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ABSTRACT: This article contributes a highly accurate model
for predicting the melting points (MPs) of medicinal
chemistry compounds. The model was developed using the
largest published data set, comprising more than 47k
compounds. The distributions of MPs in drug-like and drug
lead sets showed that >90% of molecules melt within
[50,250]°C. The final model calculated an RMSE of less
than 33 °C for molecules from this temperature interval, which
is the most important for medicinal chemistry users. This
performance was achieved using a consensus model that
performed calculations to a significantly higher accuracy than
the individual models. We found that compounds with reactive
and unstable groups were overrepresented among outlying compounds. These compounds could decompose during storage or
measurement, thus introducing experimental errors. While filtering the data by removing outliers generally increased the accuracy
of individual models, it did not significantly affect the results of the consensus models. Three analyzed distance to models did not
allow us to flag molecules, which had MP values fell outside the applicability domain of the model. We believe that this negative
result and the public availability of data from this article will encourage future studies to develop better approaches to define the
applicability domain of models. The final model, MP data, and identified reactive groups are available online at http://ochem.eu/
article/55638.

■ INTRODUCTION

Predicting melting points (MPs) is very important for
medicinal and environmental chemistry, as the MP is frequently
used as one of the parameters to estimate the solubility of
chemical compounds by means of Yalkowsky general solubility
equation (GSE)1 or/and similar approaches.2,3 The recent
increase in interest in MP prediction is connected with the
development of green chemistry and ionic liquids.4 The MP is
also an important parameter in multimedia models used to
assess the hazardousness of chemical compounds in REACH.
There are several comprehensive reviews describing multiple
areas of application of MP as well as computational methods to
predict it.5−7 The general conclusion of these reviews is that
predicting MP remains very challenging. The MP is determined

by crystal packing and the 3D structure of molecules in a
crystal, which is still very difficult to model.8 The complex
interactions, which include electrostatic, van der Waals,
hydrogen bond formation (both internal and between
molecules), and aromatic stacking as well as the flexibility
and symmetry of molecules are all important for the
computational prediction of MPs of molecules.
While explicit modeling of MPs considering all these types of

interactions is beyond the current state of the art (and,
probably, will remain so for a while), machine-learning methods
that exploit statistical properties of data are used as a pragmatic
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approach to model it. The numerous publications using this
approach have reported state-of-the art methods, achieving a
prediction of MP in the range of 30−50 °C.4,9−14 The accuracy
of the models varied depending on the sets (e.g., ionic liquids,
drug-like compounds, etc.) and validation methods (e.g., leave-
one-out, test set performance, etc.) used; they thus cannot be
easily compared across publications. Not only the quality and
diversity of the data but also, importantly, the availability of
computational descriptors to characterize this property were
cited as main reasons for difficulties with prediction.15 Thus,
using more diverse descriptors could possibly produce better
results in computational modeling of MPs. This idea motivated
us to model MPs using different sets of descriptors available to
us as part of the Online Chemical Modeling Environment
(OCHEM).16

Despite MP being relatively easy to measure and, until
recently, an obligatory parameter for quality assurance and
publication of new chemical structures, there are surprisingly
limited data for this property. To our knowledge, the largest
data sets used hitherto include about 5k compounds10−12 and
are mainly based on the data set compiled by Karthikeyan et
al.13 This is probably related to the difficulty of modeling this
complex property: the poor performance of the developed
models may have discouraged modelers from collecting
experimental data on it. The lack of availability of MP data
and the negative impact of this absence for the development of
models to predict MP and water solubility was realized by the
Open Notebook Science (ONS) community (http://
onswebservices.wikispaces.com/meltingpoint), in particular by
Prof. J. V. Bradley, who started the tedious work of collecting
MP values. Recently, ONS has contributed a large highly
curated set,17 which was double-validated to contain only
reliable data that have multiple reported measurements within 5
°C. ONS also published several models on their Web site,
which refer to different time points of collection and curation of
data. However, no active use of these data has been reported so
far outside the ONS community. For example, the “ONS
Melting Point Collection” with an excellent, highly curated data
set of 2,706 compounds published in Nature Precedings18 has
gained only one citation on Google Scholar since 2011. Thus,
one of the goals of this article was to promote the excellent data
collected by ONS to a wider scientific community.
In previous studies, only the average performance of MP

models was provided, without indication of their profiles across
the temperature range. The basis of such reporting is an
implicit assumption that the reported average accuracy will
remain about the same for new predictions (or at least for
predictions that are within the applicability domain19,20 of the
model). However, from the final user’s perspective not all
predictions are equally important, only those that are relevant
to his or her studies. For example, a specialist working with
ionic liquids might be mainly interested in accurate prediction
of compounds that could melt at room temperature; a
medicinal chemist needs a model for a wider interval of MP
but perhaps does need one for compounds that melt above 500
°C. However, until now there has been no comprehensive
study on which temperature interval is covered by drug-like
compounds and whether the expected model accuracy is the
same across the range. This question provided a further
motivation for this study.
In addition to the reasons already mentioned, the main goal

of this article was to develop a high quality model to predict
MPs for drug-like compounds, using the largest available set of

compounds with MP data, and to analyze the model’s
performance with respect to data coverage and quality.

