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Abstract

Receptor-based pharmacophore modeling is an efficient computer-aided drug design technique 

that uses the structure of the target protein to identify novel leads. However, most methods 

consider protein flexibility and desolvation effects in a very approximate way, which may limit 

their use in practice. The Site-Identification by Ligand Competitive Saturation (SILCS) assisted 

pharmacophore modeling protocol (SILCS-Pharm) was introduced recently to address these issues 

as SILCS naturally takes both protein flexibility and desolvation effects into account by using full 

MD simulations to determine 3D maps of the functional group-affinity patterns on a target 

receptor. In the present work, the SILCS-Pharm protocol is extended to use a wider range of probe 

molecules including benzene, propane, methanol, formamide, acetaldehyde, methylammonium, 

acetate and water. This approach removes the previous ambiguity brought by using water as both 

the hydrogen-bond donor and acceptor probe molecule. The new SILCS-Pharm protocol is shown 

to yield improved screening results as compared to the previous approach based on three target 

proteins. Further validation of the new protocol using five additional protein targets showed 

improved screening compared to those using common docking methods, further indicating 

improvements brought by the explicit inclusion of additional feature types associated with the 

wider collection of probe molecules in the SILCS simulations. The advantage of using 

complementary features and volume constraints, based on exclusion maps of the protein defined 

from the SILCS simulations, is presented. In addition, re-ranking using SILCS-based ligand grid 

free energies is shown to enhance the diversity of identified ligands for the majority of targets. 

These results suggest that the SILCS-Pharm protocol will be of utility in rational drug design.

Introduction

Pharmacophore modeling is a widely used computer-aided drug design (CADD) approach 

that, in addition to docking methods, is used in virtual screening (VS) studies1, 2. Compared 

to the energy function driven docking methods, it is based on the pattern of functional 
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groups that are crucial for interactions of ligands with the protein target. These so-called 

pharmacophore features, and the resulting pharmacophore models, may be used to screen 

against a compound database to identify ligands with functional groups that match the 

pharmacophore features, an approach that is often superior to ligand docking VS3, 4. While 

pharmacophores may be developed based on the structure of known ligands, if the target 

protein structure is known, receptor-based pharmacophores can be constructed without 

knowledge of any known ligands of the target. Methods to develop receptor-based 

pharmacophores include the multi-copy simultaneous search (MCSS) derived 

pharmacophore method,5 the GRID molecular interaction fields (MIFs) based method6 and 

the recent hydration-site-restricted pharmacophore (HSRP) method7.

While there have been a number of successes using receptor-based pharmacophore 

modeling8–10, the effectiveness of those methods may be limited due to neglect of protein 

flexibility and desolvation effects. This is due to available methods being based on only a 

single or limited number of receptor conformations and being performed in vacuum or with 

a limited representation of the aqueous solvent environment, as discussed previously11, 12. 

More recent works using receptor-based pharmacophore modeling methods have begun to 

take these concerns into account, usually by utilizing molecular dynamics (MD) 

simulations13–15. But effective use of information present in MD simulations to further 

refine pharmacophore models is still an active area of research.

The site identification by ligand competitive saturation (SILCS) approach is a method that 

maps the functional group requirements of proteins, including contributions from protein 

flexibility and desolvation. Recently, a SILCS assisted pharmacophore modeling protocol 

(SILCS-Pharm)16 was introduced by us. The SILCS technique17 naturally takes both protein 

flexibility and desolvation effects into account by using MD simulations in an aqueous 

solution that contains a collection of probe molecules. During the simulation the probe 

molecules compete with water and with each other for binding sites on the protein. The 

binding information is then converted into probability maps of the functional group-binding 

patterns on the target (FragMaps) by binning the residences of probe molecule atoms into a 

3D grid that encompasses the target receptor. The FragMaps may then be Boltzmann 

transformed into a free energy representation, termed grid free energy (GFE) FragMaps 

which enable its quantitative use18. Thus, the upfront calculated SILCS GFE FragMaps are 

an informative way to consider both protein flexibility and aqueous solvation contributions 

to chemical group binding that can be used for various aspects of receptor-based 

CADD16–21, including in the context of the SILCS-Pharm method.

SILCS-Pharm converts the GFE FragMaps into pharmacophore features to enable the use of 

SILCS in terms of pharmacorphore models. The spatial distribution of the GFE FragMaps is 

used to calculate feature GFEs (FGFE), which is the sum of the voxel GFEs that comprise a 

FragMap feature, where the voxels are based on a 3D grid that is used to define the spatial 

distribution of the grid free energy information in the FragMaps. The FragMap features act 

as the basis of the pharmacophore features and serve as a score to prioritize the identified 

features in an automatic fashion. Validation of the original SILCS-Pharm protocol used 

three representative protein targets along with ligands and decoys from the Dictionary of 

Useful Decoys (DUD)22 with the method showing improved performance versus docking 
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based VS using the common docking programs DOCK23 and AutoDock24 and one recently 

developed receptor-based pharmacophore modeling technique developed by Lill and 

coworkers7. While the method was shown to offer improvements over those methods, the 

original SILCS-Pharm protocol has limitations associated with the SILCS simulations being 

performed using benzene and propane as molecular probes for aromatic and aliphatic 

functionalities with explicit water as the probe for both hydrogen bond donors and 

acceptors. Thus, only four basic pharmacophore feature types are possible. In addition, there 

is ambiguity in differentiating between donor and acceptor FragMap features caused by the 

dual role played by water. Finally, by using water to define the hydrogen bond donor and 

acceptor features disallows accounting for the energetic cost of displacing water from the 

associated binding sites as well as the energetic penalty associated with desolvation of the 

donors and acceptors upon interacting with the protein.

