we believe that these 

graphs would be accepted as implying that (a) the whole hexamer and the whole monomer show no 

sign  of  convergence,  (b)  that  the  hexamer  without  the  flexible  loops  is  possibly  approaching 

convergence,  and  finally,  (c)  the  dynamics  of  the  monomer  without  the  flexible  loops  have 

converged. The results from our method come as something of an anticlimax : for none of these 

trajectories the method even reached the stage of estimating (punobserved vs. RMSD). All trajectories, 

including the monomeric-no-loops trajectory (black curve in the lower panel of Fig.3), failed to 

even pass the criterion of convergence of the  (max(RMSD) vs. sampling) distribution. Clearly, a 

method that justifiably defies common misconceptions is probably a dependable (though possibly 

unpopular) tool.
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3.3 The method is robust and insensitive to sampling choices

The computer memory requirements for this method are so demanding that only matrices of the 

order of few thousand can be examined, with matrices of approximately 20,000×20,000 being the 

upper  limit  for  the  current  generation  of  workstations,  and  matrices  of  approximately 

10,000×10,000 the norm. This posses the question of how sensitive is the proposed method to the 

arbitrary choices that can be made during the sampling of the trajectory. There are two aspects of 

the problem. The first is the sensitivity of the results on the 'step size' with which the trajectory was 

sampled. The second aspect is the dependence (for a given 'step size') of the results on the choice of 

the frame that was selected to be the first  frame of the matrix (i.e.  the frame offset).  Here we 

examine both of these questions using a 100 ns simulation of a 216-residue-long 4-α-helical bundle 

protein (a homotetrameric variant of the Rop protein14). The complete trajectory contained 250,000 

frames and for the calculations reported here we only used the protein's Cα atoms.

The first set of calculations concerns the sensitivity of the (punobserved vs. RMSD) distributions on the 

step  size  used  for  sampling  the  original  trajectory.  To establish  how robust  (or  otherwise)  the 

estimates are, we have chosen to also use some unreasonably large sampling factors. In this spirit 

we tested all step sizes ranging from 20 frames per step (giving a 12500×12500 matrix), all the way 

to a step size of 100 (giving a matrix of only 2,500×2,500), with an interval of 10 frames for the 

values in between. Fig.4a shows a superposition of the (punobserved vs. RMSD) distributions obtained 

from these nine step sizes (note that the scaling of the horizontal axis has been changed to magnify 

the differences). In general the agreement between the distributions obtained from the various step 

sizes is excellent. What is even more reassuring, however, is the behavior of the method as the 

sampling  of  the  trajectory  becomes  artificially  coarse :  The  curves  that  appear  to  deviate 

significantly from the bulk (gray and  cyan curves in Fig.4a) are those that correspond to these 

artificially coarse samplings,  and for these distributions the  punobserved probabilities are noticeably 

overestimated. The implication is clear : the proposed method is safe and robust –in the sense that 

the derived probabilities are bounded from below– even in the cases where the sampling of the 

original trajectory is unreasonable.

The second  set  of  calculations  examines  (for  a  fixed  value  of  step  size)  the  sensitivity  of  the 

(punobserved vs. RMSD) distributions on the offset  used to select the first  frame that will  enter the 

RMSD matrix. For this calculation we used a fixed step size of 70 (giving a matrix of 3571×3571), 

a fixed value for the sampling factor of 2, and tested all combinations of first frame ranging from 1 
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to 66 with a step of 5, giving a total of 14 combinations. Because in the limit of an infinite trajectory 

the choice of the first  frame would have no effect  on the derived curve,  the variability that  is  

observed in these graphs is a fair representation of the statistical noise present in the procedure. The 

resulting graphs are shown in Fig.4b, and as expected, the effect of frame offset is negligible for a 

constant value of the sampling factor.  It  should be noted,  however,  that due to the presence of 

statistical  noise,  the algorithm that  selects  the value of  the  sampling factor  (s) as  described in 

section  §2.1, may select a slightly different sampling factor depending on the value of the frame 

offset which, in turn, would lead to a slightly different  (punobserved vs. RMSD) curve. This, again, is 

safe in the sense that the probabilities are bounded from below, and any deviations always lead to 

overestimating the punobserved probabilities.
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4. Discussion

We have shown that quantifying convergence of molecular dynamics trajectories in probabilistic 

terms not only is feasible, but also that its application resulted in the development of a method that 

appears  to  be consistent,  robust  and dependable.  We have also shown that  the expected  major 

deficiency of the algorithm, that is, the very limited number of structures that can be used for the 

analysis, appears to be a non-existent problem in the sense that for the time scales of present day 

simulations we usually have to sub-sample even further the original RMSD matrices. 