■ DATA

Four data sets were used. The first two were employed as “gold
standards” to test the algorithms developed using the two other
sets.
The “Bergström set” included 277 drug-like compounds

compiled by Bergström et al.14 This set was used to test the
prediction performance of MP models in several earlier studies.
The “Bradley set” of 3,041 compounds was the second “gold

standard” set.17 This set comprised compounds with two or
more measurements reported in the literature; they were
manually curated by the authors. Since 155 compounds from
this data set were also included in the Bergström set, we
excluded them to maintain nonoverlapping compilations.
The OCHEM data set was compiled using data available at

the Online Chemical Modeling Environment (OCHEM).16

Four major sources of experimental data were used: the
ChemExper database,21 the Estimation Program Interface
(EPI),22 the Molecular Diversity Preservation International
Database (MDPI),23 and the ONSMP challenge data set.24

Additional data were drawn from about 40 individual articles
uploaded to the OCHEM database by users as well as data
collected on the QSPR Thesaurus Web site of the CADASTER
project.25

Any intersections between the sources were eliminated: in
case of duplicate measurements from different sources, the
earliest published article was selected using the OCHEM
“Primary record” function. This utility searches for the earliest
record with an identical published experimental value. After
filtering of salts and mixtures, molecules that failed for at least
one descriptor calculation program, and compounds over-
lapping with either of the two gold test sets, the OCHEM
training data set included 21,883 molecules.
The Enamine data set was provided by Enamine Ltd.,26 one

of the leading suppliers of chemicals in the world. The
company contributed 30,640 compounds, sampled from more
than >1.5 M compounds in stock. They were measured, using
the same protocol and as specified in the operation and service
manual, with the MPA100 OptiMelt automated melting point
system.27 As with the preparation of the OCHEM set, first salts,
mixtures, and compounds that failed for at least one descriptor
calculation program were eliminated. Second, we eliminated
compounds that were included in the OCHEM and “gold test”
sets, thus leaving 22,404 compounds. The modeling of data
spoiled a group of 117 molecules that had reported values of
16−18 °C. These were molecules that were soluble at room
temperature. The company did not measure them at lower
temperatures to identify their correct MPs. These molecules
were used with a range value (<17 °C) for the development of
models using neural networks.
The data in the Enamine set were measured using the same

technique and experimental protocol, while the data in other
sets came from different sources. The quality of measurements
in the Bergström and Bradley sets was high due to strict manual
curation of experimental data in both sets.

■ METHODS

Machine-Learning Approaches. A preliminary analysis
included a set of five machine-learning methods, namely
Associative Neural Network,28−30 Partial Least Squares (PLS),
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Support Vector Machines, Multiple Linear Regression (MLR),
and k Nearest Neighbors. The default parameters of the
methods, as specified on the Online Chemical Database and
Modeling Environment Web site,31 were used for model
development. We found (data not shown) that ASNN gave
results that were statistically similar to the LibSVM method. At
the same time, both these methods contributed significantly
better models (Root Mean Squared Error (RMSE) lower by 5−
10 °C) compared to the other investigated approaches. Since
training of the ASNN was faster and resulted in smaller models
compared to LibSVM, we used the neural networks for all
studies in this article. Moreover, the ASNN method can
develop models with ranges and intervals, which are fully
supported by OCHEM and were present in the analyzed data.
Descriptors. Eleven descriptor packages, available at

OCHEM, were used to provide a high diversity of
representation of chemical structures for MP modeling.
Below we give a brief description of the packages used.
Estate32 refers to electrotopological state indices that are

based on chemical graph theory. E-State indices are 2D
descriptors that combine the electronic character and
topological environment of each skeletal atom.
ISIDA (in Silico Design and Data Analysis) Fragments.