To overcome the above limitations, in the present work the SILCS-Pharm protocol is 

extended to use the FragMaps generated using the recently extended SILCS setup25. In the 

extended SILCS method, besides benzene and propane, a wider range of probe molecules, 

included methanol, formamide, acetaldehyde, methylammonium and acetate are used which 

enables the SILCS-Pharm to cover more types of pharmacophore features. The use of 

explicit probe molecules for hydrogen bond donors and acceptors allows the new SILCS-

Pharm protocol to generate more clearly defined hydrogen bond donor and acceptor features 

and avoids the ambiguity brought by the use of water as the probe for hydrogen bond 

interactions. Moreover, the competition between probe molecules and waters in the new 

SILCS protocol and the use of explicit probe molecules instead of water for donors and 

acceptors allows the generated pharmacophore features to take into account desolvation of 

both the probe molecules and the protein. The new protocol is validated using eight protein 

targets and associated ligands and decoys from the DUD database. Of the three protein 

targets that were tested using the original protocol, improvements are seen using the new 

SILCS-Pharm protocol. Moreover, the SILCS-based pharmacophore approach as compared 

to docking based VS using DOCK 4.0, AutoDock 4 and AutoDock Vina26 shows improved 

or comparable results indicating its potential for use in CADD. Single point and SILCS 

driven Monte Carlo (SILCS-MC) sampling based ligand grid free energy (LGFE) re-ranking 

was also performed and was shown to be able to further enhance the pharmacophore results, 

indicating the general utility of SILCS in VS.

Methods

Extended SILCS-Pharm protocol

GFE FragMaps from SILCS simulations (see below) are used as inputs for SILCS-Pharm to 

build the pharmacophore features. Similar to the previous protocol16, the new SILCS-Pharm 

protocol contains four steps to generate a pharmacophore model: (1) voxel selection; (2) 

voxel clustering and FragMap feature generation; (3) FragMap feature to pharmacophore 

feature conversion; and (4) generation of pharmacophore hypotheses (i.e. models) for VS. 

The first step is designed to identify crucial binding patterns from the GFE FragMaps within 

a specified binding region. As the GFE represents the binding strength of a functional group 

at a specific location on the protein surface, it allows for voxels with the most favorable 
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interactions to be identified based on a user assigned GFE cutoff. Clustering is then 

performed on the selected voxels in the second step to identify interaction patterns yielding 

FragMap features. In the third step, the FragMap features are classified, combined and 

converted into SILCS pharmacophore features. Finally, all the pharmacophore features are 

prioritized using FGFE score, from which pharmacophore hypotheses are generated and 

evaluated.

Presented in Table 1 are the FragMaps types and the corresponding FragMap features. The 

FragMap features are then converted to commonly used pharmacophore features3, 4, which 

are also listed in Table 1. Conversion from FragMap features to pharmacophore features 

involves analysis to determine, for example, whether a FragMap associated with the 

hydrogen or oxygen of the alcohol in methanol should be assigned a hydrogen bond donor 

(HBDON) or acceptor (HBACC) pharmacophore feature based on the geometric criteria 

described below.

The considered FragMaps and corresponding FragMap features are as follows. Five generic 

FragMap types are considered: (1) generic nonpolar (APOLAR, benzene and propane 

carbons); (2) generic neutral donor (HBDON, methanol and formamide polar hydrogens; (3) 

generic neutral acceptor (HBACC, methanol, formamide, and acetaldehyde oxygens); (4) 

positive donor (POS, polar methylammonium hydrogens); and (5) negative acceptor (NEG, 

acetate oxygens). In addition, seven specific FragMaps are constructed: (6) aromatic 

(AROM, benzene carbons); (7) aliphatic (ALIP, propane carbons); (8) generic positive 

donor nitrogen parent atom (POSp, methylammonium nitrogen); (10) methanol oxygen atom 

(MEOO); (11) methanol hydrogen atom (MEOH); and (12) formamide nitrogen (FORN).

Conversion of FragMaps to FragMap features in step 2 is based on a clustering algorithm. A 

hierarchical clustering algorithm was used previously with a user defined cluster member 

distance parameter to determine voxels that belong to the same cluster. A default value of 1 

Å was used for hydrogen bond donor and acceptor voxel clustering since the voxel size is 1 

Å × 1 Å × 1 Å, such that only neighboring voxels are included in a cluster. However, a 

larger distance parameter, in the range of 2.8 Å, was used for aromatic and aliphatic voxel 

such that the clusters included both neighboring as well as near but discrete voxels. 

However, as part of this study it was found that GFE cutoffs alone can serve as the sole 

parameter to select neighboring voxels to define a cluster by simply setting the cluster 

member distance parameters to 1 Å such that only neighboring voxels define a given cluster. 

In cases where discrete voxels are adjacent to a cluster they are treated as separate FragMap 

features.

Step 3 involves conversion of the FragMap features to pharmacophore features. First, the 

hydrophobic features (APOLAR, AROM and ALIP) are considered. If an APOLAR 

FragMap feature overlaps with both AROM and ALIP FragMap features, then an AROM|

ALIP joint pharmacophore feature is defined. If an APOLAR FragMap feature only overlaps 

with AROM FragMap feature, then an AROM pharmacophore feature will be defined. 

Otherwise, an ALIP pharmacophore feature is defined. HBACC and NEG FragMap features 

are directly converted into respective HBACC and NEG pharmacophore features.
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Conversion of hydrogen bond donor pharmacophore features is more complex. First, 

overlaps between HBDON and HBDONp FragMap features are identified. Only those 

HBDONp FragMap features that have overlap with HBDON features are retained as that 

overlap indicates that the HBDONp is a true representative of a hydrogen bond donor. Next, 

MEOO and MEOH FragMap features are identified and only those MEOO FragMap 

features that overlap with MEOH features are retained, again as they represent true 

hydrogen bond donors. Finally, overlap of the remaining HBDONp FragMap features with 

the remaining MEOO FragMap features is identified. If the HBDONp FragMap feature 

overlaps with both MEOO and FORN FragMap features, then the HBDONp FragMap 

feature is assigned as a HBDON pharmacophore feature. Or if the HBDONp FragMap 

features overlap only with an FORN feature, then the FORN feature is used to define a 

HBDON pharmacophore feature.