What would appear to be the most basic problem with the proposed method is the fundamental idea 

that clusters of structures (at a given RMSD level) can be treated as multiple observations of the 

same 'object' taken from the discrete distribution.  The excellent agreement between the observed 

and the expected (Good-Turing-derived) distributions shown in Fig.2c for a well-sampled trajectory 

clearly indicates that this is a valid approximation, but it could still be argued that what is needed in 

this case is a formalism similar to Good-Turing, but for the continuous distribution case –which to 

our knowledge is not available. On the other hand, even if such a continuous-case treatment did 

exist, we would then face the opposite problem, which is that the recording of structures in our 

trajectories  is  indeed  discrete  (and  not  continuous).  Additionally,  this  view of macromolecular 

conformations as (possibly numerous) groups of distinct clusters maybe relevant biologically, and is 

(at least metaphorically) consistent with the idea of the existence of local roughness in the energy 

landscape of proteins.

Turning our attention to practical aspects of the day-to-day application of the method, we should 

probably  start  from a  semi-philosophical  cliché :   The  probabilistic  treatment  described  above, 

although consistent and satisfying, is not a panacea. The probabilities calculated by this method are 

based solely on the evidence in hand, and there is no way for this method (or any other method) to 

“guess”, for example, that if a given simulation was continued for, say, another 50 ns we would then 

observe several  new stable  conformations  that  would force  us  to  revise (upwards)  the  punobserved 

estimates.  Similarly,  there  is  no  way  for  the  method  to  “guess”,  for  example,  that  a  stable 

conformation that lasted for more than 90% of the time of a 20 ns trajectory (and led to very low 

values  of  punobserved)  would  turn-out  to  be  statistically  insignificant  if  the  simulation  were  to  be 

extended to 2000 ns. Having said that, in none of our tests with tens of different trajectories have we 
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observed a systematic flaw –in the form of unjustifiable predictions– made by this method.

The second most important thing that we should like to note concerning the practical application of 

the method has more to do with the human factor, and almost nothing with the method per se. What 

we refer to is, of course, that it is very tempting to prefer to look at a graph like the one shown in  

Fig.3 (black curve  in  the  lower panel)  and to  conclude that  “convergence  has  been achieved”, 

instead  of  applying a  probabilistic  method that  returns  a  message  in  the  spirit  of  “insufficient 

sampling, double the simulation time and try again”. This is exacerbated by the apparent 'honesty' 

of the method, whose predictions appear some times to be disheartening with respect to the amount 

of computational effort they imply that is required to improve sampling (compare, for example, the 

red and black curves in Fig.2b corresponding to 400 vs. 5000 ns of simulation time). Clearly, and as 

with  any  new  tool,  only  accumulated  practical  experience  with  the  method  will  show  what 

probability level is to be considered significant for a given problem.

We close this section with an aphorism. We believe that what this method clearly demonstrated is 

that there is no such thing as a positive declaration of 'convergence' or 'sufficient sampling'. In full  

agreement with common sense, our method showed that all that is happening as simulation time 

increases  is  that  the  probability  of  encountering  new  –thus  far  unobserved–  conformations 

asymptotically decreases (and that, thus, the trust we place upon the conclusions drawn from the 

trajectory  must  increase).  Not  unexpectedly,  treating  an  inherently  probabilistic  problem 

probabilistically leads to predictions that are in excellent agreement with common sense.

5. Program availability

A free and open source program, published under a Simplified BSD License, which implements the 

method described in  this  communication  is  immediately  available  for  download  via the  github 

repository at https://github.com/pkoukos/  GoodTuringMD  
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Figure Captions

Figure 1

Determination of the sampling factor : The two curves in the upper panel compare the behavior 

of the [max(RMSD) vs. sampling factor] distribution (see text for details) for a reasonably sampled 

trajectory (upper black curve), and for a trajectory sampled so finely that successive structures are 

highly correlated (lower red curve). For the upper curve, the original RMSD matrix would have to 

be sub-sampled with a sampling factor  of 2,  whereas for the lower (red)  curve a much higher 

sampling  factor  of  ~30  would  be  necessary.  Panel  (b)  illustrates  how  well  the  limiting  diode 

equation (see text for details) can fit the data. The underlying data are the same with panel (a) and 

the two curves (cyan and green) are the corresponding least squares fits.

Figure 2

General form of the results, dependence on the extend of sampling and internal consistency : 

Panel (a) shows the general form of the distributions (punobserved vs. RMSD) obtained by this method 

using two independent 5 μs-long folding simulations of the CLN025 peptide (black curve) and the 

LytA-derived peptide (magenta curve,  see text  for  details).  Panel  (b)  shows how the estimated 

probabilities change as the length of the simulation of the CLN025 peptide increases from 40 ns 

(green curve), to 400 ns (red curve), to 5000 ns (black curve). Finally, in panel (c) we compare the 

expected  and  observed  forms  of  the  (punobserved vs.  RMSD) distribution  as  obtained  from  two 

trajectories.  The two lower (black and orange) curves are based on the CLN025 trajectory and 

compare the expected distribution as calculated using only the first half of the trajectory (black 

curve), with the actual frequencies observed in the the second half (orange curve). The upper set of 