These 2D descriptors are calculated with the help of the ISIDA
Fragmenter tool,33 developed at the Laboratoire de Chemo-
informatique of the University of Strasbourg. Compounds are
split into Substructural Molecular Fragments (SMF) of (in our
case) lengths 2 to 4. Each fragment type comprises a descriptor,
with the number of occurrences of the fragment type as the
respective descriptor value. In this study, we used the sequence
fragments composed of atoms and bonds.
GSFragments. GSFrag and GSFrag-L34 are used to calculate

2D descriptors representing fragments of length k = 2...10 or k
= 2...7, respectively. Similar to ISIDA, descriptor values are the
occurrences of specific fragments. GSFrag-L is an extension of
GSFrag: it considers labeled vertices in order to take
heteroatoms of otherwise identical fragments into account.
CDK (3D). CDK (Chemistry Development Kit)35 is an open

source Java library for structural chemo- and bioinformatics. It
provides the Descriptor Engine, which calculates 246
descriptors containing topological, geometric, electronic,
molecular, and constitutional descriptors.
Dragon v. 6 (3D). Dragon is a software package from

Talete36 that calculates 4885 molecular descriptors. They cover
0D - 3D space and are subdivided into 29 different logical
blocks. Detailed information on the descriptors can be found
on the Talete Web site (http://www.talete.mi.it/).
Chemaxon Descriptors (3D). The Chemaxon Calculator

Plugin produces a variety of properties. Only properties
encoded by numerical or Boolean values were used as
descriptors. They were subdivided into seven groups, ranging
from 0D to 3D: elemental analysis, charge, geometry,
partitioning, protonation, isomers, and others.
Adriana.Code37 (3D), developed by Molecular Networks

GmbH, calculates a variety of physicochemical properties of a
molecule. The 211 resulting descriptors range from 0D
descriptors (such as molecular weight, or atom numbers) to
1D, 2D, and various 3D descriptors.
ToxAlert functional groups were used as an additional set of

descriptors. These descriptors included about 500 groups
covering different functional features of molecules. The groups
are based on classifications provided by the CheckMol

software,38 which was extended to cover new groups, in
particular heterocycles.
The descriptor packages with (3D) in their description

require 3D structures of the molecules. To determine 3D
conformations, we used Corina,39 which is integrated in
OCHEM via a web interface.

Model Validation. Cross-validation (CV) was used. In this
technique, the set was randomly split into N folds and
respective N models were developed. Each of the models had
one of the folds as a validation set, and the remaining N−1
folds were used as the respective training sets. The predictive
ability of the final model was estimated as the accuracy of the
individual N cross-validation models for the prediction of the
respective validation sets. In our study, we used a 5-fold cross-
validation protocol for all studies. The CV results calculated for
the models are reported here and were used to estimate the
performance of the final model, which was built using all
available data. The same protocol was used for all models
developed in this article. Thus, training and validation sets were
always the same for all models.

Consensus Modeling. The individual models were
combined in the consensus model, which was calculated as a
simple average. Since the individual models were validated
using the 5-fold CV, the consensus model was also validated
using the same protocol.

Estimation of the Performance of the Models. For all
analyses we used Root Mean Squared Error

= −
N

Y YRMSE
1

( )exp
i
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i 2

where Ycalc
i and Yexp

i are calculated and experimental MP values,
and summation is over all N molecules in the analyzed set, as
the accuracy of models. We used RMSE only, since this
measure provides a straightforward interpretation of results;
further, we did not want to overload the article with other
statistical coefficients.

Estimation of the Prediction Accuracy. The prediction
accuracy assessment was based on the notion of distance to
models (DMs). DMs are numeric measures of prediction
reliability that estimate how “far” the predicted compound is
from the model. There are numerous examples of DMs, and a
comprehensive description of this methodology can be found in
the literature.40−42

In this study, we used the CONSENSUS-STD as a DM. This
DM provided the best estimation of the prediction accuracy for
both regression and classification models.40,41 It corresponds to
the disagreement of individual models, m = 1,...,N
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to predict the average (consensus) value yj̅ for molecule j.
The main assumption for DMs is that they correlate with

prediction accuracy. On average, higher DM values correspond
to higher prediction errors and, therefore, lower prediction
accuracy. This allows the prediction accuracy to be estimated
using the so-called accuracy averaging technique.42 Once DM
values are calculated for all molecules, the dependency of the
absolute errors of the consensus model as a function of the DM
is calculated using a moving average over a sliding window. We
assume that the calculated errors increase monotonically with
DM but for each fixed DM value are provided by a normal
distribution N(0,σ(ΔM)). Once the DM values are calculated
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for a new set, this function is used to estimate the prediction
errors for it.
Calculation of Confidence Intervals. All the statistical

parameters were complemented with their respective con-
fidence intervals. OCHEM calculates the confidence for each
statistical parameter using a bootstrap procedure, i.e., using
random sampling with replacement, as described elsewhere.43

