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Abstract

The acid dissociation constant is an important molecular property and it can be successfully 

predicted by Quantitative Structure-Property Relationship (QSPR) models, even for in silico 
designed molecules. We analyzed how the methodology of in silico 3D structure preparation 

influences the quality of QSPR models. Specifically, we evaluated and compared QSPR models 

based on six different 3D structure sources (DTP NCI, Pubchem, Balloon, Frog2, OpenBabel and 

RDKit) combined with four different types of optimization. These analyses were performed for 

three classes of molecules (phenols, carboxylic acids, anilines) and the QSPR model descriptors 

were quantum mechanical (QM) and empirical partial atomic charges. Specifically, we developed 

516 QSPR models and afterwards systematically analyzed the influence of the 3D structure source 

and other factors on their quality.

Our results confirmed that QSPR models based on partial atomic charges are able to predict pKa 

with high accuracy. We also confirmed that ab-initio and semiempirical QM charges provide very 

accurate QSPR models, and using empirical charges based on electronegativity equalization is also 

acceptable, as well as advantageous, since their calculation is very fast. On the other hand, 

Gasteiger-Marsili empirical charges are not applicable for pKa prediction. We later found that 

QSPR models for some classes of molecules (carboxylic acids) are less accurate. In this context, 

we compared the influence of different 3D structure sources. We found that an appropriate 

selection of 3D structure source and optimization method is essential for the successful QSPR 

modeling of pKa. Specifically, the 3D structures from the DTP NCI and Pubchem databases 

performed the best, as they provided very accurate QSPR models for all the tested molecular 

classes and charge calculation approaches, and they do not require optimization. Also Frog2 

performed very well. Other 3D structure sources can also be used, but are not so robust, and an 
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unfortunate combination of molecular class and charge calculation approach can produce weak 

QSPR models. Additionally, these 3D structures generally need optimization in order to produce 

good quality QSPR models.

Graphical abstract

Introduction

The acid dissociation constant, Ka, and its logarithmic version pKa, is an important 

molecular property and its values are of interest in chemical, biological, environmental and 

pharmaceutical research.1–3 Experimental pKa values are usually unavailable for all 

compounds from the chemical catalogues. Therefore it cannot be used for example in virtual 

screening, which requires predictions of physico-chemical properties for large sets of in 
silico designed molecules. Several pKa prediction methodologies have been published to 

date and they are summarized in review articles,4–7 but reliable and accurate pKa prediction 

is still a challenge and a topic of intensive research. 8–10

A popular and frequently used pKa prediction approach is based on the QSPR (Quantitative 

Structure-Property Relationship) methodology.11–13 Various types of input values (so-called 

descriptors) can be used for the calculation of pKa via QSPR models. Partial atomic charges 

are definitely relevant descriptors for pKa calculations12,14–17 and can be calculated directly 

from the 3D structure of the molecule. The partial atomic charges cannot be determined 

experimentally or derived from the results of quantum mechanics (QM) in a straightforward 

manner. For this reason, many different methods have been developed for their calculation. 

The most common method for charge calculation is using a quantum mechanical approach 

(a combination of a theory level and a basis set) and the subsequent application of a charge 

calculation scheme. For example for pKa prediction via QSPR models, ab-initio QM charges 

calculated via HF or B3LYP theory levels and STO-3G or 6-31G* basis sets proved suitable. 

The most appropriate charge calculation schemes for these purposes seem to be MPA 

(Mulliken population analysis), NPA (Natural population analysis) and AIM (atoms in 

molecules).8,15,17 Semiempirical QM charges have also been employed in QSPR models for 

pKa prediction (e.g., AM1, PM3 or PM6 theory levels in combination with MPA).11,14,17–19 

A major drawback of the QM charges is the computational effort required for the calculation 

of the wave function. For this reason, the computational complexity of obtaining QM 

charges is at least θ(B4), where B is the number of basis functions. Therefore, the 

calculation of ab-initio QM charges is very time consuming, while the calculation of 

semiempirical QM charges is also relatively slow. The Electronegativity Equalization 

