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Abstract

We study the impact of optimizing side-chain positions in the interface region between two 

proteins during the process of binding. Mathematically, the problem is similar to side-chain 

prediction, extensively explored in the process of protein structure prediction. The protein-protein 

docking application, however, has a number of characteristics that necessitate different 

algorithmic and implementation choices. In this work, we implement a distributed approximate 

algorithm that can be implemented on multi-processor architectures and enables trading off 

accuracy with running speed. We report computational results on benchmarks of enzyme-inhibitor 

and other types of complexes, establishing that the side-chain flexibility our algorithm introduces 

substantially improves the performance of docking protocols. Further, we establish that the 

inclusion of unbound side-chain conformers in the side-chain positioning problem is critical in 

these performance improvements.

The prediction of the tertiary structure of proteins is an important problem in computational 

structural biology with applications in protein structure design, protein association, and 

homology modeling. In general, side-chains are more flexible than the backbone, and 

positioning them is a critical component of protein structure prediction1–3.

It is therefore not surprising that side-chain prediction has received significant attention 

during the last few decades. Most of the existing literature views the problem as an 

optimization/search problem over possible side-chain conformations. Several works first 

attempt to reduce the search space by applying the idea of Dead-End Elimination (DEE), 

which eliminates all side-chain conformations that cannot possibly be in the optimal 

solution4,5. Lee et al.1 proposed an approach based on a simulated annealing search. Lee et 

al.6 also suggested a similar approach using a mean-field optimization search. Roitberg and 

Elber proposed a method that combined the latter two approaches.7 Bower et al.8 introduced 
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heuristics to search over the space of specific energy functions implemented in the SCWRL 

package. The latest version of the package, SCWRL4.09, implemented a tree decomposition 

algorithm10 which is an exact method using dynamic programming. Side-chain prediction 

has also been formulated as a mathematical programming problem. Specifically, it has been 

formulated as an Integer Linear Programming (ILP) problem11,12 and several strategies 

have been proposed to solve it12,13. A semi-definite programming relaxation of the ILP 

problem was developed by Chazelle et al.14 and a second-order cone programming 

relaxation was proposed by Kingsford et al.11. The primary application of the work we 

surveyed above is in side-chain prediction in the context of protein folding. In fact, some 

works consider the joint folding and side-chain prediction problem; see Loose et al.15 Side-

chain prediction algorithms attempt to resolve the uncertainty in the position of side chains 

(especially the ones on the protein surface) that computational or experimental 

determination of the tertiary structure of proteins leave unresolved.

Side-chain prediction is, however, extremely important in the context of protein-protein 

association. As the two partner proteins approach each other, side-chains in the interface 

region between the proteins tend to re-orient so as to avoid steric clashes and facilitate the 

process of binding. Capturing this effect algorithmically has the potential to enhance 

docking protocols and it is the main motivation behind the work in this paper.

This problem of side-chain prediction in the course of protein docking has a number of 

characteristics –distinct from its application to folding– that enable the development of 

specialized and more efficient algorithms. First, side-chains need to be repacked many times 

in the process of iterative docking algorithms, and hence speed is a primary consideration. 

Second, accuracy does not have to be extremely high. In fact, it was shown by Wolfson et 

al.16 that docking results can be substantially improved even by a very approximate 

adjustment of side-chains that removes steric clashes. Third, the unbound protein structure 

provides a good approximation for the bound conformation of many side-chains; it has been 

shown that over 60% of surface side-chains retain the unbound conformation upon 

association with the partner protein17. Thus, as will be discussed, considering the unbound 

conformer as one of the potential states substantially improves the results. Fourth, prediction 

is performed in the presence of a second protein that, in many cases, significantly reduces 

the potential joint conformations. In this light, the approach we have developed can be seen 

as accounting for these special conditions.