For the estimation, the analyzed values (e.g., errors between
predicted and experimental measurements or predicted
calculated errors) are used to generate N = 1,000 data sets of
the same size as the analyzed set using the bootstrap. The
statistical parameters are then calculated for each bootstrap set,
thus generating the respective distributions with N = 1,000
values. The confidence intervals are determined using the 2.5
percentile and the 97.5 percentile of the distributions.
Significance. We considered that there was a significant

difference of some statistical parameter if the confidence
intervals calculated for two analyzed values of the parameter did
not overlap. This corresponded to a significance level of p-value
<0.05.

■ RESULTS

Analysis of Duplicated Values. The OCHEM and
Enamine data sets shared n = 3,135 unique compounds, and
there were n = 764 duplicated compounds in the Enamine and
Bradley sets. However, since the most of the Enamine data
were previously supplied together with compound libraries,
there was a possibility that some of these values were included
as part of the OCHEM and Bradley sets. The majority of
Enamine MP values were reported as intervals, ranging from 1
to 42 °C with a std of 2 °C. In contrast, the majority of MP
values in the OCHEM data set were reported as single values.
Since only a few databases and data-modeling approaches
support data as intervals, it is possible that users converted
intervals to single values by taking the mean, minimum, or
maximum temperature as the experimental MP value. Indeed,
the distribution of temperature differences between molecules
found both in Enamine and in the OCHEM and Bradley sets
showed large peaks near 0 ± 5 °C. These peaks covered 77%
and 91% of the observed temperature differences between the
Enamine/OCHEM and Enamine/Bradley data sets, respec-
tively. It is interesting that within these peaks, the average
differences were −0.9 °C and −0.2 °C for OCHEM/Enamine
and Bradley/Enamine, respectively. This suggests that the
general strategy of converting intervals to single values may

have been to use the lower temperature as the reported
experimental MP value.
There were 150 and 21 pairs of measurements with absolute

differences of more than 50 °C in the Enamine/OCHEM and
Enamine/Bradley data sets, respectively. In fact, all 21
molecules from the Bradley set were also part of the
OCHEM set. In addition to experimental variability, com-
pounds with large differences in MP values could appear due to
different isoforms, different crystalline, amorphous, or hydrate
forms, or major errors such as incorrect units, sign, etc. Indeed,
of 150 pairs with large differences, 15 were from the previously
identified problematic group of 117 molecules from the
Enamine data set, and 13 molecules were salts and mixtures
excluded in data-cleaning.

Analysis of CV Results. The models were developed using
11 descriptor sets. The performances of all the models are
reported as Supporting Information, while the results of the
best individual and consensus models are given in Tables 1 and
2.
The Enamine data set had a lower cross-validated RMSE (2−

5 °C) for the training set compared to the OCHEM set. This
result may indicate a higher consistency of data and/or smaller
diversity of molecules in this set compared to the OCHEM set.
Indeed, molecules from the Enamine set are MPs of drug-like
compounds produced by one chemical provider. These data
were measured using the same protocol for compounds with
similar purities. In contrast, the the OCHEM set included data
from various sources.
The ASNN consensus models provided significantly smaller

cross-validated RMSEs than the best individual models for both
sets.

Test Set Performances. The models developed using both
sets give similar performances for the Bergström drug-like data
set. This set has been used as a gold standard in several
studies.13,15,44,45 The results calculated in the current study
have the lowest RMSE of published results for this set.
Models developed using the OCHEM data set provided

excellent accuracy for prediction of the Bradley set. The
consensus model achieved 33.9 ± 0.5 °C on this high quality,
manually curated data set. It also performed well for the
Enamine data set, with a RMSE of 40.1 °C, which is 3 °C
higher than the consensus CV RMSE of 37.2 °C obtained for
the same set.
However, models developed with the Enamine data set failed

to predict the Bradley and OCHEM sets. The RMSE of the

Table 1. RMSE of Models Developed Using the OCHEM Set

method CV, training set Bradley Bergström Enamine

ASNN best (Estate) 41.6 ± 0.4 (38.3)a 36.6 ± 0.6 (37.1) 36 ± 2 (34) 43.1 ± 0.3 (38.7)
ASNN best (Estate) − outliers filtered 41.4 ± 0.4 (38.3) 36.2 ± 0.6 (37.8) 36 ± 2 (34) 42.3 ± 0.3 (37.8)
ASNN consensus 39.2 ± 0.3 (34.8) 33.9 ± 0.6 (33.1) 34 ± 1 (31) 40.1 ± 0.3 (34.6)
ASNN consensus outliers filtered 39.5 ± 0.3 (35.2) 33.9 ± 0.6 (34.4) 34 ± 1 (31) 39.9 ± 0.3 (34.4)

aValues in parentheses are calculated for compounds with experimental MP values in [50; 250] °C drug-like interval.