Method20 is an empirical charge calculation approach which presents a faster alternative to 
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the QM methods. EEM is able to provide partial atomic charges with comparable accuracy 

to QM charges, and it is markedly less time consuming than QM charge calculation 

approaches. EEM is even able to mimic a certain QM charge calculation approach (i.e., the 

combination of a theory level, a basis set and a charge calculation scheme), because it 

includes parameters based on the QM charges. EEM charges also proved applicable for pKa 

prediction via QSPR.8 Last but not least, pKa predicting QSPR models based on 

conformationally independent empirical charges (so called topological charges, e.g., 

Gasteiger-Marsili charges) have also been evaluated.13,19

Therefore, in principle, we can prepare a straightforward and time-efficient workflow for 

obtaining pKa values for molecules designed in silico: use the 3D structures of molecules 

prepared in silico, calculate partial atomic charges for them, employ the charges as 

descriptors in QSPR models and predict the required pKa values. Such a workflow can be 

applied in virtual screening. We can also design similar workflows for other biologically 

important properties such as logP, biodegradability, dioxin-like activity etc.

Nonetheless, before implementing the workflow we need to answer a key question: How 

does the methodology of in silico 3D structure preparation influence the quality of QSPR 

models for pKa prediction? In previous works focused on pKa prediction via 

QSPR,8,17,19,21,22 3D structures were mainly obtained from the DTP NCI database23 (which 

uses CORINA to generate the 3D structures) or directly designed by CORINA.24 But there 

are other tools and databases which are often used as sources of 3D structures. For example, 

the database Pubchem25 (employing the software Omega26) or software tools such as 

Balloon,27 Frog2,28 OpenBabel29 or RDKit.30 These tools create 3D structures via a data or 

knowledge-based approach (CORINA, OpenBabel, Omega), distance geometry approach 

(Balloon, RDKit) or other approaches (Frog2). Specifically, Frog2 first generates a graph of 

rings and acyclic elements, and afterwards performs a Monte Carlo search. Can we use any 

of these 3D structure sources for the QSPR modeling of pKa? Or is it that only some 

methodologies for 3D structure preparation provide acceptable QSPR models? In parallel, 

another important question is whether the 3D structures need to be optimized before they 

can be used in QSPR models or not. Some articles on this topic use 

optimization,14,15,22,31,32 while some provide accurate models even without it.8,11,17

In this study, we addressed the above questions. Specifically, we evaluated and compared 

QSPR models based on six different 3D structure sources combined with four different types 

of optimization. The 3D structure sources were the databases DTP NCI and Pubchem, and 

the software tools Balloon, Frog2, OpenBabel and RDKit. The optimization was either 

skipped or done by molecular mechanics (MMFF94 for all 3D structure sources, MM-UFF 

for RDKit) or quantum mechanics (B3LYP/6-31G*). These analyses were performed for 

three classes of molecules (phenols, carboxylic acids, anilines). We mainly focused on ab-
initio QM charges, which provide the most accurate pKa predicting QSPR models, and on 

empirical EEM charges, which are a faster and comparably accurate alternative to ab-initio 
QM charges. Specifically, we used four types of QM charges (HF/STO-3G/MPA, B3LYP/

6-31G*/MPA, B3LYP/6-31G*/NPA, and B3LYP/6-31G*/AIM) and four corresponding 

types of EEM charges. To create a complete overview, we provide also QSPR models based 

on semiempirical charges (i.e., PM6 charges) and on conformationally independent 
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empirical charges (i.e., Gasteiger-Marsili charges). Thus we developed 516 QSPR models, 

and afterwards systematically analyzed the influence of the 3D structure source and other 

factors on their quality.

Methods

Data sets

Our training data set is composed of three classes of molecules (i.e., phenols, anilines and 

carboxylic acids), which represent common classes of organic molecules. These types of 

molecules are also frequently used for the evaluation of QSPR models.8,11,14–17,19,22,31 The 

data set contains 190 molecules: 60 phenols, 82 carboxylic acids and 48 anilines. 

Additionally, we used a test data set containing 53 phenols which were not included in the 

training data set. The list of molecules including their figures, NCS numbers and CAS 

numbers can be found in the Supporting Information (Table S1).

pKa values

The experimental pKa values were taken from the Physprop database.33 The pKa values of 

all molecules can be found in the Supporting Information (Table S1).

2D structure of molecules

Information about the 2D structure of individual molecules was obtained from the DTP NCI 

database. The 2D structures were described in SMILES format. The files with the SMILES 

of all molecules are in the Supporting Information.