More formally, we will consider the so-called problem of Side-Chain Packing (SCP) defined 

as follows: given the unbound structures of the receptor and the ligand, and assuming that 

the backbones remain rigid, predict the interface side-chain conformations that minimize the 

overall energy of the complex. SCP has been shown to be NP-hard18 and inapproximable14 

(i.e., there is no polynomial-time algorithm to obtain solutions that are arbitrarily close to 

optimal).

Some forms of SCP have already been incorporated in docking procedures19. In our docking 

protocol, first a large set of unbound receptor-ligand conformations are sampled using a 

rigiddocking technique called PIPER20. Low energy conformations are retained for further 

refinement. Refinement techniques19,21 iteratively move the ligand while keeping the 
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receptor fixed in order to minimize an approximate energy function22. This iterative search 

aims to find the rotation and orientation of the ligand which locally minimize the ligand-

receptor interaction energy. SCP then becomes a component of energy evaluation for each 

ligand move.

SCP is a combinatorial problem, assuming that side-chain positions are selected from a 

discrete set of conformations called rotamers23. This is generally a good approximation 

within the framework of required accuracy, particularly because in docking we generally 

work with relative smooth scoring functions that do not heavily penalize minor steric 

overlaps. In this work we formulate SCP as a Maximum Weighted Independent Set (MWIS) 

problem on an appropriately defined graph. We have developed24 a fully distributed 

algorithm that can output near-optimal solutions. We have established that our algorithm 

obtains an optimal solution to SCP for a special class of problem instances motivated by the 

structure of SCP arising in docking24. In contrast to the aforementioned related work in the 

context of folding, our method is based on an approximate algorithm and forgoes optimality 

since state-of-the-art interaction energy models are also approximate. However, our method 

is fully distributed and requires only message-passing between neighboring nodes of the 

graphical model of the SCP problem which will be illustrated in Fig. 1. Distributed 

algorithms are algorithms designed to run over multiple processors, with no tight centralized 

control. This is appealing in our docking framework since, as mentioned earlier, one has to 

solve many instances of SCP in the course of docking two proteins. In some large instances 

of SCP involving numerous residues in a protein complex, the distributed implementation of 

our algorithm allows us to position the side-chains with near-optimal accuracy, yet, with an 

average running time significantly smaller than the state-of-the-art centralized algorithms.

The approach we have developed further enables the user to parametrize the method so as to 

trade-off the quality of the solution against the running time. In the docking application, and 

especially in the early stages of docking, we are not looking for the most near-native set of 

rotamers necessarily, but for a good feasible solution which resolves the steric clashes of the 

interface. In such cases, the accuracy of the algorithm can be set such that desirable timing 

constraints are met.

Following an earlier observation17,25, we test the impact of including the unbound 

conformations of side-chains in the set of possible conformers. Our study of large 

benchmarks of enzyme-inhibitor and other types of complexes (as defined in Chen et al.26) 

establishes that this inclusion substantially improves side-chain prediction accuracy and the 

effectiveness of docking protocols. Essentially, we find that the unbound protein structure 

contains substantial information about the side-chains of the bound state.

Our discussion thus far suggests that SCP in the process of docking exhibits significant 

special structure which provides us with a number of algorithmic and implementation 

choices (e.g., exact vs. approximate, distributed vs. centralized, inclusion of unbound 

conformers, etc.). In this light, our approach is not directly comparable to existing and well-

established side-chain prediction methods we surveyed. Still, we do report results comparing 

the side-chain prediction accuracy of our approach and that of SCWRL49, which is 

considered the state-of-the-art. Several considerations need to be taken into account when 

Moghadasi et al. Page 3

J Chem Inf Model. Author manuscript; available in PMC 2016 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interpreting such results. First, SCWRL4 is available in binary form and does not include the 

unbound rotamers. Moreover, it is an exact and centralized algorithm, designed with folding 

applications in mind, and it does not benefit from a multi-processor environment. Our 

findings can potentially guide the development of alternative approaches for docking 

applications, including the adaptation of tools like SCWRL49.

The remainder of the paper is organized as follows. Section 1 outlines our method for 

solving the SCP problem. Computational results on benchmark sets and an extensive 

discussion are included in Section 2. Section 3 contains some concluding remarks.