Table 2. RMSE of Models Developed Using the Enamine Set

method CV, training set Bradley Bergström OCHEM

ASNN best (Estate) 38.7 ± 0.3 (33.9)a 66 ± 1 (40) 44 ± 3 (42) 54.6 ± 0.4 (44.7)
ASNN best (Estate) − outliers filtered 38.3 ± 0.3 (33.8) 64 ± 1 (40.3) 43 ± 3 (39) 53.8 ± 0.4 (44.5)
ASNN consensus 37.2 ± 0.3 (31.5) 73 ± 1 (33.9) 36 ± 2 (33) 51.9 ± 0.4 (36.6)
ASNN consensus outliers filtered 36.8 ± 0.3 (31.3) 71 ± 1 (33.8) 36 ± 2 (33) 51.2 ± 0.4 (36.6)

aValues in parentheses are calculated for compounds with experimental MP values in [50; 250]°C drug-like interval.
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consensus ASNN models for the Bradley set (73 °C) was more
than twice that obtained for models developed using the
OCHEM data set. The consensus model predicted molecules
from the OCHEM set with an RMSE of 51.9 °C, which is more
than 12 °C higher than the best CV RMSE obtained for this set.
Thus, if only the OCHEM or Bradley set is used to judge the
accuracy of predictions, we could conclude that models based
on the Enamine set perform poorly.
The distributions of MPs of compounds in four analyzed sets

(Figure 1) are rather different. The drug-like molecules, which

comprise the Bergström set as well as lead-like compounds
provided by Enamine, have MP values centered around 150 °C.
Indeed, >90% of molecules in both these sets are within the
interval [50,250]°C. Prediction of molecules from this “drug-
like” region is of the greatest interest for medicinal chemists.
The distribution of compounds in the OCHEM set generally
resembles those in the two previous sets, with the exception of
a large number of compounds in the low temperature region.
The most prominent data set is Bradley. This data set has the
largest number of compounds in the region [0,50]°C and many
compounds in the low temperature region.
Figure 2 shows that both consensus models had excellent

accuracy for the central part of the “drug-like” region. The
Enamine model calculated an RMSE <30 °C for subsets of
analyzed sets, which had molecules with MP in the [60,180]°C
interval. The OCHEM consensus model had an RMSE >30 °C
for the same tests. This interval incorporated 73%, 65%, 53%,

and 39% molecules from the Bergström, Enamine, OCHEM,
and Bradley data sets, respectively. For example, in this interval
the accuracy of the Enamine model 29.7 ± 0.5 °C was
significantly higher than the CV results of the OCHEM model
32.2 ± 0.5 °C for the same molecules from the OCHEM set.
Extending our analysis to the whole “drug-like” interval

[50,250]°C, both consensus models gave similar performances
in the range of 31 to 37 °C (see Tables 1 and 2). The CV
results of the training sets of both consensus models were
better for 1.5−3 °C than in their use as tests sets. This was
expected, since the diversity of chemical compounds was the
same for the training and validation sets for the CV results.
The OCHEM consensus model had a smaller RMSE for

compounds with low MP values for both the OCHEM and the
Bradley set. However, this result is probably not applicable to
“drug-like” compounds. Indeed, for Enamine and Bergström
molecules the RMSE increased for MP < 100 °C for both
consensus models. Thus, models have difficulties in accurate
prediction of MPs with low temperature for drug-like
compounds. However, this issue may not be of great relevance
for medicinal chemistry, since molecules soluble at room
temperature are likely to have high solubility, which will not be
a limiting factor for drug optimization.
The least positive observation was that both models had

difficulties predicting molecules with high MPs. The develop-
ment of the errors for high temperature values was very similar
for CV and the Enamine test when using the OCHEM
consensus model. The errors increased less for CV results of
the consensus Enamine model. This may be due to a greater
consistency and quality of the Enamine data set. Presumably
due to the greater diversity of its training set, the OCHEM
model was more accurate for molecules with high temperature
values for the Bergström set.