Sources of 3D structure of molecules

For each molecule, the 3D structure was obtained from six different sources. Specifically, 

the structure was obtained from two databases (Pubchem, DTP NCI) and in parallel 

generated by four different freely available software tools (Balloon, Frog2, OpenBabel and 

RDKit). These sources were selected because they appear to be the most popular, and they 

also represent the main approaches for 3D structure preparation.

Optimization

Each molecule was thus associated with six different 3D structures, obtained by the six 

approaches described above. Afterwards, each 3D structure was processed in two different 

ways. Specifically, two types of optimization were performed – an optimization via quantum 

mechanics, and an optimization via molecular mechanics (MM). The QM optimization was 

performed by Gaussian 0934 using B3LYP/6-31G*, and the MM optimization was done with 

RDKit using MMFF94. These approaches were selected because they are common and 

frequently used representatives of QM and MM optimization. Additionally, we also 

performed an optimization via the MM force field UFF (Universal Force Field) for 

structures prepared with RDKit. The reason is that the RDKit developers recommend 

applying this particular force field for the structures generated with RDKit.

Geidl et al. Page 4

J Chem Inf Model. Author manuscript; available in PMC 2016 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3D structures in the training and test data sets

Each molecule in our training data set was associated with 19 different structures, because 

there were 6 sources of 3D structure and 3 types of optimization for each (no optimization, 

QM optimization and MM optimization) plus an additional UFF optimization for RDKit. 

The test data set contained only phenol molecules. Each molecule was associated with 2 

different structures, because we selected 2 sources of 3D structure (i.e., DTP NCI and 

RDKit) and one type of optimization for each (no optimization).

In our QSPR models, we used neutral forms of all the molecules and also dissociated forms 

of phenols and carboxylic acids and associated forms of anilines (see Figure 1). The 

dissociated forms of molecules were created by removing the hydrogen atom of the 

dissociating group. The associated forms of anilines were created by adding one hydrogen 

atom to the amino group. The adding of the atom was done via an in-house script which 

applies the Bioshell library,35,36 and a detailed description of the procedure is given in the 

Supporting information.

In this way, our training data set contained 19 (6*3+1) different structures for each molecule, 

and 7220 (=19*190*2) structures in total. In parallel, our test data set included 2 different 

structures for each molecule, therefore 212 (=2*53*2) structures in total.

QM charges

For each of the 7220 structures from the training set, we calculated ab-initio QM partial 

atomic charges via 4 QM charge calculation approaches (i.e., HF/STO-3G/MPA, B3LYP/

6-31G*/MPA, B3LYP/6-31G*/NPA, and B3LYP/6-31G*/AIM) and semiempirical QM 

charges using PM6. These approaches were selected, because they represent the main types 

of charge calculation approaches which have been reported as successful for pKa prediction 

via QSPR.8,15,17 The second reason for selection of the ab-initio QM approaches was that 

corresponding EEM parameters are available for them. For each of the 212 structures from 

the test set, we calculated ab-initio QM charges via B3LYP/6-31G*/NPA. This charge 

calculation approach was selected based on the results obtained on the training set. All the 

ab-initio and semiempirical QM charges were calculated by Gaussian 09.34

EEM charges

For each of the 7220 structures in our dataset, the EEM charges were calculated by the 

program EEM SOLVER37 using the 4 EEM parameter sets described in Table 1. EEM 

charges calculated using these parameter sets should mimic QM charges calculated by the 

relevant QM charge calculation approaches.

Gasteiger-Marsili charges

We calculated also empirical Gasteiger-Marsili charges for all the molecules from the 

training set, including their dissociated or associated forms, therefore for 380 (=2*190) 

molecules. Gasteiger-Marsili charges are based on 2D structure, therefore they do not 

depend on the source of 3D structure and on the optimization. All these charges were 

calculated by RD-Kit.30
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Descriptors and QSPR models

The descriptors used for QSPR modeling were partial atomic charges from atoms that are 

close to the dissociation or association site. We employed both charges from neutral and 

from dissociated (or associated) molecules. The linear model is justified by the linear 

relationship between pKa and the electrostatic potential at the protonation site combined 

with the linear dependence of the potential on the surrounding charges. The distance 

dependances are absorbed by the p coefficients derived from the experimental data.