1 METHODS

1.1 SCP Formulation

In the context of our docking application, we are only interested in positioning the side-

chains located in the interface between the receptor and the ligand. Side-chains buried 

within the proteins are typically well-packed and non-interface surface side-chains have no 

significant effect on docking. We fix the position and orientation of the ligand with respect 

to the receptor and define the interface residues I as the set of all receptor and ligand 

residues whose Cα atom is within a small distance (10 Å) from a Cα atom located on the 

partner molecule. Let Ui denote the set of rotamers for each residue i ∈ I and denote by |I | 

the cardinality –number of elements– of I.

The goal of SCP is to choose one rotamer per residue to minimize the free energy of the 

complex. Let ir denote the rotamer selected for residue i ∈ I . Then, the overall energy takes 

the form:

(1)

where E0 is self-energy of the two backbones, E(ir) is the energy of the interaction between 

rotamer ir from residue i and the two backbones including the self-energy of the rotamer ir, 

and E(ir, js) is the pairwise interaction energy between the selected rotamers ir and js for i /= 

j.

We next formulate SCP as an MWIS problem on an appropriately defined graph G = (V , E) 

whose nodes are assigned weights. The MWIS problem amounts to selecting a set of nodes 

of G that form an independent set, i.e., no two nodes selected are connected by an edge, of 

maximal total weight.

We construct G as follows. The node set of the graph, V , consists of two types of nodes: 

single-rotamer nodes and pair-rotamer nodes. To each rotamer ir of each interface residue i 

we assign a single-rotamer node and to each pair of rotamers (ir, js) from two different 

residues i and j we assign a pair-rotamer node. We associate an energy value with each 

node: E(ir) with single-rotamer nodes and E(ir, js) with pair-rotamer nodes. We also assign 

to each node a nonnegative weight such that higher weights correspond to nodes with lower 

energies; this can be done by reversing the sign of the energy values and shifting them 

equally to become nonnegative. Turning to the edge-set of G , each edge represents a 

“conflict” between a set of rotamers. The term conflict means that the nodes incident to the 
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edge correspond to two different rotamers of the same residue, e.g., nodes (ir, js), and (irt , 

js). Since in SCP we need to select exactly one rotamer per residue, both nodes connected by 

an edge cannot be selected. From the construction, it follows that SCP is equivalent to the 

MWIS problem for graph G . A graphical representation of such modeling is shown in Fig. 1 

for a system of two residues i and j which have 3 and 2 rotamers respectively.

1.2 Rotamer Selection

We use the the backbone-dependent rotamer library23 to derive the initial set of rotamers. In 

addition to the rotamers listed in the rotamer library, we generate more rotamers by 

considering the standard deviation value σ1 (also available in the rotamer library) of the 

dihedral angle χ1 for each rotamer. Specifically, we split each rotamer of the library into 3 

rotamers with the following first dihedral angles: χ1 − σ1, χ1, and χ1 + σ1. We keep the rest 

of dihedral angles (χ2, χ3 and χ4), if any, as they are, and assign to each new rotamer a 

probability equal to 1/3 of the original rotamer probability. As discussed in the Introduction, 

we also add one more conformer from the unbound structure of the protein to the set of 

rotamers. The set of rotamers gained from the expansion of the original library spans the 

conformational space of the side-chains better, and gives the algorithm a broader search 

space to seek the optimal side-chain configuration.

Before solving the MWIS formulation, we run a pre-processing subroutine called rotamer 

refinement which refines the set of rotamers for each residue and excludes any infeasible 

rotamers from the set. This subroutine consists of two phases. (i) First, we find the atomic 

coordinates of each rotamer and define its distance to the backbone as the nearest distance 

between its heavy atoms and the backbone heavy atoms. We remove from consideration 

rotamers whose distance to the backbone is smaller than a predefined threshold. These 

rotamers form steric clashes with the backbone and cannot belong to the optimal solution. 