Filtering of Outliers. Molecules with large differences
between predicted and calculated values could appear due to
errors during data collection, or they could reflect some
fundamental properties of data that were not learned by the
machine-learning algorithm. They could also appear just by
chance due to statistical properties of noise present in the data.
Table 3 reports the number of observed and expected
molecules with large errors for both training sets. The
respective thresholds for detection of outlying molecules in
the consensus models were calculated based on the assumption
that prediction residuals follow a normal distribution. For p =
0.05 both numbers were about the same, while for smaller p-

Figure 1. Data distribution in analyzed sets. Dashed lines indicate the
drug-like region. Enamine molecules (n = 117) soluble at the room
temperature were excluded from the analysis.

Figure 2. RMSE of consensus models as a function of the experimental MP. The lowest calculated RMSE are about 30 °C which are still higher than
estimated experimental accuracy of the data. Enamine molecules (n = 117) soluble at the room temperature were excluded from the analysis.
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values the proportion of molecules with large errors was
significantly higher than can be expected for a normal
distribution.
We used p = 0.01 to filter out the outlying molecules and

recalculated the models. However, in order not to bias
comparison by excluded molecules, all molecules were used
for calculation of RMSE. The filtering of outliers improved the
statistics of individual models. Of 33 predictions (11 individual
models × 3 different sets), for 25 and 22, respectively, the
RMSE decreased, while 6 predictions remained the same for
outlier-free models for the OCHEM and Enamine data sets. A
similar decrease was observed for CV results. However, many of
the changes in individual model performance were not
significant. Not surprisingly, there were no significant changes

of RMSE for the consensus models either, while CV results for
the OCHEM model even increased.

Analysis of Outliers. For the OCHEM and ENAMINE
sets, 394 and 427 compounds were identified as outliers. These
outliers corresponded to less than 2% of the respective training
set. The ENAMINE outliers had RMSEs of about 129 and 130
°C when predicted by the ENAMINE and OCHEM consensus
models, respectively. The same was true for OCHEM outliers,
which had RMSEs of about 144 °C when predicted by both
consensus models. Thus, the outliers were not artifacts of the
respective training sets.
A large number of the outlying compounds, N = 71, of the

Enamine set were compounds with <17 °C values. This is not
surprising, considering that these compounds had extreme MP
values for the Enamine set, and their MPs were not correctly
experimentally determined. We therefore excluded these
compounds from further analysis.
The outliers from the OCHEM data set were analyzed for

possible errors by searching the literature to confirm their
experimental data. The analysis identified that for three
outlying compounds, the provided values were for the salt
form. These compounds were excluded from further analysis.
In three cases the error was reporting of wrong units (K instead
of °C), and in two cases the minus sign was missed. For 45
other compounds additional experimental values were found.
Using the new values decreased the RMSE of the consensus
model from 170 to 43 °C for n = 51 compounds.

Table 3. Number of Outlying Compounds with Large
Differences between Experimental and Predicted Values for
the Consensus Models

OCHEM ENAMINE

significance value estimated observed estimated observed

p = 10−5 0.22 45 0.22 52
p = 10−4 2.2 82 2.2 99
p = 10−3 22 165 22 183
p = 0.01 219 394 224 427
p = 0.05 1094 957 1120 1034

Table 4. Examples of Functional and Reactive Groups Overrepresented in the Outlying Compoundsa

aSee the superscript 1 in the first row: Calculated using the hypergeometric test.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci5005288 | J. Chem. Inf. Model. 2014, 54, 3320−33293325



The remaining 696 compounds were analyzed to identify
which molecular features could contribute to low prediction
accuracy for these compounds. Both chemical functional groups
and functional alerts used by chemical providers and pharma
companies to flag reactive and unstable groups were calculated
using ToxAlerts.46 The frequencies of groups in the set of
outlying molecules were compared to those in the combined
OCHEM+ENAMINE set, using the SetCompare module
integrated into the OCHEM platform. We found that
functional groups that could lead to degradation of chemicals
and thus decomposition during storage or/and heating were
significantly overrepresented in the set of outlying compounds
(see Table 4). The full list of groups is available on the article
Web site.
Estimation of Errors. As described in the Methods section,

the standard deviation of the consensus model members
(CONSENSUS-STD) was used to estimate the prediction
accuracy (Table 5). Both consensus models predicted higher
RMSEs for the Bergström set than the actual calculated values
(the estimates were pessimistic). This result may reflect the
higher quality of data in the Bergström set compared to either
training set. In a similar manner, the OCHEM model predicted
higher errors for both the Bradley and Enamine sets. As already
mentioned, both these sets had higher consistency and accuracy
compared to the OCHEM set. That is why the estimation of
errors derived using a noisier set overestimated errors for the
cleaner sets. The Enamine consensus model predicted much
lower errors for the Bradley and OCHEM sets compared to the
calculated values. Compounds with extremely low and high
MPs, which are poorly predicted by the Enamine consensus
model, have chemical features that are not correctly predicted
by this model. By making predictions for these compounds, the
model apparently goes outside its applicability domain
(AD).20,47 Thus, it would be beneficial to eliminate compounds
with predictions outside the AD.
In several of our previous studies we used distance to model