Thus, the QSPR model employed in this study for phenol molecules has the following 

equation:

(1)

where qH is the atomic charge of the hydrogen atom from the phenolic OH group of the 

neutral molecule, qO is the charge on the oxygen atom from the phenolic OH group of the 

neutral molecule, qC1 is the charge on the carbon atom binding the phenolic OH group of the 

neutral molecule, qOD is the charge on the phenoxide O– from the dissociated molecule, and 

qC1D is the charge on the carbon atom binding this oxygen in the dissociated molecule (see 

Figure 1 a)). The symbols pp(H), pp(O), pp(C1), pp(OD), pp(C1D) and pp are parameters of the 

QSPR model.

The QSPR model employed in this study for carboxylic acids uses the following equation:

(2)

where qH and qO1 are the atomic charge of the hydrogen and oxygen atoms from the OH 

group of the neutral molecule, respectively; qO2 is the charge on the oxygen atom from the 

carbonyl group of the neutral molecule; qC1 is the charge on the carbon atom binding in the 

COOH group of the neutral molecule; qO1D is the charge on the O– oxygen from the 

dissociated molecule; qO2D is the charge on the oxygen atom from the carbonyl group of the 

dissociated molecule; and qC1D is the charge on the carbon atom in the carboxyl group of 

the dissociated molecule (see Figure 1b)). Because the structures of dissociated carboxylic 

acid molecules were created by removing the H atom with no further correction of the 

structure, the values qO1D, qO2D and qC1D describe charge distribution immediately after 

removing of this hydrogen atom. The symbols pc(H), pc(O1), pc(O2), pc(C1), pc(O1D), pc(O2D), 

pc(C1D), and pc are parameters of the QSPR model.

The QSPR model employed in this study for anilines is based on the following equation:
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(3)

where qH is the average of charges located on both hydrogens in the amino group of the 

neutral molecule; qN is the charge of the nitrogen from the amino group of the neutral 

molecule; qC1 is the charge on the carbon atom binding the amino group in the neutral 

molecule; qHA is the average of charges located on the three hydrogens in the amino group 

of the associated molecule; qNA is the charge on the nitrogen from the amino group of the 

associated molecule and qC1A is the charge on the carbon atom binding the amino group in 

the associated molecule (see Figure 1 c)). The symbols pa(H), pa(N), pa(C1), pa(HA), pa(NA), 

pa(C1A), and pa are parameters of the QSPR model.

The QSPR model equations (1) and (2) originate from,8 and they proved useful for pKa 

prediction based on QM and EEM charges. Equation (3) was inspired by these two 

equations.

In this way we created one QSPR model for each of our 3 classes of molecules (phenols, 

carboxylic acids, anilines), 19 types of structures (6 sources of 3D structures * 3 methods of 

optimization + RDKit with MM-UFF) and 9 types of charges (5 types of QM charges and 4 

types of EEM charges). For each class of molecules, we additionally created one QSPR 

model based on Gasteiger-Marsili charges. Thus we created 516 (=3*19*9+3) QSPR 

models. Specifically, 228 QSPR models based on ab-initio QM charges (denoted QM QSPR 

models), 57 models based on semiempirical charges (denoted semiempirical QM QSPR 

models), 228 models based on EEM charges (denoted EEM QSPR models) and 3 models 

based on Gasteiger-Marsili charges (GM QSPR models). The parameterization of the QSPR 

models was done by multiple linear regression (MLR) using the software QSPR Designer.42

Cross-validation

The robustness of all 516 QSPR models was tested by cross-validation. The k-fold cross-

validation procedure was used,43,44 where k = 5. Specifically, for each QSPR model, its 

training data set was divided into five parts (each contained 20% of the molecules). This 

division was done randomly, and included stratification by pKa value. Afterwards, five 

cross-validation steps were performed. In the first step, the first part was selected as a test 

set, and the remaining four parts were taken together as the training set. The test and training 

sets for the other cross-validation steps were prepared in a similar manner.