(ii) Next, we implement another pre-processing step to reduce the number of the rotamers 

for each interface residue. We use a Dead-end Elimination (DEE) algorithm5, which is 

based on a refinement of the elimination criterion known as the Goldstein criterion. The idea 

is as follows: a rotamer ir from residue i can be eliminated from the set if there exists some 

other rotamer is from the same residue such that

(2)

for some other residue j with a U j set of rotamers. This indicates a situation in which the 

“best” conformation that includes ir ∈ Ui has larger total energy value compared to the 

“worst” conformation that includes is ∈ Ui. In other words, for any feasible solution of SCP 

that includes rotamer ir ∈ Ui, replacing ir by is gives us a new feasible solution with lower 

total energy. In this case, we can eliminate ir from Ui. DEE stops when it finds no more 

rotamers to remove. These pre-processing phases can reduce the size of G drastically, 

thereby speeding up the process of finding an MWIS without sacrificing optimality.
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1.3 Our Distributed Algorithm to Solve MWIS

MWIS is an NP-hard problem. We have developed a two-phase algorithm24,27,28 to find 

effective solutions: the first phase solves a relaxation of MWIS and the second phase 

leverages the relaxed solution to construct an effective MWIS feasible solution. This 

feasible solution indicates which rotamer to pick for each interface residue.

In the first phase, we employ a stronger relaxation than the standard linear programming 

relaxation of MWIS. In particular, we introduce constraints on the cliques of the graph that 

are redundant but make the linear programming relaxation of the integer programming 

problem tighter. We develop a Gradient Projection (GP) method (see24) for solving the 

(linear programming) dual problem of this relaxation. Our algorithm only involves message-

passing among adjacent nodes of the graph and uses local information. This message-

passing approach allows us to solve the problem in a distributed fashion using multiple 

processors. As we discussed earlier, benefiting from a multi-processor architecture can be 

useful due to the many and large problem instances one has to tackle in the course of 

docking two proteins.

Since we solve a relaxation of MWIS in the first phase of the algorithm, we have to round 

up the solution to a feasible solution for the original problem. To that end, the second phase 

of the algorithm consists of a greedy estimation procedure that constructs a feasible MWIS 

solution based on the solution of the relaxation. Our estimation phase is also distributed and 

works based on passing messages between the nodes of the problem graph.

Our two-phase algorithm produces a near-optimal solution to the problem and has several 

parameters (e.g., accuracy of the relaxation phase) that can be tuned to trade-off the 

accuracy of the final solution against the running time. This is useful in the context of our 

docking application; for instance, in early phases of the docking protocol a less expensive 

and less accurate version can be used and the accuracy can be tightened in the final stages of 

docking.

1.4 Partitioning the Interface Residues

The number of nodes in the graph G increases quadratically with the number of interface 

residues. This can lead to a very large G which is computationally expensive to handle. To 

reduce the size of the graphs we have to process, we partition the set of interface residues 

into non-overlapping clusters based on their interaction energy values. We first compute the 

interaction energy between each pair of residues in the set. If the interaction energy between 

a pair of residues is greater than a small threshold ε, we say those two residues are 

interacting. If, however, two residues are too far away, there would be no interaction energy 

between them. We consider a subset of the residues as a cluster if interactions involving 

these residues are exclusively confined within the cluster. In this sense, the clusters are non-

overlapping and the union of clusters forms the whole interface set.

After partitioning the interface set into several clusters, we solve the SCP problem using the 

MWIS formulation on each cluster separately and in parallel. Note that since the clusters do 

not energetically interact, breaking the main SCP problems into smaller subproblems does 

not change the overall solution, yet speeds up the procedure notably.
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Based on our statistical analysis over a docking benchmark set composed of tens of 

receptorligand complexes with thousands of conformations each, we conclude that a 

significant portion of the clusters contain only 2 residues. Even though our algorithm is an 

approximate method in general, due to the special structure of the MWIS graph it does find 

the exact solution for clusters of size two24. For larger clusters, it can find an effective 

feasible solution which is near-optimal24.