Finally, it is possible that both HBACC and HBDON pharmacophore features or both 

charged and neutral features are found in the same location. These locations are then defined 

as joint hydrogen bond features. The possible joint polar pharmacophore features include 

HBDON|POS, HBACC|NEG, HBDON|HBACC, (HBDON|POS)|HBACC, HBDON|

(HBACC|NEG), and (HBDON|POS)|(HBACC|NEG).

SILCS simulations and FragMap preparation

SILCS simulations were performed using the new SILCS setup25 for the 8 target proteins. 

FragMaps for HIV protease (HIVPR), Factor Xa (FXa) and P38MAP kinase (P38 MAP) 

were obtained from our previous study25, while FragMaps for remaining targets were 

calculated as part of the present study. Crystal structures were obtained from the Protein 

Data Bank (PDB)27 for the targets Dihydrofolate reductase (DHFR, PDB ID:3DFR), 

Fibroblast Growth Factor Receptor 1 kinase (FGFr1, PDB ID:3KY2, Adenosine deaminase 

(ADA, PDB ID:1NDW), Estrogen Receptor Alpha Ligand-Binding Domain (ER, PDB ID:

3ERT) and AmpC beta-lactamase (AmpC, PDB ID:1XGJ) and used to initialize the SILCS 

simulations. For holo structures, the ligands were removed while coordinated metal ions and 

crystal waters were retained. The Reduce software28 was used to determine the optimal 

protonation states of histidine and side-chain orientations of asparagine and glutamine 

residues. GROMACS29 tools were used to prepare the simulation systems involving protein, 

water and small probe molecules. Ten simulation systems with randomly positioned solutes 

at approximately 0.25 M each were simulated for 40 ns using GROMACS29 with the 

systems being described using CHARMM22 protein force field30 with CMAP backbone 

correction31, CHARMM General force field (CGenFF)32, 33 and the TIP3P water model34 

modified for the CHARMM force field35. For ADA, distance restraints with force constants 

of 1000 kJ/mol/nm2 were applied between the zinc ion and the four coordinating residues 

during the MD simulation; analysis shows that the structure of the zinc ion and the 

coordinating ligands were well maintained in the simulations.

FragMaps were generated by binning selected solute atoms into voxels of a 1 Å spaced grid 

spanning the simulation systems. 3D normalized probability distributions were obtained by 

dividing the voxel occupancies computed in the presence of the protein by the respective 

values in bulk. The normalized distributions were Boltzmann-transformed to free energies 
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for each FragMap type to yield GFE FragMaps. The convergence of the FragMaps was 

monitored by calculating overlap coefficients (OC) as previously described25. The ten 

trajectories for each SILCS simulation were divided into two groups as trajectories 1–5 and 

trajectories 6–10, and FragMaps from each group were separately computed and the OC was 

calculated between the two groups. As shown in the Supporting Information Table S1, all 

FragMaps for all the targets have OC values greater than 0.7, indicating good convergence 

as previously discussed25.

Pharmacophore VS and performance evaluation

VS was performed using the MOE software package36. All ligands or decoys for a target 

were extracted from the DUD database in mol2 format and were then converted into MOE 

database files. Ligand and decoy conformations were searched using the “Conformation 

Import” application in MOE36 and up to 100 low-energy conformations defined by the 

MMFF94x force field37 were retained for each molecule using the default MOE settings. 

SILCS pharmacophore models given by SILCS-Pharm were prepared in MOE 

pharmacophore query file format and used for VS with the default settings. The root-mean-

square deviation (RMSD) between the matched features in a query molecule and the SILCS 

pharmacophore model was used as an activity score and the best matched conformation for 

each molecule with the smallest RMSD among all 100 conformations was then used as the 

pharmacophore predicted binding pose.

The performance of the new SILCS-Pharm protocol was compared with three other docking 

based VS methods using DOCK 4.023, AutoDock 424 and AutoDock Vina26. For the DOCK 

4.0 VS, an in-house protocol, as applied in a number of CADD projects38, 39, was used and 

the sum of electrostatic and van der Waals (vdW) energies as defined in DOCK 4.0 used for 

final compound ranking. For AutoDock 4 and AutoDock Vina VS, mol2-formatted files for 

ligands and decoys as well as pdb-formatted files for the crystal protein structures from 

DUD were converted into pdbqt-formatted files to generate AutoDock atom types24. For 

AutoDock 4, energy grid map files with probe atoms covering all possible atom types within 

the database were generated and used to guide the docking search. The Lamarckian genetic 

algorithm (LGA)40 was adopted for the docking run and 20 independent runs with a 

maximum of 1,750,000 energy evaluations and 27,000 GA generations were conducted. 

AutoDock 4 energy scores, including electrostatic, vdW and desolvation terms,40 of the top 

20 conformations for each molecule were averaged and the mean value was used for the 

final score ranking. For AutoDock Vina, the energy grid maps were calculated on-the-fly 

within a docking run and 20 binding modes were generated for each database molecule. The 

final score for each molecule used for AutoDock Vina was given by the mean score value 

averaged from the empirical energy scores26 of the top 20 predicted binding conformations. 

As used in our previous study16 and in the DUD paper22, enrichment plots, showing the 

percentage of ranked ligands at any given percentage of ranked database were employed to 

evaluate the VS performance. Enrichment factor (EF) reflecting the ability of a method to 

find more true positives while maintaining a low level of false positive rate is calculated 

following ranking of all the ligands and decoys, as follows:
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(1)

where subset is defined by the percentage of the ranked decoys, Nligands_in_subset, Nligands, 

Ndecoys_in_subset and Ndecoys are the number of active ligands in a subset, total number of 

active ligands, number of decoys in a subset and total number of decoys. EFs at 1 % (EF1), 

10 % (EF10) and 20 % (EF20) of the ranked decoys, which represent early and late stage 

enrichment performance, were calculated. The overall enrichment performance considering 

the whole database was also assessed by calculating the area-under-the-curve (AUC), which 

was evaluated from the Receiver Operating Characteristic (ROC) curve41. Similar to the 

previous study16, since not all molecules in the database are assigned an RMSD score in a 

pharmacophore VS runs due to the fact that they do not have the correct number and type of 

features, failed ligands and decoys are ranked at the end of the ranking list with decoys 

ranked above ligands to allow for a direct and unbiased comparison with the docking results, 

where all molecules have a score and can be ranked.

