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ABSTRACT 
Alzheimer’s disease is a neurodegenerative pathology with unmet clinical needs. A 

highly desirable approach to this syndrome would be to find a single lead that could 

bind to some or all biomolecules that participate in the amyloid cascade, the most 

accepted route for Alzheimer disease genesis. In order to circumvent the challenge 

posed by the sizable differences in the binding sites of the molecular targets we propose 

a computer assisted protocol based on a pharmacophore and a set of required 

interactions with the targets, screened by a combination of docking and molecular 

dynamics protocols. The original scaffold allowed us to identify a set of carbazole 

containing compounds that initially showed affinity only for the cholinergic targets in 

our experimental assays. Two cycles of design based on our protocol led to a new set of 

analogues that were synthesized and assayed. The assay results revealed that the 

designed inhibitors improve their affinity for BACE-1 by more than three orders of 

magnitude, as well as displaying amyloid aggregation inhibition and affinity for AChE 

and BuChE, a result that led us to a group of multitarget amyloid cascade inhibitors that 

also could have a positive effect at the cholinergic level.  
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INTRODUCTION 
Alzheimer’s disease (AD), a cerebral neurodegenerative pathology that is the main 

cause of dementia in older people, is characterized by the progressive formation of 

insoluble amyloid plaques and fibrillary tangles. In spite of the enormous efforts carried 

out by academic institutions and pharmaceutical industry, AD is an illness with unmet 

needs since the only drugs available in clinic (i.e., Acetylcholinesterase (AChE) 

inhibitors and a NMDA receptor antagonist) have a palliative effect and do not modify 

the course of the disease.1 

The most accepted hypothesis for the origin of AD is the one related to the amyloid 

cascade, which singles out the aggregates and fibrils of the amyloid peptide (Aβ, a 

peptide of 40 or 42 residues) as the cause of AD, since their presence interrupts the 

synaptic connections and precludes the right inter-neuron orientation.2,3 The Abeta 

peptides are produced by the hydrolysis of the amyloid precursor protein (APP) by two 

aspartic proteases (γ-secretase and BACE-1). The last decade has witnessed an all out 

effort to discover inhibitors of these two enzymes that could become drug leads for the 

treatment of AD, but all the candidates have failed either at pre-clinical or clinical 

stages.3 The inhibition of Aβ peptide aggregation has become an important target for 

drug lead discovery in itself, although no Abeta aggregation inhibitor has surpassed the 

clinical assays either.1 On the other hand Inestrosa et al.4 have shown that the peripheral 

anionic site (PAS) in AChE could be a therapeutic target, since it is a nucleation site for 

the amyloid Abeta peptide aggregation and hence its inhibition could hinder this 

process. Finally, the leads that bind AChE, could also bind butirylcholinesterase 

(BuChE), and hence have a bearing on the cholinergic pathway by precluding the 

hydrolysis of acetylcholine and probably enhancing (albeit temporarily) cognition in 

AD patients.  

The multiplicity of amyloid cascade AD targets (described above) opens the door to a 

new approach towards single molecule polypharmacology, which entails the search of a 

molecule that could bind to all or some targets of the amyloid cascade. This novel 

paradigm which deviates radically from the one target one molecule strategy has 

recently received increasing attention.5-7 Probably the major hurdle in the search for 

multitarget leads lays on the substantial structural and sequence specificity differences 

amongst the binding sites of the amyloid cascade targets, which hinders drastically this 

therapeutic strategy.6 These differences are especially noticeable between BACE-1 and 

the other amyloid cascade targets like AChE and Abeta peptides aggregation. It has 
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been shown that the compounds aimed at these latter targets share some common traits 

(like the presence of aromatic moieties), an issue that explains the large body of work 

on this multitarget subset.7 It would be desirable to find a systematic computer assisted 

protocol leading to compounds that bind to the largest set of amyloid cascade targets. 

Herein we postulate the existence of a pharmacophore for multitarget approach to the 

amyloid cascade of AD, which bears some of the traits of the know leads that bind a 

variety of amyloid cascade targets.5-7 This scaffold could be used for systematic search 

of novel multitarget leads. As a proof of concept, our pharmacophore has enabled us to 

identify in the literature some candidates bearing the structural requeriments of our 

proposed scaffold.8 Nevertheless, the results of our experimental binding assays indicate 

that although these compounds bind AChE, they have a modest fibril inhibition and 

display much lower affinities for BACE-1. Our main endeavour in this work was to 

generate congeneric ligands with better affinities for the all the amyloid cascade targets. 

For this sake we developed a protocol that relies on molecular docking based screening 

for the enzyme targets and molecular dynamics simulations for peptide aggregation in 

order to search for more potent analogues of our starting candidates. The main novelty 

of the protocol elaborated by us is that it allows for systematic search of multitarget 

leads and their subsequent optimization, given the fact that our hit docking poses should 

comply with the set of inhibitor-protein interactions assigned to our pharmacophore. 

Review of the predicted docking poses in AChE and BACE-1 revealed possible ways of 

enhancing binding affinity. Two cycles of design based on our protocol lead to a new 

set of analogues that were synthesized and assayed. The assay results revealed that the 

designed inhibitors improve their affinity for BACE-1 by more than three orders of 

magnitude, as well as showing affinity for amyloid aggregates, AChE and BuChE, a 

result that led us to a group of truly multitarget candidates that interrupt the amyloid 

cascade while having a positive effect at the cholinergic level. 

Furthermore, our results have allowed us to explore some basic questions that relate to 

molecular recognition issues in the different amyloid cascade targets, including the 

charge state of the BACE-1 main anchoring group and the way in which the best leads 

may interrupt the amyloid peptide aggregation. 
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Multitarget amyloid cascade pharmacophore.  