1.5 Off-grid minimization with an optional SCP step

To study the role of SCP in protein docking we have incorporated our side-chain packing 

approach into off-grid refinement, where it is typically used.

We have implemented a standard Monte Carlo Minimization (MCM)-based off-grid 

refinement protocol, which is used in many refinement approaches19,29,30. Off-grid 

refinement seeks the lowest energy configuration in the vicinity of the initial conformation. 

The protocol we use performs iterations each consisting of four main steps. (I) In Step 1, the 

ligand position and orientation with respect to the receptor are slightly (randomly) perturbed. 

(II) In Step 2, we slide the proteins back into contact. (III) The 3rd step is where SCP is 

applied and this step is optional; to assess SCP’s role in refinement, we will show results for 

runs without SCP that leave side-chains to their unbound positions, runs with SCP where the 

whole interface is re-arranged using the algorithm we presented and the standard rotamer 

library, and runs with SCP using the standard rotamer library to which we add the unbound 

side-chain conformers. (IV) The final step in each iteration of the refinement protocol locally 

minimizes the energy of the resulting complex using a rigid-body minimization algorithm22 

and allowing the side-chains to slightly move to off-rotamer positions in order to alleviate 

potential steric clashes. After these four steps are performed, we have a new candidate 

complex. We decide either to accept or reject this candidate based on the Metropolis 

criterion, namely, if the total energy of the candidate complex is lower than the energy of 

the complex in the beginning of the iteration, we accept the candidate; otherwise, we accept 

the candidate with a probability that is inversely exponentially proportional to the energy 

difference. If the candidate is accepted, then it becomes the complex used to initialize the 

next iteration; otherwise, we discard the candidate complex and start the next iteration with 

exactly the same complex we had in the beginning of the current iteration.

1.6 Refinement set generation

To study the effect of off-grid minimization with SCP, we have generated sets of near-native 

structures using a soft rigid-body approach20. For our study set we have used enzyme-

inhibitors and other types of complexes from the protein docking benchmark26. The 

following steps were performed for each of the enzyme-inhibitor complexes: (1) We 

systematically sampled mutual receptor-ligand orientations using an FFT-based approach 

(PIPER20) and obtained 70, 000 lowest energy structures. (2) The 1,000 lowest scoring 

structures were clustered31 using a greedy algorithm and the clusters were ranked based on 

their size (a larger cluster corresponds to higher rank). (3) The highest ranking cluster whose 

center has a Root Mean Square Deviation (RMSD) of all atom positions under 10 Å from the 

native was selected for refinement. The top 1, 000 lowest energy structures out of the 70, 

000 generated at Step 1, which are also within 12 Å RMSD from the selected cluster center, 
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were selected as the refinement set. A similar protocol was used for other types of 

complexes, with the exception that clusters were chosen from three FFT sampling runs, each 

with different weights in the energy function. Details are described in Kozakov et al.32. We 

have used all complexes in the protein docking benchmark26 for which PIPER20 was able to 

produce at least 50 solutions within 5 Å RMSD to the native. Our study set consists of 35 

cases of enzyme-inhibitors, and 34 cases of other types of protein complexes.

1.7 Energy Function

For the energy function terms referenced thus far, we have used a state-of-the-art high-

accuracy docking energy potential, which combines force-field and knowledge-based energy 

terms19,29,33. In particular, interaction energies are computed as a weighted sum (w’s are the 

corresponding weights):

where EV DW is the Lennard-Jones potential, ESOL is an implicit solvation term34, ECOU L is 

the Coulomb potential, EHB is a knowledge-based hydrogen bonding term, and ERP is a 

statistical energy term associated with a specific selection of rotamers from the backbone-

dependent rotamer library23. EDARS is a structure-based intermolecular potential derived 

from the non-redundant database of native protein-protein complexes using a novel DARS 

(Decoys as Reference State)35 reference set. The DARS reference set is formed by 

generating a large decoy set of docked conformations based only on a shape-

complementarity scoring function; we compute the potential by observing the frequency of 

interactions in these decoys.