LGFE calculation and SILCS-MC sampling

To test the utility of including energetic information to supplement the SILCS 

pharmacophores, LGFE scores,25 were used to re-rank the pharmacophore modeling results. 

The LGFE was defined using:

(2)

where the summation is over all GFE FragMap types, T, and applicable atoms assigned to 

specific FragMap types, iT, NC is the number of GFE FragMap classified atoms and NH is 

the total number of non-hydrogen heavy atoms. The FragMap assignment is based on an 

atom classification rule file that translates CGenFF atom types into the FragMap classes 

(Table S4 of the supporting information).

Two types of LGFE scores were used depending on whether only a single conformation or 

an ensemble of conformations from MC sampling were used. The single point (SP) LGFE 

was calculated by using the conformations directly obtained from the pharmacophore 

search. To allow for local conformational relaxation and generation of an ensemble of 

conformations, the SILCS-MC25 approach was used. This uses the GFE FragMaps to drive 

the MC sampling and CGenFF parameters32, 33 to describe the intramolecular energy terms. 

For each compound, ten SILCS-MC runs with different random initialization seeds starting 

from the pharmacophore conformation were conducted for 5000 steps with small MC step 

sizes (molecular translation, rotation and dihedral rotation step sizes are 0.05 Å, 1 and 1 

degrees) to minimize the extent that ligand would shift from the starting conformation. The 

LGFEs of all MC snapshots across the ten runs were Boltzmann averaged to generate the 

final SILCS-MC based LGFE score. A GFE upper energy cutoff of 3 kcal/mol was used in 

both types of LGFE calculations, such that both favorable and unfavorable GFE FragMap 

contributions contribute to the LGFEs.
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Results and Discussion

SILCS Pharmacophore Models

An in-house FORTRAN program was used for the extended SILCS-Pharm protocol to 

generate SILCS pharmacophore models for the eight protein targets. The choice of the GFE 

cutoffs, which controls the selection of voxels to be used in FragMap features for subsequent 

generation of the pharmacophore features, was made on a case-by-case basis. This involved 

visual inspection of the FragMaps at different GFE cutoffs. The GFE cutoffs were then 

adjusted to achieve well-separated clusters of voxels of a specific type so that the total 

number of resulting features within the binding region was less than 8. GFE cutoffs used for 

the eight targets are listed in Table S2 in the supporting information along with the number 

of features. Once the GFE cutoffs were selected, the pharmcophore features were generated 

as described in the methods. We note that in our previous study, the use of only water to 

define hydrogen bond donor and acceptor pharmacophore features required the use of 

detailed geometric criteria. The use of a wider range of FragMaps types greatly simplifies 

the assignment of pharmacophore features, with the only complications involving the 

identification of true hydrogen bond donor pharmacophore features.

In addition to the pharmacophore features, volume constraints associated with “forbidden 

regions” are considered in the final pharmacophore models. Forbidden regions are defined 

on the 3D grid as voxels where the SILCS solutes as well as water do not sample during the 

SILCS simulations (i.e. voxels with zero solute or water occupancies considering all atoms 

including hydrogens). Thus, instead of, for example, using the protein surface to define 

regions were ligands cannot sample during VS, an exclusion map representing the forbidden 

region from the SILCS simulations is used to define a volume constraint in the 

pharmacophore model. This exclusion map may be considered a better alternative to more 

traditional representations of the protein surface since it takes the protein flexibility into 

account in an explicit way. Essentially, the excluded volume associated with the protein is 

being defined based on solute and water inaccessibility in the context of protein flexibility 

rather that by the space occupied by the protein in any given or all conformations.

Selection of the final SILCS pharmacophore model for screening was based on the use of 

the partial matching mode in VS, where the ligands only have to match a subset of “key” 

pharmacophore features. The key pharmacophore features are defined as those features with 

the most favorable FGFE scores, where the user can define the number of key features. The 

remaining pharmacophore features in the binding region are then defined as complementary 

features, which may or may not be matched in VS. Thus, during VS, only those compounds 

that have the correct number and types of functional groups that match the key 

pharmacophore features are selected. Alignment of the compounds with the key 

pharmacophore features as well as with complementary features if possible is then 

performed. Matching of complementary features in addition to the key features allows for 

more possible binding modes to be identified. Final RMSD scores are based on all the key 

and complementary features matched for a given ligand.

In summary, five advantages over the original SILCS-Pharm protocol are present in the new 

approach. First, charged features are introduced yielding 6 instead of 4 basic pharmacophore 
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features. Second, with the use of explicit probes for hydrogen bond donors and acceptors 

instead of water, hydrogen bond donor features are more accurately described. Third, simple 

overlap of FragMap features are used to define the shape of joint features instead of the 

more complex geometric description used before. Fourth, exclusion maps are used to 

construct volume constraints that define the shape of the binding region, thereby including 

protein flexibility in the definition of the binding site shape. As shown below, the inclusion 

of the excluded region decreases the number false positive hits making the SILCS 

pharmacophore models more specific. Last, the inclusion of all SILCS pharmacophore 

features in the model and the use of partial matching during pharmacophore VS is 

anticipated to further improve the hit rate.

Test Set

To test the extended SILCS-Pharm protocol, eight protein targets were selected (Table 2). 