Our pharmacophore was built by identifying the specific moieties that are recognized by 

the binding pockets of the different amyloid cascade targets. For instance, an essential 

feature in BACE-1 inhibitors is a functional group (such as hydroxyethylene, 

hydroxyethylamine, guanidium, etc.) which is able to interact through hydrogen bonds 

and ion pairs with the Asp dyad, the catalytic machinery of this enzyme.9 Our choice for 

this kind of functionality has been based on recent studies in our lab that have identified 

the hydroxyethylamine as an Asp dyad anchor which favours good performance at 

cellular level.10,11 On the other hand, an overview of the AChE inhibitors indicate that 

many of them contain one or two aromatic moieties which interact through π-stacking 

interactions with clusters of aromatic residues present both in the catalytic anionic site 

(CAS) and in the peripheral binding site (PAS).12 Both AChE binding sites are 

separated by a long gorge. Hence, our ideal AChE inhibitor should include an optimum 

length spacer that will connect the aromatic moiety residing in the CAS with the one at 

the PAS. If we accomplish this aim, the resulting lead should have both a palliative 

effect on AD and hinder amyloid aggregation. Finally, some of the amyloid aggregation 

inhibitors share with the AChE ligands a common feature, that is, the presence of 

aromatic groups that target some of the residue clusters rich in aromatic residues present 

in the amyloid peptide (such as the LVFFA segment). Hence, a multitarget 

pharmacophore and its possible interactions in the amyloid cascade binding sites could 

be described by a scheme such as the one presented in Figure 1. A number of the 

features that appear in this pharmacophore have been used in the search of multitarget 

cascade leads.5-7 Herein we demonstrate that the pharmacophore described could be 

used for multitarget screening and subsequent lead optimization. 

 

 
Figure 1. Schematic view of our multitarget pharmacophore (red) bound to the Asp dyad of 
BACE-1 (blue) and to the CAS and PAS of TcAChE (black). 
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The computer assisted search for candidates based on the pharmacophore shown in 

Figure 1 lead us to find some compounds (1) (see Figure 2) with neurogenerative and 

neuroprotective properties in mice.8 Nevertheless, the molecular therapeutic targets for 

these compounds have not been identified. The stated aim of the study that led to these 

compounds in the first place was to find analogues of dimebon, a carbazole derivative 

that in itself showed good promise in AD assays in animals but failed in phase three 

clinical trials.13 Moreover, other carbazole derivatives have shown to be good Abeta 

aggregation inhibitors.14 As seen from structure 1 in Figure 2, these compounds present 

all of the structural features that make them good leads for all amyloid cascade targets. 

On one hand the hydroxyethylamine moiety provides an anchor for BACE-1 binding, 

while the aromatic moieties on both ends (carbazole and substituted phenyl groups) 

could be a source of affinity of these compounds for AChE and Aβ peptide oligomers. 

Based on this information we decided to investigate if the original group of compounds 

(1) owed its beneficial properties at the CNS level to their binding to some of the 

amyloid cascade targets, and whether we could produce analogues with better affinity 

for a wider range of amyloid cascade targets.  

 

 

 
Figure 2. Structure of dimebon and its analogues (1) studied in this work.  

 

COMPUTATIONAL METHODS 

Docking protocols. We carried out the docking simulations with the suite of modules resident 

in the program GOLD.15 For each docking run we employed a minimum of 100,000 and a 

maximum of 1,250,000 genetic generated poses. We scored the poses with three of the scoring 

functions resident in GOLD (i.e., GoldScore,16,17 ChemScore18-20 and ChemPLP21 ). 
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Docking to BACE-1. One of the most outstanding structural features of the active site 

of BACE-1 is a residue segment that forms a flap (residues 69 to 75) whose 

conformational variability allows for a great variety of binding poses for those 

inhibitors differing in size and shape.9 This loop, which forms part of the S1 pocket, 

closes in onto the active site during substrate catalysis. There are inhibitors that bind 

explicitly to the flap avoiding its closure and hence hampering catalysis. Perusal of the 

many BACE-1-inhibitor complex structures indicates that the flap presents a wide 

variety of openings depending on the inhibitor’s chemical nature. In order to take into 

account the flap variability in our docking calculations, we have carried out our docking 

simulations with three protein templates that differ in the opening of this loop. The first 

of these protein structures comes from the complex between BACE-1 and the peptide-

mimetic inhibitor OM99-2 (PDB entry 1FKN) and has a closed flap.22 The second 

structure has a non-peptidic inhibitor bound to the enzyme with a middle range opening 

of the flap (PDB entry 3KMY),23 while the last template was obtained from the 

unbound structure of BACE-1, and has a fully opened flap (PDB entry 1W50).24 Figure 

3 exhibits the superposition of these three structures with the flap structures displayed in 

different colors.  

 
 
Figure 3. Superimposition of 1FKN, 3KMY and 1W50 protein ribbon structures. The flap loops 
are colored in green, blue and red respectively.  
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Our previous studies, which combined SPR binding experiments with molecular 

mechanics based calculations, predicted that the Asp dyad in BACE-1 has a 

monoprotonated state (at pH values ranging from 4.5 to 7.4) when bound to compounds 

with a hydroxyethylamine moiety.10 Thus, we assigned this Asp dyad state to BACE-1 

in our BACE-1 docking screening calculations.	On the other hand, the aniline present in 

our compounds could be protonated or neutral at the acidic pH (4.5-5.0) at which the 

experimental assays are carried out. For this reason docking simulations for these 

compounds were carried out both with neutral and protonated anilines.  

As a first step we cleaned up the target structures mentioned above, eliminating the 

crystallographic water molecules, discarding alternative conformations and adding 

hydrogen atoms, by using the Discovery Studio (DS) modules.25 We defined the 

targeted binding site for GOLD docking to these proteins as all the atom residues that 

were within 6Å of the inhibitor in the 3KMY complex.  

For each of the structures differing in the flap opening, we then performed docking 

calculations with one of the three scoring functions (ChemScore, GoldSCore and 

ChemPLP). In each of the runs we searched for the presence of a single hit pose 

amongst the top ten docking resulting poses. We define a hit pose as the one that will 

fulfill the hydrogen bond pattern between the hydroxyethylamine fragment and the Asp 

dyad shown for our pharmacophore in Figure 1. Global success rates for every 

compound candidate were calculated by adding up the number of single hits of the 

docking simulations carried out with the three scoring functions for our three protein 

templates differing in the flap opening described above.  
 