In order to calculate ERP, we need to know the probability piu of each rotamer iu, which can 

be approximated by the fraction of time that amino acid residue i is found in rotamer u in a 

large dataset. These probabilities are given in the rotamer library. The statistical energy 

value of such a rotamer is given by − log(piu)/pi0 , thus, the more frequent a rotamer, the 

lower the energy assigned to it. The weights in the energy function are chosen according to 

the selections in Gray et al.19.

2 Results and Discussion

2.1 Accuracy of Side-Chain Positioning

We use SCP in predicting the bound-state side-chain conformations of an unbound receptor-

ligand complex. To assess the accuracy of our algorithm, we test it against a benchmark set 

consisting of 48 unbound enzyme-inhibitor (EI) and 67 other (OT) types of protein 

complexes, and compare our predictions to the native-state conformers which are observed 

using experimental techniques. We also compare the accuracy of our algorithm with that of 

the SCWRL4.0 package23, which, as we commented earlier, is the state-of-the-art side-chain 

prediction tool. We refer the reader to our earlier discussion on the differences between 

SCWRL4.0 and our approach and on how the results should be interpreted.
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We use standard criteria to evaluate our side-chain prediction approach.9,17 The first 

criterion called χ1 is based on the difference between the first dihedral angle (χ1) of the set 

of residues in the predicted structure and the native structure. The second criterion called 

χ1+2 is based on the differences between the first two dihedral angles (χ1 and χ2) of the 

residues in the predicted structure and the corresponding dihedral angles in the native 

structure. For the χ1 criterion, an accurate prediction of a residue occurs when the χ1 angle 

of a predicted residue is within 40 degrees of its native-state value. For the χ1+2 criterion, the 

prediction of a residue is considered accurate when both the χ1 and the χ2 angles of the 

predicted structure are within 40 degrees of their native-state values. Although the 40 

degrees deviation may appear to be large, it is the size of the error considered in standard 

criteria used for evaluating side-chain prediction algorithms. In addition, as already 

mentioned, side-chain prediction generally requires relatively limited accuracy in 

applications to docking.

To show the effect of including the unbound conformer of the side-chains in side-chain 

prediction, we consider two different cases: (i) solving the SCP problem without including 

the unbound conformers (-UB), and (ii) solving the SCP problem with unbound conformers 

(UB). We compare the overall packing results in the absence and in the presence of the side-

chains’ unbound conformations to show how the inclusion of the unbound conformers in the 

rotamer-set can affect the side-chain prediction results. We also provide the SCWRL4.0 

predictions to determine the accuracy of our algorithm in comparison with that method. As 

mentioned in the Introduction, in SCWRL4.0 the unbound side-chains are not considered as 

possible rotameric states of the residues.

For each complex, we run each algorithm over exactly the same interface set of residues 

obtained from the unbound structure of the complex. We report the number of the interface 

residues whose predicted conformation is considered accurate based on the χ1 and χ1+2 

criteria.

Detailed results are in Fig. 2. We provide the side-chain prediction accuracy of the 

aforementioned methods for the two different types of protein structures (EI and OT) 

separately. In the last row of the table, we compare the performance of these methods over 

the full benchmark by calculating the percentage of all interface residues which are 

predicted within the accuracy range. A couple of observations are in order. First our method 

produces slightly less accurate results compared to SCWRL4.0 when the unbound side-

chain conformations are not included in the rotamer set. This is, essentially, the small price 

to pay for an approximate algorithm (vs. the exact approach of SCWRL4.0) which, however, 

has a number of characteristics that are useful in docking applications (distributed, scalable, 

tunable speed-accuracy trade-off). The second, and important, observation is that the 

inclusion of the unbound rotamers improves the accuracy of the predictions. This shows that 

the unbound structure of proteins carries substantial information about their native docked 

structure, hence, considering them in the side-chain prediction methods is of great 

importance in docking applications.
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2.2 SCP as a Protein Docking Component

As discussed earlier, our main motivation for this work is to apply SCP in protein-docking 

refinement protocols. Next, we analyze the effectiveness of our SCP algorithm when we use 

it as a component of our protein docking refinement procedure. We report on the impact of 

SCP in the overall performance of the off-grid optimization refinement procedure, and, more 

specifically, in increasing the number of near-native predictions.