All the targets have the corresponding ligands and decoys in the DUD database22. The 

proteins include HIV protease (HIVPR), Factor Xa (FXa), dihydrofolate reductase (DHFR), 

fibroblast growth factor receptor kinase 1 (FGFR1), P38 mitogen activated protein kinase 

(P38 MAP), adenosine deaminase (ADA), estrogen receptor (ER) and AmpC β-lactamase 

(AmpC), and were chosen based on several considerations. HIVPR, FXa and DHFR were 

selected because they were used to test the previous SILCS-Pharm method, allowing for 

comparison with the present, extended method. The eight proteins are from different 

families according to the DUD classification allowing the new protocol to be tested on more 

target types. The numbers of active ligands and decoys vary from 21 to 256 and 732 to 8387 

for the tested targets, respectively, which may help to reduce biases due to dataset size 

effects. In addition, the selected proteins have different difficulties as reflected by the 

enrichment performances of docking using DOCK22 with the enrichment factor varying 

from 0 (no enrichment) to 20 (good enrichment).

SILCS Pharmacophore Features for the Tested Targets

Figure 1 shows the SILCS-Pharm derived pharmacophore features together with the 

corresponding FragMaps contoured at the GFE cutoff levels used to generate the features. 

Consistent with steps 1 and 2 all FragMaps within the binding pockets have been identified 

as pharmacophore features and are fully covered by the pharmacophore feature spheres. 

Besides the basic features, various joint pharmacophore features are seen in all the targets 

and have been generated correctly. For example, both aromatic (in purple) and aliphatic (in 

green) FragMaps can be found at the same locations as the AROM|ALIP joint features 

colored in cyan. For DHFR (Figure 1c) both neutral (blue) and charged (iceblue) donor 

FragMaps can be found in a deeply buried subsite and this is represented as a HBDON|POS 

joint pharmacophore feature colored in yellow. For ADA (Figure 1f) both neutral hydrogen 

bond donor (blue) and acceptor (red) as well as charged donor (iceblue) FragMaps can be 

seen at the top left region, and this forms a (HBDON|POS)|HBACC feature colored in pink. 

In the lower left region both neutral hydrogen bond donor and acceptor features are present 

and result in a HBDON|HBACC feature (pink). Figure 1 also shows that the generated 

feature spheres can penetrate into the protein surface of the crystal structure used to initialize 

the SILCS simulation, indicating that protein flexibility is considered in the SILCS 

pharmacophore features.
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To more clearly analyze the importance of the inclusion of protein flexibility we compare 

the SILCS exclusion maps with the surfaces of the crystal protein structures used to 

initialize the SILCS simulations (Four targets are shown in Figure 2, with results for all 

targets in Figure S1 in the supporting information). Crystal orientations of selected ligands 

from protein complexes other than those used for SILCS simulation are also shown for each 

target in the figure. Clashes are seen between the ligand atoms with the surface of the rigid 

protein structure indicating that such crystal binding modes of the ligands cannot be 

predicted when using rigid protein structure. In contrast, the exclusion maps define a much 

broader binding region and the presented binding modes of the ligands are allowed 

indicating the importance of including protein flexibility during pharmacophore model 

development as well as binding mode prediction. Table 3 shows the calculated surface area 

(SA) for the exclusion map and crystal protein surface. The much lower SA values for the 

exclusion maps further indicates how additional accessible area is available when using the 

exclusion maps versus that using the rigid protein structure.

SILCS FragMaps have been shown to recapitulate crucial ligand-protein interactions and 

reproduce the crystal binding modes of ligands for a number of proteins.17, 18, 25 For the 

protein targets studied here, FragMaps are also found to reproduce crucial binding modes as 

indicated by the overlaps between the SILCS FragMap-derived pharmacophore features and 

functional groups in selected crystallographically identified ligands (Figure 3). Ranking of 

the pharamcophore features for each target based on the FGFE scores is also shown in 

Figure 3. Such ranking may serve as an indicator for the importance of a feature and may 

potentially be used as weighting factors when doing scoring during VS.

In general, the pharmacophore features recapitulate interactions that have been shown 

experimentally to be important for ligand binding and FGFE can qualitatively rank the 

relative feature importance. For HIVPR (Fig. 3a), the four hydrophobic features were the 

highest ranked, consistent with the fact that these four nonpolar binding pockets were known 

to be important for binding42, 43. The fifth feature is a POS feature occupying the catalytic 

site where the ligand hydrogen bond donor groups, usually neutral hydroxyl groups, interact 

with the two Asp residues. As discussed previously25, this inconsistency is due to the Asp 

residues being deprotonated in the SILCS simulation, while only one Asp residue may be 

deprotonated44. For FXa (Fig. 3b), two of the three top ranked hydrophobic features are 

located in the well-studied S1 and S4 pockets which were shown to be crucial for binding of 

the known inhibitors45, 46 and the third ranked POS feature also reproduces the commonly 

observed binding pattern among the known inhibitors45. For DHFR (Fig. 3c), features 1, 2 

and 4 reproduce the hydrophobicity of the core region in the buried binding pocket and 

feature 3 is a HBDON|POS joint feature corresponding to the surrounding charged Asp and 

neutral Thr residues that have both been shown to be important for ligand binding47.

For FGFr1 (Fig. 3d), the three top ranked hydrogen bond donor and acceptor features 1, 3 

and 4 reproduce the known binding patterns that involve critical hydrogen bond interactions 

with the Ala and Glu backbone carbonyl and amide groups of the hinge region at the ATP-

binding pocket48. For P38 MAP the three top ranked features 1, 2 and 3 reproduce the three 

functionalities that are conserved among the majority of P38 MAP inhibitors (Fig. 3e)49–51. 

The last ranked hydrophobic features 4 and 6 and neutral hydrogen bond donor feature 5 
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represent functional groups that are present in some, but not all inhibitors49, 50. For ADA 

(Fig. 3f), top ranked hydrophobic feature 2, hydrogen bond donor and acceptor joint features 

1 and 4 all reproduce known binding interactions,52, 53 which involve hydrophobic residues, 

His17 and Asp19, respectively. For target ER (Fig. 3g), the three top ranked hydrophobic 

features and the donor feature ranked 4 are consistent with the known binding modes of ER 

antagonists54, 55. As seen in Fig. 3h the top ranked hydrophobic feature 1 mimics the 

stacking interaction with Tyr221 residue56, 57 and the second ranked feature NEG 

recapitulates the oxyanion hole caused by the catalytic residue Ser6456, 57. Neutral hydrogen 

bond donor and acceptor features 3 and 4 are related to the amide recognition region 

composed of Ala318 and Asn152 in the binding pocket and are common functional patterns 

found in AmpC ligands56, 57. The above analysis indicates that the SILCS-Pharm models are 

able to qualitatively reproduce important features known to be required for the binding of 

ligands to the eight targets. In addition, the FGFE ranking is an indicator of the importance 

of a feature for binding.