Docking to AChE. For the docking predictions to this target we used the X-ray 

structure of Torpedo californica (TcAChE) complexed with a bis-tacrine analogue 

(PDB entry 1ODC).26 A close up of the binding pose is shown in Figure 4.  
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Figure 4. Close up to the binding of the bis-tacrine analogue indicated to both binding sites 
(CAS and PAS) in TcAChE (from PDB entry 1ODC). The inhibitor is shown in blue and the 
aromatic residues in green. Notice the π-π interactions between the aromatic moieties and the 
side chains of residues Trp 84 and Phe 330 at the CAS and with residues Tyr 70 and Trp 279 at 
the PAS.  
 
In the same way as for BACE-1, we cleaned up the target structure (PDB id 1ODC), 

eliminating the crystallographic water molecules, discarding alternative conformations 

and adding hydrogen atoms, by using the Discovery Studio (DS) modules.25 We defined 

the binding site as all the AChE atom residues that lay at 6 Å from the ligand of this 

complex (i.e., the bis-tacrine analogue). Again, the docking conformations generated by 

the genetic algorithm were evaluated by the same scoring functions used for BACE-1. 

In each run the top ten poses were screened for compliance with the face-to-face π-

stacking interactions that will optimize the inhibitor affinity both at the CAS and PAS in 

AChE, as shown in Figure 1 and exemplified by the bis-tacrine analogue in Figure 4. In 

the same way as in BACE-1 the hit success rate was determined by searching for a hit 

amongst the top ten poses for the docking simulations evaluated with our three scoring 

functions. Global success rates were calculated by adding up the number of single hits. 

 
Aβ  aggregation inhibition protocol. As we explained in the introduction, one of the 

therapeutic targets is the inhibition of the Aβ peptide oligomerization that leads to the 

neuronal toxic species. These peptides do not have a unique binding site for the ligands 

as in the case of other AD amyloid cascade enzymatic targets. Depending on the nature 

of the ligand, there are multiple binding sites that share similar sequence motifs. For 

instance, some aromatic moiety inhibitors tend to bind to aromatic residue clusters 
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present in the LVFFA segment of the amyloid peptide.27 Hence, many in silico 

aggregation inhibition studies merge docking protocols with molecular dynamics (MD) 

simulations.28 We have explored a different approach recently developed by the group 

of Caflisch.27a It consists in analyzing lengthy MD simulations of a segment of the Aβ 

peptide (Aβ12-28) in the presence of a given candidate. This peptide fragment has been 

chosen for several reasons. Firstly, the first 11 residues were omitted since they lack any 

definite secondary structure in some NMR amyloid aggregate structures.29 Moreover, 

the selected segment contains one of the regions (LVFFA) around which a beta hairpin, 

the template for Abeta aggregation forms, and is also one of the ligand’s binding spots 

for a number of ligands.27 Finally, this segment has been used in NMR based 

experiments to study ligand binding locations.27b  

Our extensive MD calculations were carried out with the CHARMM PARAM-19 force 

field,30 which employs an extended atom approximation for all carbon atoms. 

Protonation states of all titratable residues were considered at neutral pH. In particular 

the side chains of the His residues were assigned a neutral charge, whereas the basic 

residues (Arg/Lys) and the acidic residues (Asp/Glu) were assigned either a positive or 

a negative charge respectively. We used an implicit solvation protocol called FACTS 

(Fast Analytical Continuum Treatment of Solvent), an efficient generalized Born (GB) 

implicit solvation model developed in Caflisch’s group,31 which includes a solvent 

accessible surface of the solute for the non-polar contribution.  

MD Simulations were carried out with periodic boundary conditions at a fixed peptide 

concentration of 2.5 mM (87 Å cubic simulation box) using the Langevin integrator at 

low friction (coefficient of 0.15 ps-1) and at a temperature of 300 K. Using a time step of 

2 fs, for each system, we performed five independent runs which added up to a 5 µs 

trajectory. Each of the starting structures contained the peptide in an extended 

conformation together with the inhibitor candidate in a different position. We also used 

as a reference the simulations of a peptide with the known aggregation inhibitor 9,10- 

anthraquinone and the ligand-free peptide. The initial structures were subjected to two 

energy minimization runs, which began by a 500 steps steepest descent run followed by 

a 50,000 steps conjugate gradient calculation. In each case the gradient tolerance was of 

0.001 kcal/(mol·Å2).  Then, heating stage and a thermal MD equilibration stages 

spanning 0.5 ns each were carried out, followed by the production stage described 

above. 
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Since every MD simulation takes a month wall clock computer time we had to select the 

kind and number of compounds used in our calculations. For instance, for the indole 

derivatives we performed simulations only on one aniline and two benzylamine 

containing compounds (see below). Our simulations were then used to calculate the 

average residency time of the ligand around the peptide and around every residue of the 

peptide, as well as the effect of the ligand on the secondary structure of the peptide. The 

statistical significance of these results is provided by the standard deviations based on 

the individual trajectories. 

 

RESULTS 

1. First lead optimization: Carbazole derivatives. 

1.1. BACE-1 ligand screening 

The first set of compounds studied were the carbazole derivatives bearing an aniline 

moiety with a substituent either in ortho or meta positions, that originally showed 

neuro-protective and neuro-generative activity in mice.8 From this study we chose a 

subset whose chemical structures and docking results data are displayed in Table S1 in 

the supporting info, while the global docking success rates (see methods section for 

details) are shown in Figure 5. As seen from Figure 5 and Table S1, the compounds that 

have a methoxy substituent at the aniline either in the ortho (compound 1d) and at the 

meta position (compound 1g) are the ones that show the widest consensus as a possible 

BACE-1 inhibitor. The better fit displayed by these compounds could be the result of 

reduced steric clashes, given that they are the smallest candidates in this list. For the 

same reason, our predictions indicate that the smaller ligands bind to BACE-1 with any 

of the three flap openings (see Table S1). Nevertheless, given their size, it is doubtful 

that these ligands could span both the CAS and PAS in AChE, and hence become 

multitarget leads  

Perusal of the results in Figure 5 and Table S1 shows that the available hits are obtained 

almost exclusively when the docking calculations are carried out with a charged ligand. 

Actually, only two of the seven compounds (1e, 1g) display some hits when neutral. 

This result is in line with our previous studies,32 which indicate that there is an 

enrichment in the number of predicted poses close to those observed experimentally 

when the ligand is charged. 
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Figure 5. Global docking success rates for BACE-1 as provided by the number of single hits 
across flap openings and docking scoring functions. Neut and Prot indicate weather the ligand is 
neutral or protonated.  
 