For this purpose, we refine the PIPER20 outputs using three different modes of the off-grid 

optimization refinement protocol outlined in Sec. 1.5: (i) REF-SCP, when the conformations 

are refined without employing the SCP algorithm, (ii) REF+SCP-UNB and (iii) REF+SCP

+UNB, when the conformations are refined by the off-grid optimization procedure which 

uses SCP as a component of energy evaluation without and with, respectively, considering 

the unbound side-chain conformers in SCP.

For each mode, we calculate the RMSD of each predicted conformation in the set from the 

native structure. A prediction is considered “accurate” when this RMSD is below 5 Å from 

the native. The table in Fig. 3 as well as Figs. 4 and 5 report the number of accurate 

predictions in the refinement set (see Sec. 1.5) for 35 EI and 34 OT complexes. The first 

column of the tables in Fig. 3 lists the PDB code of the complex. The second column reports 

the number of accurate conformations (within 5 Å RMSD from the native) out of the top 1, 

000 PIPER outputs in the refinement set. These conformations are the input to the 

refinement stage. The three following columns specify the number of accurate refined 

conformations generated by the three different modes of off-grid optimization described 

above – denoted as R-SP, R+SP-UB and R+SP+UB, respectively. The last two rows of each 

EI and OT table report the total number of accurate predictions over all complexes and the 

percentage improvement over PIPER. The latter metric is computed by averaging over all 

complexes the per-complex percentage improvement and it reflects a view of performance 

which is not biased by the number of accurate complexes for each refinement set. The 

results show that adding side-chain packing and including the unbound conformers can 

improve the overall refinement performance by increasing the number of accurate 

predictions.

Next, we present two other figures for the EI and OT protein benchmarks. In each figure, we 

plot three curves that indicate the increase/decrease in the number of PIPER accurate 

conformations using the three settings of the refinement procedure described above. The 

green, blue and red curves indicate the REF-SCP, REF+SCP-UNB and REF+SCP+UNB 

mode, respectively. As an example, consider the protein complex 1yvb which has 376 

accurate conformations generated by PIPER as shown in the table of Fig. 3 and is the first 

protein shown in Fig. 4. The green, blue and red data points show the values of 117, 93 and 

117 respectively, for 1yvb, reflecting the respective gains of the three modes over the PIPER 

result. The same type of analysis is carried out for the OT benchmark as well, and the results 

are illustrated in Fig. 5.

As shown in Figs. 4 and 5, in most cases the red curve is superior to the other two curves, 

indicating that the REF+SCP+UNB method works better than the other two methods. It 
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follows that the use of SCP including the unbound conformers increases the number of near-

native predictions and improves the refinement performance.

2.3 Effect of Parallelization on Running Time

To validate the effect of parallelization on improving the running time of our SCP algorithm, 

we study how the average running time over the benchmark set of 48 EI and 67 OT unbound 

proteins (listed in the table of Fig. 2) changes as we increase the number of processors. To 

get a better sense of the improvement, we categorize the benchmark set based on the size of 

the interface into two subsets labeled as Large and Small. The size of the interface refers to 

the number of interface residues of each protein complex, and is reported in the third column 

of the table in Fig. 2. The size of the MWIS optimization problem, associated with our SCP 

algorithm, increases quadratically with the size of the interface. Therefore, the parallel 

approach is of great importance when it comes to large problem instances. In our setting, the 

protein complexes with interface size greater then 20 are considered in the “Large” category, 

and the ones whose interface size is on the range of 20 or less are considered in the “Small” 

category. We also evaluate the running time over the entire benchmark (labeled as All in Fig. 