Results and discussion

The quality of the QSPR models, i.e. the correlation between experimental pKa and the pKa 

calculated by each model, was evaluated using the squared Pearson correlation coefficient 

(R2), root mean square error (RMSE), and average absolute pKa error (Δ ̄), while the 

statistical criteria were the standard deviation of the estimation (s) and Fisher's statistics of 

the regression (F).
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Tables 2, 11 and S2 in Supporting Information summarize the squared Pearson correlation 

coefficients for all QSPR models based on QM charges (QM QSPR models) and for all QM 

QSPR models, EEM QSPR models and semiempirical QM QSPR models, respectively. 

Table S3 in the Supporting Information contains all the quality criteria (R2, RMSE, Δ̄) and 

statistical criteria (s and F) for all the QSPR models analyzed. All these models are 

statistically significant at p = 0.01. Since our data sets contained 60 phenols, 82 carboxylic 

acids and 48 anilines, the appropriate F values to consider were those for 60 samples, 80 

samples and 50 samples, respectively. The QSPR models for phenols, carboxylic acids and 

anilines contained 5, 7 and 6 descriptors, respectively. Thus, the QSPR models for phenols 

are statistically significant (at p = 0.01) when F > 3.34, the QSPR models for carboxylic 

acids when F > 2.87 and the QSPR models for anilines when F > 3.19.

The parameters of the QSPR models are summarized in the Supporting Information (Table 

S4).

Quality of QM QSPR models – general summary

The results summarized in Tables 2 and 3 confirmed that the QSPR models based on QM 

charges are able to predict pKa with high accuracy. Specifically, about 24% of the models 

have excellent quality (R2 ≥ 0.95), close to 40% have very good quality (R2 ≥ 0.9), 30% 

have lower quality, but are still applicable (R2 ≥ 0.8), and only about 6% have low quality 

(R2 < 0.8).

Predictivity of QM QSPR models

In general, the predictivity of QSPR models calculating pKa based on charges was shown in 

the literature (e.g.11–13). Additionally, high quality of QM QSPR models based on the same 

charge descriptors as our models was shown by Svobodová Vařeková et al..17 To confirm the 

predictivity, we did a cross-validation for all our QSPR models. Cross-validation results for 

selected QSPR models are in Table 4 (i.e., based on B3LYP/6-31G*/NPA charges and non-

optimized OpenBabel 3D structures, which show average quality in comparison with other 

QM QSPR models). All the cross-validation results can be found in the Supporting 

Information (Table S5). These results showed that the values of R2 are similar for the test 

set, the training set and the complete set, therefore the models are stable.

For further confirmation of our QSPR models predictivity, we tested selected QSPR models 

on an independent test data set prepared only for testing purposes, with a size comparable to 

that of training data set and which was. Specifically, the test data set includes 53 phenol 

molecules and we used it for testing two selected QM QSPR models for phenols, namely, 

one of the best quality models (B3LYP/6-31G*/NPA charges and non-optimized 3D 

structures from NCI) and one of the worst quality models (HF/STO-3G/MPA charges and 

non-optimized 3D structures from RDKit). The quality criteria for the test set and the 

training set are in Table 5. These results demonstrate that the QSPR models perform 

comparably for the test set and the training set.
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Influence of ab-initio QM charge calculation approach

The results (Tables 2 and 6) show that all four of the ab-initio QM charge calculation 

approaches tested here provide a comparable quality of pKa prediction. These results 

therefore confirmed, that all the selected charge calculation approaches are suitable for the 

QSPR prediction of pKa. Additionally, all the charge calculation approaches are applicable 

for all three classes of molecules. Specifically, for each class of molecules, any ab-initio QM 

charge calculation approach provides good quality QSPR models (R2 close to 0.9) at least 

for some sources of 3D structures. An interesting finding is that the suitability of a certain 

charge calculation approach strongly depends on the class of molecules. For example, 

B3LYP/6-31G*/MPA charges work very well for anilines and markedly poorer for 

carboxylic acids. The next interesting finding is that the charge calculation approach HF/

STO-3G/MPA, which uses the smallest basis set (STO-3G) and the simplest population 

analysis (MPA), performs very well.