The pKa of the protonated amino group belonging to the aniline moiety, for these 

compounds in solution, is ca. 4.7, a value that is close to the pH at which the binding 

assays are performed. Replacing the aniline by a benzylamine moiety would likely 

increase the pKa value of the amino group and hence the likelihood of being charged, an 

outcome that probably will boost the number of predicted BACE-1 binders. Figure 6 

displays the global hit success for benzylamine containing compounds substituted in 

ortho (upper panel) and meta (lower panel). The detailed data for these docking 

calculations are shown in Tables S2 and S3. Comparison of the number of single hits 

amongst the top ten exit poses between analogous aniline (Table S1 and Figure 5) and 

benzylamine compounds (Tables S2/S3 and Figure 6), indicates a substantial hit rate 

increase for benzylamines above those calculated for the aniline containing compounds, 

an outcome that validates our design premises. 
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Figure 6. Global hit success that result from the docking to BACE-1 of protonated ortho (upper 
panel) and both neutral and protonated meta benzylamines (lower panel). R and S indicate the 
two possible enantiomeric configurations of these compounds. 
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Perusal of Figure 6 indicates that the benzylamine substitution pattern has also a bearing 

in the number of possible hits. The results would seem to indicate that the ortho is 

favoured over the meta substitution at the benzylamine moiety. For instance amongst 

the top ten poses, the number single hits with ortho substitution is twice the number of 

hits with the meta substitution (see Tables S2 and S3). Nevertheless, there seems to be 

exceptions (e.g., see compounds 3e when the hydroxyl group is in the R configuration), 

which had a number of hits comparable to the analogous ortho derivative (i.e., 

compound 2e when the hydroxyl group is in the S configuration).   

 
For the compounds bearing a benzylamine fragment we also analyzed the effectiveness 

of each stereoisomer. The results shown in Figure 6 do not show a clear predilection for 

a given enantiomer, as changes at the end points of the candidate compounds seem to 

change the preference. For instance in the case of the compounds containing meta-

benzylamines, those compounds that bear two Br atoms on the carbazole favour a R 

configuration (compounds 3e and 3f), while those that replace both Br atoms by H 

atoms favour a S configuration. Nevertheless, these configuration patterns do not seem 

to hold for the ortho-benzylamine bearing compounds.  

 

1.2. AChE ligand screening 

Figure 7 displays the global hit rate for protonated anilines and benzylamines 

(substituted in the ortho position), while Figure 8 depicts the number of hits for the 

compounds bearing benzylamines substituted in meta. As seen from these figures, there 

is a wide consensus amongst the scoring function results, indicating that these 

compounds are good candidates for AChE inhibitors, in most cases independently of the 

stereochemistry of the hydroxyl group and the charge of the hydroxylethylamino group. 

Comparison with the BACE-1 docking results described above indicates that the 

number of predicted hits for AChE is substantially larger than those for BACE-1, 

implying that there are fewer hurdles for finding a candidate that will fulfil the 

pharmacophore requirements for the former enzyme.  
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Figure 7. Global hit rate resulting from the AChE docking screening of the protonated ortho 
substituted anilines (left) and benzylamines (right). The hit search was carried amongst the top 
ten poses resulting from three docking calculations each carried out with a different scoring 
function (ChemScore, GoldScore and ChemPLP).	
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Figure 8.	Global hit rate resulting from the AChE docking screening of the compounds with a 
meta substituted benzylamine. For each molecule we studied the effect of the stereochemistry of 
the hydroxyl group (R, S) and the protonation state of the amine group.The hit search was 
carried amongst the top ten poses resulting from three docking calculations each carried out 
with a different scoring function (ChemScore, GoldScore and ChemPLP). 
 
 
The scoring function values for aniline and benzylamine containing compounds are listed in 

Tables S4 and S5. Perusal of Table S4 and Figure 7 indicates that the shorter compounds, like 

1a, 1d, 2a and 2d (those bearing a methoxy substituent) have no hit according to our 

pharmacophore definition, as shown in Figure 1. Scrutiny of the binding poses for a methoxy as 

compared to a benzyloxy substituted compound (Figure 9) indicates that the former ligands 

derive their worse performance from their inability to bind both to the CAS and PAS in AChE. 

As seen from Figure 9 the carbazole moiety interacts in the CAS with residues Tyr 84 and Phe 

330 through π stacking interactions. The shorter ligand is not able to reach the PAS in AChE 

and hence to generate these types of interactions with Tyr 70 and Trp 279.  

 

 

 

 

 

 

N
OH H

N

X

Y

3b: X = Y = H, R = OBn
3c: X = Y = H, R = OCH2CH2Ph
3e: X = Y = Br, R = OBn
3f:  X = Y = Br, R = OCH2CH2Ph
3g: X = Br, Y = Me, R = OBn
3h: X = Br, Y = Me, R = OCH2CH2Ph

R

0 

1 

2 

3 

R S R S R S R S R S R S 

3b 3c 3e 3f 3g 3h 

N
um

be
r o

f h
its

 

Candidate ID 

Neut 

Prot 



 17 

 
 

 
Figure 9. Docking of compounds 2d (upper panel) and 3b (lower panel) into AChE. 
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1.3. Inhibitor Aβ12-28 peptide interaction results. 

Table 1 lists the fraction residence times for 9,10-anthraquinone (a reference compound) 

and for some carbazole containing compounds, up to 7.5 Å from the peptide. We have 

also calculated the residence time of these ligands around every residue of the peptide 

with a cut-off distance of 4.5 Å (see Figure 10) and the residue-residue interaction in the 

absence and presence of the ligands (see Figure 11 and S4). As seen from Table 1, the 

candidate compounds have a much larger residence time than the reference ligand. 

Moreover, the selected compounds display a bigger preference (than the reference 

compound) for the binding hot spots centered on both the His cluster at the N terminal 

end and on the aromatic cluster found at the LVFFA segment.   
 
Table 1. Fraction residence time for contacts peptide-ligand up to 7.5 Å.  
 