(DM), covering 95% of compounds from the training set, as a
threshold for the model AD.9,43,48,49 We used the same
definition in the current study. Of 2262 molecules with MP < 0
values, only <10% were recognized as outside the AD using this
DM. Following a suggestion by the reviewers, we analyzed
whether the distance to the nearest neighbors could provide a
better definition of the model AD. The descriptors from all
descriptor packages were processed using the same default
protocol used for model development and were standardized to

have a zero mean and a standard deviation of 1. Distances to
the nearest neighbor as well as exponentially weighted distances
to all neighbors in the training set, as defined by Nigsch et al.,10

were used to calculate DMs. As with CONSENSUS-STD, the
thresholds for AD were identified as values covering 95% of the
training set molecules. The distance to the nearest neighbor
and weighted distance were able to identify 18% and <10%
compounds with MPs <0 °C as outside the ADs. Thus, three
analyzed DM measures did not recognize the majority of
molecules with extreme MP values as outside the AD.

Which Is More Important: Data Quality or Data
Amount? When the first author is asked which is more
important for a model, “data or a brilliant machine-learning
method”, he always answers “data and, in particular, their
amount”. Indeed, data even without any machine learning
already provide an “excellent” model for predicting compounds
with experimental quality. However, the applicability domain of
this “data-only” model is its training set and no more; it cannot
predict new compounds. When developing a machine-learning
model we extend the applicability domain of the “data-only”
model, but even the best machine learning methods cannot
extrapolate far beyond the chemical space covered by the
training set. The bigger data sets provide larger applicability
domain, and thus the amount of data is absolutely critical for
the success of modeling.
Confirming this statement, we developed consensus models

using both gold standard sets. These models provided
significantly lower accuracy for prediction of the respective
test sets compared to the results obtained with the Enamine
and OCHEM data sets (Table 6). It is interesting that the
model developed with the Bradley set provided better accuracy
of predictions for the drug-like region than the model based on
the “drug-like” Bergström set. Indeed, the figure of 1,532
compounds from the Bradley set within this temperature
interval was still five times greater than the entire Bergström
set. The consensus model developed with the OCHEM set
predicted Bergström and Bradley sets with lower RMSEs
compared to their CV RMSEs. Thus, the higher data availability
allowed us to obtain better models and calculate smaller
prediction errors.

Statistical Properties of the Final Model. The final
model (Table 7) was developed by merging all four data sets
and using the corrected MP data for molecules with confirmed
errors. No outlying molecules were excluded. The accuracy of
the model for molecules with MPs in the “drug-like” interval

Table 5. Estimated and Calculated RMSE for the Consensus Models

OCHEM Enamine

data set estimated calculated estimated calculated

OCHEM 43.9 ± 0.5 51.9 ± 0.4 (49.9 ± 0.4)
Enamine 42.3 ± 0.4 40 ± 0.3 (39.8 ± 0.3)a

Bradley 41 ± 1 33.9 ± 0.5 (32.5 ± 0.3) 40 ± 1 73 ± 1 (73 ± 1)
Bergström 42 ± 4 34 ± 1 (34 ± 1) 44 ± 4 36 ± 2 (33 ± 1)

aValues in parentheses are calculated for compounds with experimental MP values in the [50; 250]°C drug-like interval.

Table 6. Consensus Models RMSEs Developed Using High Quality Sets

data set Bergström Bradley OCHEM Enamine

Bergström 39 ± 2 (35)a 103 ± 1 (49) 71 ± 1 (47.1) 54.9 ± 0.3 (47.5)
Bradley 38 ± 2 (35) 34.6 ± 0.6 (36.8) 44.6 ± 0.4 (40.3) 43 ± 0.3 (37.4)
OCHEM 34 ± 1 (31) 33.9 ± 0.6 (33.1) 39.2 ± 0.3 (34.8) 40.1 ± 0.3 (34.6)

aValues in parentheses are for compounds with experimental MP values in the [50; 250]°C drug-like interval.
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was very similar (RMSE of 31.5−33.7) for all four sets. In
contrast, there was a large discrepancy in the RMSE values for
molecules with MPs outside this interval. The molecules from
the Bradley set had the lowest error of 32 °C, while molecules
from “drug-like” sets had an RMSE of about 60 °C.