(three) curves are based on the LytA trajectory (see text for details) and compare : (a) the expected 

distribution (colored magenta) as calculated from this method using only the first 0–1.3 μs part of 

the trajectory, (b) the distribution actually observed in the 1.3–2.6 μs part of the trajectory (blue 

curve), and, (c)  the distribution actually observed in the 1.3–5.0 μs part of the trajectory (gray 

curve).
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Figure 3

Comparison with other methods :  The two panels  show  the evolution of  (RMSD vs.  crystal 

structure)  as a function of simulation time  for either  the whole hexamer of the BcZBP protein 

(upper panel), or only one monomer (monomer C, lower panel), see text for details. In each panel, 

the upper (red) curves were calculated using all Cα atoms, the lower (black) curves after excluding 

residues belonging to hyper-mobile surface-exposed loops.  For all four cases shown, the method 

described in this communication returned the 'insufficient sampling' message as described in section 

§2.2. 

Figure 4

Insensitivity to trajectory sampling choices : Panel (a) shows the dependence of the (punobserved vs.  

RMSD) distributions on the step size used for sampling the original  100 ns-long  trajectory  of a 

stable 4-α-helical bundle protein. The superposition of nine curves (corresponding to step sizes 

ranging from every 20 to every 100 frames, with an interval of 10 frames) are shown. The gray and 

cyan  curves  (to  the  left)  correspond to  the  (unreasonably)  large  step  sizes.  Panel  (b)  shows a 

superposition of (punobserved vs. RMSD) curves which were obtained by keeping the step size constant, 

and varying the trajectory frame which was taken to be the first (i.e. the frame offset).
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           Figure 1       

Determination of the sampling factor : The two curves in the upper panel compare the behavior 

of the [max(RMSD) vs. sampling factor] distribution (see text for details) for a reasonably sampled 

trajectory (upper black curve), and for a trajectory sampled so finely that successive structures are 

highly correlated (lower red curve). For the upper curve, the original RMSD matrix would have to 

be sub-sampled with a sampling factor  of 2,  whereas for the lower (red)  curve a much higher 

sampling  factor  of  ~30  would  be  necessary.  Panel  (b)  illustrates  how  well  the  limiting  diode 

equation (see text for details) can fit the data. The underlying data are the same with panel (a) and 

the two curves (cyan and green) are the corresponding least squares fits.
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          Figure 2     

General form of the results, dependence on the extend of sampling and internal consistency : 

Panel (a) shows the general form of the distributions (punobserved vs. RMSD) obtained by this method 
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using two independent 5 μs-long folding simulations of the CLN025 peptide (black curve) and the 

LytA-derived peptide (magenta curve,  see text  for  details).  Panel  (b)  shows how the estimated 

probabilities change as the length of the simulation of the CLN025 peptide increases from 40 ns 

(green curve), to 400 ns (red curve), to 5000 ns (black curve). Finally, in panel (c) we compare the 

expected  and  observed  forms  of  the  (punobserved vs.  RMSD) distribution  as  obtained  from  two 

trajectories.  The two lower (black and orange) curves are based on the CLN025 trajectory and 

compare the expected distribution as calculated using only the first half of the trajectory (black 

curve), with the actual frequencies observed in the the second half (orange curve). The upper set of 

(three) curves are based on the LytA trajectory (see text for details) and compare : (a) the expected 

distribution (colored magenta) as calculated from this method using only the first 0–1.3 μs part of 

the trajectory, (b) the distribution actually observed in the 1.3–2.6 μs part of the trajectory (blue 

curve), and, (c)  the distribution actually observed in the 1.3–5.0 μs part of the trajectory (gray 

curve).
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    Figure 3

Comparison with other methods :  The two panels  show  the evolution of  (RMSD vs.  crystal 

structure)  as a function of simulation time  for either  the whole hexamer of the BcZBP protein 

(upper panel), or only one monomer (monomer C, lower panel), see text for details. In each panel, 

the upper (red) curves were calculated using all Cα atoms, the lower (black) curves after excluding 

residues belonging to hyper-mobile surface-exposed loops.  For all four cases shown, the method 

described in this communication returned the 'insufficient sampling' message as described in section 

§2.2.
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   Figure 4

Insensitivity to trajectory sampling choices : Panel (a) shows the dependence of the (punobserved vs.  

RMSD) distributions on the step size used for sampling the original  100 ns-long  trajectory  of a 

stable 4-α-helical bundle protein. The superposition of nine curves (corresponding to step sizes 

ranging from every 20 to every 100 frames, with an interval of 10 frames) are shown. The gray and 

cyan  curves  (to  the  left)  correspond to  the  (unreasonably)  large  step  sizes.  Panel  (b)  shows a 

superposition of (punobserved vs. RMSD) curves which were obtained by keeping the step size constant, 

and varying the trajectory frame which was taken to be the first (i.e. the frame offset).
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