Candidate Contact Time 
1b 0.93 
1c 0.90 
1d 0.99 
1f 0.99 

anthraquinone 0.36 
	
	
	

	
 
Figure 10.  Ligand-peptide residues fraction contact times. Cut-off distance is set at 4.5 Å. 
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Ligand-free peptide 

 
 

1b    1c 

	
	

1d	 	 	 	 1f	

	

	
	

Figure 11. Residue-residue contact map in the absence (top panel) and in the presence of 
inhibitors. The colour scale shown above indicates the fraction residence times.  
 
An important issue is the effect of the ligand on the secondary structure of the peptide. 

The Aβ peptide, which originates from APP hydrolysis, originally adopts a helix 

structure. As amyloid aggregates are formed, there is a change of conformation that 

leads to a beta hairpin, specifically around the DVGS motif. For instance the NMR 

structure of a pentamer29 shows clearly that the peptides organize themselves forming 

hairpins that aggregate as sheets. As seen from Figure 11 and S4, the ligands would 

seem to partially preclude the formation of this secondary structure motif (turn) in a 

monomer, a process that may lead to reduced aggregation. Hence, it may be surmised 

that the residue-residue contact map in the presence of a ligand may give us a measure 

of the inhibitory aggregation effect of our candidates.  
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1.4. Synthesis and experimental assays for carbazole containing compounds.  

The synthesis of several carbazole-containing compounds was carried out following 

Scheme 1, which includes the list of synthesized molecules. Carbazole-epoxide 10 was 

prepared as described in the literature from carbazole (8) and epichlorohydrin 9.8,33 

Regioselective ring-opening of epoxide 10 with different ortho-substituted anilines 11 

in the presence of Mg(ClO4)2 in acetonitrile,34 afforded carbazole compounds 1 in 

moderate to good yields. Similarly, as shown in Scheme 1, carbazole analogues 3 were 

synthesized by ring-opening of carbazole-epoxide 10 with meta-substituted 

benzylamines 12. The choice of compounds was guided in many cases by the 

availability of the reactants. Although in the case of benzylamines the compounds with 

an ortho substituent seem to show a wider consensus as BACE-1 inhibitors across all 

scoring functions (see Figure 6), they require a more elaborated and expensive 

chemistry. For this reason, we chose the best scoring candidates with a meta substituted 

benzylamine (3e and 3f).  

 

 
	

Scheme 1. Synthetic route and carbazole derivatives synthesized. 
 
The results for the experimental binding assays in BACE-1, AChE and BuChE, as well 

as the ThT Aβ aggregation inhibition are shown in Table 2. As seen from this table, 
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inhibitors. For instance, compounds 1e and 1f display µM affinity for AChE and Aβ 

inhibition percentage of ca. 50% at 100 µM peptide concentration, values that are 

superior to 9,10-anthraquinone (30% at 100 µM).35 On the other side compound 1a, 

displays µM binding for BuChE, and 58% percentage of inhibition of the fibril 

formation. Nevertheless, none of the carbazole and aniline containing compounds, 

which were originally shown to be neuroprotective and neurogenerative in mice,8 

resulted in multitarget leads across all the chosen amyloid cascade targets.  

 
Table 2. Experimental results for the multitarget assays.  

Compound 
EeAChE hsBuChE Aβ(1-40) BACE-1 

%Inh.@ 
10µM IC50(µM) %Inh.@ 

10µM IC50(µM) %Inh.@ 
100µM 

%Inh. 
@100µM IC50(µM) 

1a 30 ± 1 -- -- 6.0 ± 1.0 58 ± 2 1.3 ± 0.3 -- 
1b 22 ± 1 -- 34 ± 1 -- 51 ± 5 2.4 ± 1.4 -- 
1c 49 ± 2 -- 33 ± 1 -- 36 ± 5 1.5 ± 0.3 -- 
1d 15 ± 1 -- 12 ± 1 -- 41 ± 3 1.6 ± 1.5 -- 
1e -- 7.2 ± 0.4 20 ± 1 -- 46 ± 3 0.5 ± 0.3 -- 
1f -- 7.8 ± 0.2 10 ± 1 -- 49 ± 1 0.9 ± 0.9 -- 
3e  48 ± 1 -- -- 1.1 ± 0.2 11 ± 3 -- 3.1 ± 0.4 
3f -- 14 ± 1 -- 7.1 ± 0.7 28 ± 3 -- 3.1 ± 0.3 

 

Finally, as seen from this table the benzylamine amine bearing compounds (3e and 3f) 

have improved their affinity for BACE-1 by three orders of magnitude over the aniline 

containing compounds. This result validates and supports the outcome of our 

calculations (see Figures 5 and 6), which indicate that the addition of a CH2 fragment 

provides hits across the set of scoring functions used in our calculations. As mentioned 

before this effect is probably due to the raise in the pKa in the benzylamine’s amino 

group, which favours the formation of an ion pair with one of the Asp residues of the 

active site Asp dyad. These latter compounds (3e and 3f) have improved their affinity 

for BuChE and 3f displays as well a micromolar affinity for AChE. Nevertheless, their 

Abeta aggregation inhibition has dropped below the 30% inhibition displayed by the 

reference compound (9,10-anthraquinone).  

 

2. Screening a third generation candidates: Indole based multitarget candidates. 

The carbazole moiety present in the candidates synthesized and assayed above is quite a 

bulky group. Perusal of the resulting binding poses showed some steric clashes between 

the ligand and some protein side chains. The close van der Waals contacts are allowed 

by the GOLD docking protocol as a way of compensating for the lack of protein 

flexibility.15 Figures S1 and S2 display the steric clashes of some ligands with BACE-1 
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and AChE. An option to avoid the steric clashes altogether will be to search for smaller 

aromatic groups in place of the carbazole, like an indole. Based on this idea we 

designed a new generation of multi-target candidates bearing this fragment in one end 

and in the other end the same aromatic moieties which were already used in the 

previous sections (substituted anilines and benzylamines). For these ligands we have 

chosen the OBn substituent for the anilines and benzylamines, since the analysis of the 

results for the carbazole-containing compounds described above has shown that this 

substituent provides the leads with the right length to span the distance from the CAS to 

the PAS in AChE. 