■ DISCUSSION AND CONCLUSIONS
In the present study, we collected and made publicly available
the largest data set with MP data obtained from over 50
different sources and containing more than 47k unique
measurements. These data can be used to develop and validate
new models for predicting MPs of chemical compounds.
Following our analysis of distributions of MPs in the

Bergström and Enamine sets, we found that about 90% of
compounds in both sets had a MP in the range [50,250]°C.
These two sets were composed of drug-like and lead-like
structure compounds; they represent typical molecules from
drug discovery projects. The identified temperature interval is
thus of utmost importance for practical applications in the field
of medicinal chemistry. Using four different sets, we found that
the developed models achieved an average RMSE of 31−36 °C
for molecules in this temperature interval; the final consensus
model had an average RMSE of 33 °C for all four sets. The
excellent accuracy of the developed model will be important for
widespread use in the drug discovery field. The accuracy of
models outside the “drug-like” space was around 60 °C for the
Bergström and Enamine sets. Thus, accurate prediction of MPs
in these regions remains a challenge. However, these data
regions contained less than 10% of the data sets and, further,
presumably had a higher level of experimental errors.
Since the molecules with high and low temperatures are

incorrectly predicted, it would be a great advantage to be able
to identify them and thus warn a user about potential problems
with accurate prediction of their values. We attempted to do
this using the applicability domain (AD) as identified by
CONSENSUS-STD and two approaches based on the nearest
neighbor distance to model (DM). The DMs used were unable
to correctly identify and filter out molecules with MP < 0 and
thus large errors from the data set. It is interesting that the
simplest measure, distance to the nearest neighbor, provided
the best (but, unfortunately, still insufficient for practical use)
discriminatory power. This negative result indicates a strong
need to find a new and better definition of DM measures that
could be employed for such a purpose. The provided data could
be used as an excellent benchmark for comparison of different
AD approaches. A strong need for such data was discussed by
leading AD experts, who presented new innovative approaches
to this field12,40,50−54 at the recent Gordon conference on
Computer Aided Drug Design (West Dover, 2013).
The results presented in this study were based on consensus

modeling. Simple averaging of model predictions developed

with individual descriptors dramatically increased the accuracy
of the final model. The packages were contributed by different
groups of OCHEM collaborators ranging from individuals to
academic groups and SMEs. Their combined use in the
consensus model allowed us to increase the diversity of
chemical structure representation, which was one of the
requirements for successfully modeling MPs identified by
Hughes et al.15 Similar results were obtained with other
methods (not shown). An attempt to develop models using all
descriptors provided higher RMSE than the consensus model
(results not shown). This could be related to a problem with
learning of neural networks, which could stack in local minima
due to the high dimensionality of data.
We have shown that data availability is likely to be at least as

important as data quality. Indeed, models developed with high
quality data had lower prediction accuracies than those based
on larger data sets as shown in Table 6.
We also showed that consensus modeling had a low

sensitivity to the presence of outlying molecules. The latter
result can be explained by the fact that, depending on the
descriptors used, the outlying molecules bias the individual
models in different directions in the different descriptor spaces.
The consensus model averages these biases and thus cancels
out their effects. This contributes to its high prediction
accuracy.
We strongly acknowledge the importance of preparing large,

highly curated data sets, such as the Bradley set used in this
project. The availability of such sets is very important in
comparing the performances of models. Indeed, without the
Bradley and Enamine sets, we would have difficulty in
evaluating the performance of the OCHEM models using the
Bergström set only. Because of the small size of this set, it has
wide confidence intervals for RMSE. These intervals overlap for
the best individual and consensus model, making it impossible
to draw conclusions about a significantly higher performance of
the consensus model.
In summary, we have collected the largest public data set of

compounds with melting point data. We analyzed the
distribution of MP values in drug- and lead-like data sets and
identified the temperature interval with the greatest importance
for medicinal chemists. We showed that the developed models
achieved excellent accuracies for this temperature interval, and
we analyzed the origin of outlying predictions and demon-
strated the power of consensus modeling. The data sets and
models are freely available and can be used to predict new
compounds or develop new models at http://ochem.eu/
article/55638. Although analyzed distance to models could
not filter out predictions, which had MP values outside those in
the training set and thus outside the applicability domain of the
models, we view this positively as a challenge for the scientific
community to contribute better approaches to determine the
applicability domain of models.
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