Feature Prioritization using FGFE

Receptor-based pharmacophore modeing methods usually first generate all possible 

pharmacophore elements on the protein target surface and then, using various approaches 

(e.g. hydration site analysis7), select a subset for use in VS. In SILCS-Pharm, the FGFE may 

be used to prioritize identified features. Here, we quantitatively test the use of FGFE. 

Assuming three key pharmacophore feature models, all possible combinations out of the 

total number of SILCS-Pharm identified features (Table S2 in the supporting information) 

were considered for each target and VS was performed using all constructed models under 

full matching mode. The AUC for each VS was then evaluated and used to rank the model 

quality. Relationships between the hypothesis GFE (HGFE, which is the sum of FGFEs of 

all features in a model) and AUC were then plotted to investigate if the FGFE can serve as 

an indicator of feature importance and thereby be used to select a phamacophore model for 

VS. Figure 4 presents the AUC values as a function of the HGFE scores for three key 

feature containing pharmacophore models. Analysis of models with larger numbers of 

features was not done as ER and AmpC only have four available features. In general, the 

most favorable pharmacophore model based on the HGFE scores is among the top models as 

ranked by AUC. The most significant exceptions occur with HIVPR, P38 MAP and ER. The 

results with HIVPR (Fig. 4a) may have contributions from the protonation state of the Asp 

residues in the catalytic site (see above) while the known conformational flexibility of P38 

MAP may play a role in that protein (Fig. 4e). However, in both cases the top scoring model 

based on HGFE is among the top three or four AUC-ranked models. The discrepancy with 

ER may be associated with the small number of models (Fig. 4g). We note that the 

correlations are generally quite poor as reflected by the low correlation coefficient values, 

which may be indicative of individual pharmacophore features being poor predictors of 

active compounds. For example, in the case of HIVPR, many of the models with favorable 

HGFEs have AUC values that are under 0.1. All of these models contain the POS feature 

which was discussed above as an inappropriate feature for the target. Thus, while the 

correlations are generally weak, the overall ability of HGFE scores to yield high AUC 

values is satisfactory, indicating its utility in selecting pharmacophore models for VS. 

Accordingly, this approach was used for the final analysis.
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VS using SILCS Pharmacophore Models

SILCS pharmacophore models were tested in VS using DUD data sets for the eight proteins 

listed in Table 2. The models for each target contain all identified SILCS pharmacophore 

features and volume constraints with the number of key features varying. The tested models 

were chosen to have at least three key features and only those features with the most 

favorable FGFE are labeled as key features. For example, if four features are identified for a 

target, then a 3-key features model is a model where the three top FGFE ranked features are 

assigned as key features. And it is possible to have all the features in a model assigned as 

key features. Accordingly, a total of N-2 models for a target that has N identified features 

can be constructed and tested in VS under partial matching mode.

As the pharmacophore generation scheme presented in the preceding paragraph allows for 

the creation of multiple models, enrichment performance for all possible models was 

determined for each target. As shown in Table S3 of the supporting information, that range 

of variability is significant. In all cases the choice of 3 or 4 key features yields the highest 

enrichment while the use of 5 or more key features leads to a significant decrease in 

enrichment. Thus, in situations where no priori information on active ligands is available, 

there is the possibility of selecting a less than ideal model for VS, though the selection of 3 

or 4 key features is recommended. In addition, as presented below, the use of LGFE re-

ranking leads to the selection of alternate active ligands versus the use of RMSD selection 

alone, suggesting that both approaches should be used and the results combined when 

selecting compounds for experimental assays. The remainder of the manuscript focuses on 

the best performing model for each target.

Enrichment results for the best performing pharmacophore model are shown in Figure 5 and 

Table 4 and compared with docking results using available docking programs. For the first 

three targets, the results using the extended SILCS-Pharm protocol were also compared with 

previously reported VS results using the original SILCS-Pharm protocol16. In addition, 

comparisons are made with available results from Lill and coworkers’ work7.

For HIVPR, the best pharmacophore model has four key features and its performance is 

slightly worse than the best previous results using the original SILCS-Pharm protocol. 

However, the best previous model contained 6 features, while the original 4-feature model, 

which has the four hydrophobic features, had significantly worse performance (EF1=2.0, 

EF10=2.1, EF20=1.4, AUC=0.56) than the new 4-feature model. This is due to the features 

from the new SILCS-Pharm being more accurately defined than in the original method. As 

discussed above, the fifth feature, POS, in the current model may not be suitable due to both 

the catalytic Asp residues being charged in the SILCS simulations, whereas one of the 

residues is likely neutral which would favor a neutral HBDON feature in that region44. 

Accordingly, we tested a modified model with feature POS being changed to HBDON|POS 

to allow the matching of both neutral and charged donors at this location. The resulting 5-

feature model has a similar performance as the best original model, emphasizing the 

importance of the protonation state selected for the SILCS simulation. For FXa, the new 

model has better performance than the original SILCS-Pharm model as indicated by the 

increased EFs and AUC. For DHFR, concerns about the zero value for EF1 existed in the 

original SILCS-Pharm study, but this is no longer an issue in the new model where EF1 = 
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29.3 though the AUC is slightly worse than the original result. These results indicate that the 

extended SILCS-Pharm model shows more robust performance versus the original SILCS-

Pharm results, indicating the advantage of using multiple probe molecules during 

pharmacophore model development.