 

2.1. BACE-1 ligand screening 

Figure 12 lists the global hit success for the indole based derivatives, while the scoring 

function values for this set of compounds are listed in Tables S6 and S7. The structural 

variables analyzed in these figures are the same as in the study of the carbazole 

derivatives in the previous section and include the moiety to which the amino group 

belongs (aniline or benzylamine), its protonation state, the substitution of the indole 

group, the substituent position (ortho or meta) of the other aromatic ring and the 

stereochemistry of the OH group.  

Perusal of our results indicates that the indole based ligands have a higher probability of 

binding to BACE-1 with a medium open or fully open flap (see Tables S6 and S7). The 

number of hits with a closed flap is very small, especially when using a ChemPLP 

scoring function, indicating that these molecules fit in the active site of BACE-1 thanks 

to the plasticity of its flap. 

In the case of the carbazole based compounds, the best ranking compounds where those 

that contained a benzylamine moiety, one that assured the existence of a protonated 

amino group. A global comparison of the compounds that contain an aniline (see Figure 

12, upper panel) with those that contain a benzylamine (Figure 12, lower panel) indicate 

that the latter present a larger global hit rate, a pattern similar to that observed for the  

carbazole containing compounds. Nevertheless, the preferred benzylamine substitution 

pattern in the indole based compounds (predicted by our calculations) differs from the 

one predicted for the carbazole containing ligands, since these latter compounds favour 

an ortho rather than meta substitution pattern for benzylamines. On the other hand 

perusal of Figure 12 suggests that the indole based compounds favours a meta over the 
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ortho substitution, a substitution pattern also followed by the aniline bearing 

compounds. 

                               
	

 
 
 

                        

 
Figure 12. Global hit success that result from the docking to BACE-1 of indole derivatives, 
anilines (upper panel) and benzylamines (lower panel). 
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Moreover, for these latter compounds, the largest increase is observed for the hits 

containing a neutral ligand. 

We have also studied the effect of the ligand protonation state on the number of hits. 

For the aniline as well as the benzylamine containing compounds (Figure 12), the 

number of hits increases (for the most part) when the amino group is protonated, rather 

than neutral.  

 

2.2 AChE ligand screening.  

The global hit rate resulting from the AChE docking based screening calculations for 

the indole derivatives that contain a substituted aniline or benzylamine in ortho or meta 

positions are depicted in Figure 13. Comparison of the effect of the substitution pattern 

in both aniline and benzylamine (shown in this figure) indicate that changing the 

substitution from ortho to meta increases the number of hits. As seen from Figure 13, 

the number of hits obtained and the consensus reached across the three scoring 

functions indicate that our indolebenzylamine-containing compounds fit well inside 

AChE spanning both the main site (CAS) and the peripheral one (PAS). Moreover, 

comparison of the aniline bearing compounds with the benzylamine ones indicate that 

the latter present a larger number of hits across all scoring functions, probably due to an 

increase in size of the ligands that allow it to span better both binding sites.  

One interesting issue are the docking exit poses. As we mentioned above in our 

pharmacophore depiction for AChE, we seek to have dual inhibitors in which one of the 

end aromatic fragments is to be found at the CAS and the other end aromatic group 

positions itself in the PAS, both producing π stacking interactions with the aromatic 

residue clusters residing in both sites (see Figure 1). There are two possible pose 

orientations that fulfil this hit. In the first one the indole moiety is predicted to be found 

in the CAS while the terminal benzyloxi group is to be found at the PAS. In the second 

possible pose, we have the inverse option in which the indole fragment resides at the 

PAS. We have listed in Figure 13 both poses and have referred to them as ‘CAS’ and 

‘PAS’ respectively. As seen from these plots the number of ‘CAS’ hits (indole docked 

into CAS) is larger than the one that places this fragment in the PAS (both for aniline 

and benzylamine containing compounds), a result that we will try to verify through X-

ray crystallography. In Figure 14 we depict the most favoured pose obtained for 

compound 7a with the Chemscore fitness function. Notice that the indole fits neatly in 
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the CAS, making π stacking interactions with residues W84 and F330, while the Bn 

group interacts with W279 and Y70 in the PAS.  

Finally, our results (shown in Figure 13) indicate that there is scarcely a preference for 

one of the enatiomers, neither there is a clear proclivity for a neutral or charged state for 

the amino group.  

 

                             

 
 

 
Figure 13a. Docking results of the indole bearing compounds with ortho (upper panel) and 
meta (lower panel) substituted anilines on AChE.  
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Figure 13b. Docking results for indole bearing compounds with ortho (upper panel) and meta 
(lower panel) substituted benzylamines on AChE. 
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Figure 14. Pose for ligand 7a in which the indole fragment interacts (through π stacking) with 
residues Trp 84 and Phe 330 in the CAS, while the treminal Bn group interacts with Tyr 70 and 
Trp 279 at the PAS site.  
 
 
2.3. Inhibitor Aβ12-28 peptide interaction results.  

We have performed the MD simulations on three of our indole candidates: one 

containing an aniline fragment (4b) and the other two containing a benzylamine moiety 

(7b and 7c). The results indicate that percentage residency times around the peptide 

with 7.5 Å radii for these compounds are relatively high (88 ± 2.0, 96 ± 2.0 and 86 ± 1.30 

respectively).  

Figure 15 displays the ligands residency time around every residue of Aβ12-28. As seen 

from this figure, the ligands favour two binding spots (populated by aromatic residues), 

a result already observed for the carbazole containing compounds. The most frequented 

site is around the LVFFA segment, and the second one contains the two His residues at 

the start of the sequence. Another important feature is that these ligands present much 

higher residence times than the reference ligand, the 9,10-anthraquinone, a compound 

that has a 30% fibril formation inhibition at 100 µM concentration. Furthermore, 

comparison of the intra-peptide residue interaction when these two ligands are present 

(see Figure 16 and S4) with the residue contact when they are absent (see Figures 11 

and S4) indicates that these compounds clearly interrupt the formation of the hairpin 

structures that are the hallmark of Aβ peptide aggregates, indicating that these ligands 

may inhibit amyloid aggregation. Finally, we predict that the benzylamine-containing 
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compounds (7b and 7c) reduce the formation of turns (around the DVSG segment) more 

efficiently than the aniline based compound (4b). 

 

Figure 15. Ligand-peptide residues fraction contact times. Cut-off distance is set at 4.5 Å. 