6).

Our results were obtained on a desktop workstation with Intel® Core™ i7-950 Processor 

(8M Cache, 3.06 GHz, 4.80 GT/s Intel® QPI) and 4 GB of RAM. We report the speedup 

values in Fig. 6 for the cases of 2-, 4-, 6- and 8-processor runs of the algorithm with respect 

to the single-processor running time. The speedup value of the n-processor setting is 

computed by dividing the average running time of the algorithm when using n processors by 

the average running time of the single-processor run. Fig. 6 shows that using the multi-

processor architecture is generally beneficial in speeding up the packing process, especially 

for large systems.

3 Conclusion

We considered the problem of side-chain packing in the process of protein-protein docking. 

Specifically, this is the problem of appropriately positioning side-chains in the interface 

region between the two proteins. The problem exhibits significant special structure that 

makes it notably different from the side-chain prediction problem extensively explored in 

the context of protein folding. These differences, motivated our development of a new 

approximate but fully distributed approach.

We tested this approach against benchmark sets of enzyme-inhibitor and other types of 

complexes. We found that the incorporation of side-chain packing in each iteration of 

protein docking refinement protocols, facilitates the docking process and leads to improved 

performance. We also established that the inclusion of the unbound conformer as an option 

in the side-chain packing optimization improves side-chain positioning accuracy and 

docking performance. The latter, can potentially motivate the adaptation of alternative side-

chain prediction approaches. Our side-chain packing software is available under an open 

source license.
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Figure 1. 
Construction of the graphical model of a system with 2 residues i and j with sets of rotamers: 

Ui = {ir1 , ir2 , ir3 } and U j = { js1 , js2 }. The optimal set of rotamers of the residues i and j 

can be obtained by finding the MWIS of this weighted graph. Let the triple {ir1 ir1 , ir1 js2 , 

js2 js2 } be the MWIS, then the solution to the SCP problem will be rotamers ir1 and js2 for 

residues i and j, respectively.
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Figure 2. 
Comparing SCWRL4.0 and MWIS to native. We compare the performance of sidechain 

positioning of three modes: (i) scwrl shows the prediction accuracy of SCWRL4.0, (ii) 

MWIS −UB denotes the performance of our MWIS algorithm without considering the 

unbound conformers, and (iii) MWIS +UB indicates MWIS performance including the 

unbound conformers. Moreover, we report the number of the interface residues whose 

predicted conformation is considered accurate based on the χ1 and χ1+2 criteria. Also, # res 
indicates the number of interface residues for each system.
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Figure 3. 
We compare three different refinement modes of a refinement algorithm to demonstrate: (i) 

the effect of side-chain packing on docking refinement, and (ii) the importance of including 

the unbound conformers. In each case, we report the number of near-native structures 

(within 5 Å RMSD from the native) amongst the refinement set of size 1, 000. In the table, 

R-SP stands for REF-SCP (refinement without side-chain packing), R+SP-UB denotes REF

+SCP-UNB (refinement with side-chain packing without unbound conformers) and R+SP

+UB denotes the REF+SCP+UNB (refinement with side-chain packing and with unbound 

conformers).
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Figure 4. 
The effect of different modes of docking on increasing/decreasing the accuracy of PIPER 

outputs for the EI benchmark. The values on the vertical axis denote the number of 

additional accurate conformations with respect to PIPER that each refinement mode 

predicts. The horizontal axis shows the PDB codes of each protein complex. For each mode, 

these discrete data points are fit to a curve to illustrate the overall performance of each case.
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Figure 5. 
The effect of different modes of docking on increasing/decreasing the accuracy of PIPER 

outputs for the OT benchmark. The plots have the same specifications as captioned in Fig. 4.
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Figure 6. 
The speedup with respect to the single-processor run for 2-, 4-, 6- and 8-processor settings. 

The vertical axis shows the speedup value, and the horizontal axis depicts the number of 

processors. Different categories of protein ensembles (Large, Small and All) are plotted.
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