The quality of the extended SILCS-Pharm approach was further validated by comparing 

results with those from Dock 4.0, AutoDock 4 and AutoDock Vina. For all the targets tested, 

except AmpC, SILCS-Pharm outperformed the three docking programs as reflected by the 

larger EF and AUC values. For AmpC, though SILCS-Pharm yielded better results than the 

two AutoDock programs, it was outperformed by DOCK 4.0. It is interesting to note that the 

DOCK 3.5 result for AmpC presented in the DUD paper was worse than the current SILCS-

Pharm result. The improved result for AmpC using DOCK 4.0 may due to the use of the in-

house developed docking protocol,38, 39 where the CHARMM parameters30 instead of the 

original DOCK parameters are used to determine the binding energy and guide the docking.

Complementary Features and Volume Constraints

While the success of the extended SILCS-Pharm may be largely attributed to the use of 

multiple solute types in the SILCS simulation, the use of complementary features and 

volume constraints may also contribute to the improved VS results. The contributions by 

these two factors were tested by using models in their absence for VS. For each target, the 

best performing model was considered and two new models were created with removal of 

either the complementary features or the volume constraints and tested in VS. Table 5 lists 

the percentage loss on the AUC value using the two modified models compared with the full 

model for each target. Though generally not large, some decreases in the AUCs occurred for 

some targets when the complementary features or the volume constraints were absent 

suggesting that the two factors indeed helped with enrichment during VS. The observed 

small change may be due to the DUD data sets being designed to have decoys that have 

physiochemical properties similar to the ligands, such that the sizes and functional features 

of the ligands and decoys for each target are similar. Thus, the complementary features used 

to select ligands with more matches and the volume constraints used to avoid oversized 

compounds that do not fit into the binding site have limited roles in compound selection in 

this case. However, it is anticipated that the two terms will make additional contributions in 

practical use, where compounds with very dissimilar properties and shapes are being 

screened. Moreover, given that the new terms do not add much additional computational 

cost to VS, even a relatively small improvement warrants their inclusion. For example, VS 

against the 5745 decoys of FXa took 190 and 170 seconds, respectively, using 

pharmacophore models with and without volume constraints.

LGFE Re-ranking

Though for most test cases, an AUC of more than 0.7 was observed when using SILCS-

Pharm, low AUCs were found for two targets. These two targets, FGFr1 and P38 MAP, 

show an AUC lower than 0.6 implying the two targets are challenging cases for VS, which 

is also consistent with the previous DUD docking results (EF1 is 0 and 2.1)22. As shown in 

Figure 3 and discussed above, the SILCS-Pharm features for these two targets are consistent 

with the binding modes of the known ligands. This suggests the features in the 
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pharmacophore model are appropriate for VS and should be able to identify the known 

ligands and differentiate them from decoys. The poor performance may thus imply that the 

RMSD score used to rank compounds is inadequate. Previously, LGFE, which is the sum of 

all atom GFE scores for a ligand, was proposed for scoring and shown to reproduce various 

experimental binding affinity data sets satisfactorily18, 20, 25. Here, normalized LGFE was 

used to re-rank the obtained pharmacophore RMSD-selected conformations from SILCS-

Pharm VS for all the targets and to determine if the use of LGFE ranking leads to 

improvements in the enrichment. Calculation of the LGFE scores is defined in equation 2. 

The current scoring represents a refinement of that previously reported25 with no weighting 

factors being used, the scores being normalized for the number of classified versus total non-

hydrogen atoms in the ligand and new definitions of the atom types based only on non-

hydogen atoms as presented in Table S4 of the supportining information. In addition to SP 

LGFE scores based on the RMSD-selected conformation, local relaxation of the ligands was 

performed using GFE based SILCS-MC sampling25 from which Boltzmann-averaged LGFE 

scores were obtained.

Table 6 shows the AUCs for the results with ligand ranking based on SP LGFE scores, 

SILCS-MC sampled LGFE score and the RMSD criteria. For the two worst RMSD based 

ranking cases, FGFr1 and P38 MAP, the SP LGFE re-ranking improves the enrichment with 

AUCs increased from 0.55 to 0.75 for FGFr1 and from 0.57 to 0.75 for P38 MAP. For most 

of the other cases, similar or slightly worse results are seen when using SP LGFE re-ranking. 

Similarly, use of the relaxed SILCS-MC LGFE scores yielded ambiguous results with 

respect to the RMSD and SP LGFE scores. For HIVPR, the heavily decreased performance 

using LGFE for scoring is likely again due to the wrong protonation state used for the 

SILCS simulations as described before.

Given ambiguous results associated with LGFE ranking, analysis was undertaken to test if 

LGFE ranking may identify alternate ligands with a high probability of binding to the target 

protein versus those from RMSD ranking alone. Included in Table 6 is the percentage of 

different ligands identified using by the use of LGFE scores. This result suggests that the 

most optimal approach for the selection of ligands in a practical VS would be a combination 

of ligands from RMSD and LGFE rankings. To test this, the top 10% of the ranked 

compounds from RMSD or LGFE scoring were obtained and the percentage of active 

ligands amongst those compounds determined (i.e. if all the active compounds were found in 

the top 10%, the result would be 100 in Table 7). RMSD and LGFE results were combined 

by simply taking the top 10% list from both rankings and determining the number of active 

compounds among the combined set. As shown in Table 7, the combination of RMSD and 

LGFE based ranking always yielded an equivalent or larger percentage of active ligands 

over the individual methods. This result is consistent with previous findings about consensus 

scoring58 that the identification of true positives is enhanced and more diverse sets of 

ligands are identified using consensus ranking. Concerning computational costs, taking P38 

MAP, which includes 454 ligands, the SP LGFE calculations required 2,700 CPU seconds 

using a single core on an AMD Opteron 2350 processor equipped node while the 5000 steps 

SILCS-MC sampled LGFEs required almost the same amount of calculation time. Thus, it is 

recommended that the final selection of compounds be based on the combined final top 
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ranked lists from RMSD and LGFE ranking, with the SP LGFE scores yielding the greatest 

improvement with the exception of FXa.