 

            4b 

																														 	 	
							7b	 	 	 	 	 										7c	

																						 																 	

 
Figure 16.  Residue-residue interaction contact map in the presence of the candidates 4b, 7b 
and 7c. The colour scale shown above indicates the residence times.  
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2.4. Synthesis and experimental assays for indole containing compounds.  

The indole derivatives whose structures contain either an aniline or a benzylamine 

fragment were obtained by the same synthetic route as the carbazole containing 

compounds indicated in Scheme 2, which includes the list of synthesized molecules. 

 

 
 
Scheme 2. Synthetic route and indole derivatives synthesized.   
 

The results of the binding assays to BACE-1, AChE and BuChE for the selected 

compounds, together with the fibril inhibition assay are listed in Table 3. As seen from 

this table the meta substituted benzylamine compounds display altogether higher 

activity than the ortho substituted aniline ones for AChE, a result that validates the 

predictive power of our in silico protocol presented above. More importantly, the 

replacement of a carbazole by an indole moiety with a benzylamine substituted in meta 

has lead to candidates that bind to all chosen amyloid cascade targets, (BACE-1, 

amyloid aggregates and the peripheral site in AChE), as well as to AChE’s main site 

and BuChE, implying also a positive cholinergic effect in AD. Hence, compounds like 

7c are truly multitarget compounds.  

Finally, the results displayed in Tables 2 and 3 also afford us with important structural 

information for the binding poses of both carbazole and indole bearing compounds to 

the cholinergic targets. For instance compounds 7a, 7b and 7c bind even better to 
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are highly homologous in the CAS, but BuChE replaces the targeted aromatic residues 

present in the PAS site of AChE by non-aromatic ones, precluding the formation of 

possible π stacking interactions in this enzyme.36 Hence, the fact that there are ligands 

that bind to both cholinesterases may mean that they are able to diffuse to the CAS site 

in AChE and bind to it. This experimental results support the idea that our design has 

produced dual AChE inhibitors that bind both to the CAS and the PAS of this enzyme, a 

conclusion reached as well by the pose search in our docking based screening 

simulations (see Figures 13 and 14).  

 

Table 3. Experimental results for indole based compounds.  

Candidate 
EeAChE hsBuChE Aβ(1-40) BACE-1 

%Inh.@ 
10µM IC50(µM) %Inh.@ 

10µM IC50(µM) %Inh.@ 
100µM IC50(µM) %Inh. 

@100µM IC50(µM) 

4a 44 ± 1 -- 17 ± 3 -- 43 ± 1 --   5.7 ± 1.6 -- 
4b 45 ± 2 -- 18 ± 3 -- 23 ± 2 --   6.3 ± 1.4 -- 
4c 44 ± 1 -- 19 ± 1 -- 43 ± 5 -- 16.4 ± 0.1 -- 
5a -- 8.5 ± 0.7  20 ± 2 -- 55 ± 3 -- 3.5 ± 2.4 -- 
5b -- 9.3 ± 0.6 24 ± 1 -- 22 ± 2 -- 1.8 ± 0.6 -- 
5c -- 12 ± 1 17 ± 1 -- 57 ± 2 -- 0.1 ± 0.1 -- 
7a -- 10.4 ± 0.1 -- 0.70 ± 0.02 57 ± 3 -- -- 3.0 ± 1.4 
7b -- 9.1 ± 1.1 -- 0.29 ± 0.05 47 ± 2 -- -- 2.5 ± 0.1 
7c -- 5.9 ± 1.0 -- 0.39 ± 0.03 78 ± 1 34 ± 2 -- 4.3 ±0 .8 

 
 

DISCUSSION & CONCLUSIONS 

As mentioned in the introduction, the search for single leads for all chosen amyloid 

cascade targets represents a sizable challenge due to the substantial differences in their 

binding sites. To tackle this issue, we have proposed a two-step protocol. In the first 

step we have designed a pharmacophore, built around the knowledge obtained in our lab 

and others, that includes the interactions with the molecular targets that the candidates 

should fulfill. The resulting template allows for the automated screening of multiple 

candidates using programs like ZINCPharmer.37 Our search for compounds in 

bibliographical data sets led us to a group of carbazole containing compounds with 

substituted aniline fragments, which has been previously identified as neuroprotective 

and neurogenerative compounds in mice.8  

The second step of our method includes the evaluation and optimization of the initial set 

of compounds by a computer-assisted protocol that combines docking calculations for 

the enzyme targets (BACE-1 and AChE) with MD simulations for the in silico study of 

Abeta aggregation inhibition. The results of the docking calculations not only rely on 

obtaining the best scoring compounds, but more importantly on fulfilling the pattern of 
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interactions with the cardinal residues in our targets as shown in our pharmacophore 

scheme (see Figure 1). The MD simulations used for amyloid aggregation inhibition 

studied the time evolution of an amyloid peptide fragment in the presence and absence 

of our candidates, aimed at determining the strength of the binding to ‘hot spot’ peptide 

fragments, as well as understanding and evaluating the effect of the candidates on the 

peptide secondary structure. 

Our computer-aided protocol was used with a twofold aim. Firstly, to investigate if the 

original compounds owed their known biologic activity to their binding to some the 

amyloid cascade targets, and secondly to search for analogues with an increased affinity 

for the largest possible group of amyloid cascade targets. The first round of calculations 

on our original compounds (that purportedly had neuroprotective and neurogenerative 

properties) displayed very few hits in BACE-1 (see Figure 5), but a number of hits in 

AChE. Our binding assays (Table 2) corroborated the outcome of our calculations, since 

the initial set of compounds displayed low affinities for BACE-1 (not surpassing the 

33% BACE-1 inhibition at 1mM). Nevertheless, as predicted by our calculations these 

compounds presented µM affinity for AChE for those compounds that present the 

largest scoring function values in our docking calculations (see results for 1e and 1f in 

Figure 7). Perusal of the exit docking poses indicates that these compounds are able to 

span both AChE binding sites, a result that could explain their better affinity as 

compared to their congeners. Finally, some of the compounds in the initial set display a 

fibril formation inhibition slightly above that of the reference compound 9,10-

anthraquinone.35 

In order to improve the binding across the amyloid targets and especially for BACE-1, 

we proceeded to modify these compounds with the information afforded by two 

computer aided design cycles. The initial screening results for BACE-1 anticipated that 

most of the hits were obtained with the protonated amino group in the aniline (see 

Figure 5). In order to increase the probability that the amino group will actually be 

protonated we replaced the aniline moiety by a benzylamine fragment. The docking 

results predicted that the second generation compounds should improve their hit rates 

mainly for BACE-1. In order to test this outcome we synthesized and assayed two of the 

benzylamine containing compounds that showed promising results in the docking 

calculations (3e and 3f). The binding assays indicated that the new candidates improved 

their binding affinities for BACE-1 by more than 3 orders of magnitude (IC50 =3.1 µM). 