Conclusion

Using additional solutes in the SILCS simulations enables the SILCS-Pharm protocol to be 

extended and reformulated. Advantages over the original approach were validated using 

eight protein targets with their DUD test sets. The new protocol not only defines the 

pharmacophore features more accurately by including explicit hydrogen bond donor and 

acceptor solutes, but also includes more specific features allowing for the definition of more 

feature types. With the use of complementary features and volume constraints, the VS 

results show that the extended SILCS-Pharm improves upon the original protocol and 

outperforms three commonly used docking programs in most cases suggesting its potential 

utility for CADD. Single point and SILCS-MC sampling based LGFE re-rankings, which 

introduce energetic criteria into compound ranking, were tested and shown to enhance the 

SILCS-Pharm results with respect to the identification of alternate ligands for experimental 

assay. Thus, as pharmacophore-based VS is very efficient and far less time consuming than 

other VS methods, SILCS-Pharm can be considered for use in CADD projects when 

screening a large databases of compounds as well as to facilitate ligand docking in general. 

Furthermore, given the capability of the SILCS approach to facilitate ligand 

optimization18, 20, 25, which would be performed using the same GFE FragMaps as used for 

the SILCS-Pharm, the overall economy and utility of the SILCS approach in ligand design 

may be significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
FragMaps and identified SILCS pharmacophore features within the binding pockets of the 

eight protein targets: (a) HIVPR (PDB 1G2K); (b) FXa (PDB 1FJS); (c) DHFR (PDB 

3DFR); (d) FGFr1 (PDB 3KY2); (e) P38 MAP (PDB 1OUY); (f) ADA (PDB 1NDW); (g) 

ER (PDB 3ERT); (h) AmpC (PDB 1XGJ). FragMap contours are displayed at the GFE 

cutoffs used to generate the pharmacophore features. The color of the AROM, ALIP, 

HBDONp, HBACC, POSp and NEG FragMaps are purple, green, blue, red, iceblue and 

orange, respectively. Pharmacophore features are shown by transparent spheres. The color 

of the AROM|ALIP, HBDON, HBACC, POS, NEG and HBDON|POS pharmacophore 

features are cyan, blue, red, iceblue, orange and yellow. The joint pharmacophore feature 

(HBDON|POS)|HBACC (top left) and HBDON|HBACC (lower left) are colored in pink. 

The protein surfaces are based on the crystal structures used to initialize the SILCS 

simulation (white). Protein atoms occluding the view of the pocket are removed to facilitate 

visualization.
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Figure 2. 
Comparison of the solvent accessible surfaces of crystal protein structures used to initialize 

the SILCS simulation (left panel) and SILCS exclusion maps (right panel) for the four 

targets: (a) HIVPR (PDB 1G2K); (b) FXa (PDB 1FJS); (c) DHFR (PDB 3DFR); (d) FGFr1 

(PDB 3KY2). Results for other targets can be found in Figure S1 in the supporting 

information. The crystal binding orientation of a selected ligand for each target presents in 

protein-ligand complex other than the one used for SILCS simulation is also shown: (a) 

HIVPR (PDB 3ZPS); (b) FXa (PDB 3FFG); (c) DHFR (PDB 1DIU); (d) FGFr1 (PDB 
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3TT0). The green dashed circle indicates ligand atoms that have clashes with the protein 

surface but not the exclusion map.
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Figure 3. 
SILCS pharmacophore models for the eight protein targets with the crystal orientations of a 

representative ligand for each target: (a) HIVPR (PDB 3SAC); (b) FXa (PDB 1FJS); (c) 

DHFR (PDB 3DFR); (d) FGFr1 (PDB 3TT0); (e) P38 MAP (PDB 1OUY); (f) ADA (PDB 

1NDW); (g) ER (PDB 3ERT); (h) AmpC (PDB 1XGJ). Protein atoms occluding the view of 

the pocket are removed to faacilitate visualization. The colors of the features are the same as 

used in Figure 2. Numbering indicates the rank ordering of the pharmacophore features 

based on the FGFE scores.
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Figure 4. 
Relationship between HGFEs of all possible pharmcophore models containing three features 

and AUCs from VS for each target. (a) HIVPR; (b) FXa; (c) DHFR; (d) FGFr1; (e) P38 

MAP; (f) ADA; (g) ER; (h) AmpC. The Spearman correlation coefficients S are shown. The 

red dashed line represents the AUC value for the model with the most favorable HGFE for 

each target.
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Figure 5. 
Enrichment plots of the SILCS pharmacophore modeling using DUD data sets for the eight 

protein targets: (a) HIVPR; (b) FXa; (c) DHFR; (d) FGFr1; (e) P38 MAP; (f) ADA; (g) ER; 

(h) AmpC. Results using DOCK 4.0, AutoDock 4 and AutoDock Vina are also shown for 

comparison. For the first three targets, the results from our former SILCS-Pharm study are 

shown. The black line indicates random selection of compounds from the database. The X 

axis is in logarithmic scale to show the early stage performance more clearly.
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Table 1

Correspondence between FragMap features and pharmacophore features used in SILCS-Pharm.

FragMaps and FragMap features Pharmacophore featuresa

APOLAR (AROM+ALIP) AROM|ALIP

HBDON -

HBACC HBACC

POS -

NEG NEG

AROM AROM

ALIP ALIP

HBDONp HBDON

POSp POS

MEOO -

MEOH -

FORN -

a
Only basic pharmacophore features are shown here for hydrogen bond donor and acceptors, donor and acceptor joint pharmacophore features are 

also available as described in the text.
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Table 3

Surface area (SA in Å2) calculated for the crystal protein structures and exclusion maps of the eight targets.

Target Protein surface Exclusion map

HIVPR 20170 11440

FXa 28909 17465

DHFR 16975 8426

FGFr1 31598 15206

P38 MAP 36332 17100

ADA 35941 20066

ER 25280 10549

AmpC 35790 19826
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