Interestingly enough, these compounds also showed affinity for BuChE. In healthy 
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brains, AChE hydrolyzes about 80% of acetylcholine while BuChE plays a secondary 

role. However, as AD progresses, the activity of AChE is greatly reduced in specific 

brain regions while BuChE activity increases, likely as a compensation for the AChE 

depletion.38 Consequently, both enzymes are useful therapeutic targets for AD and our 

experimental results indicate that our compounds not only should affect the amyloid 

cascade at the core of the AD, but should have a positive cholinergic effect.38 

The design of the third generation ligands was afforded by the inspection of the exiting 

poses of the carbazole containing compounds, which showed that there was some steric 

clashes between the carbazole moiety and some of the residues belonging either to 

BACE-1 and AChE (see Figures S1 and S2). In order to avoid close van der Waals 

overlaps we designed a new set of ligands in which the carbazole moiety was replaced 

by indole, a smaller fragment, while at the other end we kept the substituted aniline or 

benzylamine fragments. Even in the case of the aniline containing compounds, the 

replacement of a carbazole for an indole (see Figures 5 and 12) increases substantially 

the number of hits for BACE-1, especially when the ligand is neutral. Moreover, we 

predict that an additional hit enrichment could be obtained by replacing the aniline 

moiety by a benzylamine fragment substituted at meta rather than at ortho position (see 

Table S7 and Figure 12). Our docking calculations show that AChE has a very similar 

inhibitor preference as BACE-1, meaning that a consensus inhibitor design has been 

reached for both enzymes.  

There has been a sizable effort in understanding the effect of ligands on the secondary 

structure of Abeta peptides by MD simulations, in order to get some insight on the 

inhibitory effect of these ligands.28 For instance, Wang et al.39 studied the time 

evolution of the Aβ peptide in the presence of polyphenolic xantones. The analysis of 

rather short MD simulations (in the nanosecond regime) indicated that the presence of 

these ligands seem to help retain the alpha helix secondary structure (from which these 

simulations start) and hence preclude amyloid aggregation. On the other hand the results 

of our calculations shed light on an open question that relates to the existence of an 

amyloidogenic core which serves as a template for amyloid oligomers and fibril 

formation, an issue that is relevant not only to AD but also to other pathologies (e.g., 

diabetes type 2 and Parkinson’s) that are associated with the misfolding of 

polypeptides.40 Hence, a possible paradigm for an Abeta aggregation route inhibition 

could rely on precluding the emergence of the template structure with a beta hairpin 

structure (around the DVGS motif) observed in various NMR experiments.41 
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Comparison of the results obtained from our MD simulations of an Aβ fragment 

(residues 12 to 28) in the presence and absence of our candidate compounds seem to 

indicate that the best aggregation inhibitors are able to modulate the secondary structure 

of the peptide, partially precluding the formation of a hairpin aggregation core. Perusal 

of Figures 10 and 15 indicate that the modulation of the secondary structure of the 

Abeta peptide is achieved by interaction of the ligand with the pairs of aromatic 

residues (predominantly Phe19-Phe20) present in the peptide segment studied. It was 

found that the hydrophobic interactions that involve these aromatic residues are vital for 

the genesis of the hairpin structure through the collapse of the hydrophobic stretch 

Leu17-Ala21.41 The only other aromatic residues present in the full Abeta peptide are 

single aminoacids located in the segment comprised by the first eleven residues, that is 

known to lack any structure in peptide aggregates, and hence possibly do not have any 

role in inducing aggregation. Figure S3 displays a snapshot of the interaction between 

compound 7b and the Aβ12-28 peptide, as obtained from the MD simulation. As seen 

from this figure, there is a π stacking interaction between the aromatic core of the 

benzylamine fragment and one of the aromatic residues mentioned above. 

We have calculated the variability, as given by the standard deviation (SD), of the 

crucial contacts between the segments DVGS and VHHQ in the MD trajectory (see 

Table S8 for some typical examples). The results indicate an increase in the SD values 

in the absence of a ligand, an outcome that indicates that the presence of our ligands 

seems to reduce the contact fluctuations, stabilizing secondary structures other than a 

turn. 

There seems to be some relationship between the disruption of the aforementioned turn 

in our simulations and the result of the ThT assays. For instance, 9,10-anthraquinone, a 

compound that only inhibits 33% fibril formation, precludes to a much lesser extent the 

turn formation as compared to some of our best compounds like 7c. Moreover, the 

indole/aniline derivative 4b is much less effective in precluding the turn template as 

their benzylamine analogue 7b, providing support for our MD simulation results. 

Nevertheless, we expect that this simple protocol based on MD simulations of a single 

Abeta peptide fragment may not be able to give a quantitative inhibition ranking, but 

rather would enable us to tell apart the binders from the inactive compounds. Presently, 

we are performing our MD simulations on a larger set of peptide-ligand complexes in 

order to validate the predictive capabilities of our protocol that could be useful in the 

design of Abeta aggregation inhibitors.   
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The results of the enzyme FRET assays for BACE-1, AChE and BuChE, as well as ThT 

fibril formation assays on indole based compounds with an aniline and meta substituted 

benzylamine derivatives fully support the outcome of our calculations, indicating that 

the latter set of compounds (7a, 7b and 7c) are by far the most superior candidates with 

highly improved ligand efficiency, and display a multitarget behaviour across the 

amyloid cascade and cholinergic pathways.  

Besides affording robust predictions about the relative affinity of our candidate 

compounds, our computer assisted protocol has provided us with valuable structural 

predictions such as the flap opening in BACE-1 when bound to our inhibitors, or the 

orientation of the ligands in AChE, issues we are trying to verify by X-ray 

crystallography. 
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