Influence of the class of molecules

We can see (Table 2 and Table 7), that some classes of molecules are more easily handled by 

QSPR modeling, while some are more challenging. Specifically, QSPR models work very 

well for anilines and phenols. These models have high R2 for all charge calculation 

approaches and for most of the 3D structure sources. On the other hand, QSPR models 

provide markedly weaker pKa predictions for carboxylic acids. Namely, only a few 3D 

structure sources are applicable for QSPR modeling for carboxylic acids. One reason for the 

lower quality of QSPR models for the carboxylic acids is, that the carboxyl group bound 

some arbitrary chemical scaffold. In contrast, the –OH group of phenols and –NH2 group of 

anilines have the same, conserved neighborhood – the phenolic ring. In parallel, the phenolic 

ring also allows higher de-localization of electrons, which is better suited for the calculation 

of QM descriptors than the more rigid electron localization in carboxylic acids.

Influence of 3D structure preparation methodology on the quality of the QM QSPR model

Tables 2, 8 and 9 show that an appropriate selection of 3D structure source and optimization 

method is essential for the QSPR modeling of pKa.

These results imply that the most appropriate 3D structures were obtained from the DTP 

NCI and Pubchem databases (i.e., structures prepared with the tools CORINA and Omega, 

respectively). The QSPR models based on these structures are very accurate, and these 3D 

structures do not require optimization. A great feature of these 3D structures was that they 

performed very well for all the tested QM charge calculation approaches and classes of 

molecules. An interesting finding is that the QM optimization of such 3D structures can 

markedly decrease the accuracy of the models.

Frog2 also seems to be applicable. QSPR models based on 3D structures from Frog2 are 

accurate even when the structures were not optimized, and the MM optimization of these 

structures mainly improves the models. They can be successfully used for all the classes of 

molecules and all the QM charge calculation approaches tested here.
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RDKit, OpenBabel and Balloon are slightly troublesome sources of 3D structures. They can 

provide accurate QSPR models (R2 > 0.9) for some classes of molecules. In this case, the 

MM optimization of 3D structures improves the models. But when we process other classes 

of molecules (carboxylic acids), the QSPR models are weak (R2 ∼ 0.85) for most of the 

charge calculation approaches. And for certain charge calculation approaches the QSPR 

models can even be unsatisfactory (R2 < 0.7). An interesting fact is that the structures 

generated by RDKit with no optimization provide the worst performing QSPR models of the 

whole study. The explanation is clear, these 3D structures are just the raw results of RDKit 

and, as mentioned in its manual, they need to be optimized by RDKit's internal force field 

UFF. This case study shows how weak QSPR models can be when based on problematic 

structures.

Particular geometrical properties, which are incorrectly modelled in certain 3D structure 

preparation methodologies and which cause worse performance of QSPR models are 

summarized in Supporting Information.

Semiempirical QM QSPR models – quality, predictivity and influences

The results summarized in Table 10 and Supplementary Table S2 show that the quality of 

these models is comparable to the quality of QSPR models based on ab-initio QM charges, 

just slightly lower for phenols and anilines and slightly better for carboxylic acids. The 

cross-validation results (see Supplementary Table S5) confirmed the robustness of the 

semiempirical QM models. When we evaluated the influence of the class of molecules and 

the 3D structure preparation methodology, we saw the same trends as for the ab-initio QM 

QSPR models (see Table 10 and S2).

Quality of EEM QSPR models – general summary

The results summarized in Tables 11 and 12 show that the quality of EEM QSPR models is 

in general lower than for QM QSPR models, but still sufficient. Specifically, about 36% of 

the models are very good quality (R2 ≥ 0.9), most of the models are acceptable quality (R2 

between 0.9 and 0.8) and only about 2% are low quality (R2 < 0.8). On the other hand, the 

number of weak models is lower than for QM QSPR models, and there are no models with 

(R2 < 0.75).

Predictivity of EEM QSPR models

A high quality of EEM QSPR models based on the same charge descriptors as our models 

was shown in.8 We tested the predictivity of our EEM QSPR models the same way as we did 

for the QM QSPR models – by cross-validation and by testing on a larger set of independent 

molecules. These results are summarized in Supporting Information (Table S5 and S6, 

respectively), and confirm that our EEM QSPR models are robust and can handle molecules 

outside the training set.

Influence of EEM parameter set

The results (Table 11 and Supplementary Table S7) show that all four EEM parameter sets 

tested here are applicable for pKa prediction. The quality of the QSPR models obtained by 
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all the EEM parameter sets is comparable. The parameter set Chaves2006 (mimicking 

B3LYP/6-31G*/MPA charges) performed slightly better than the remaining sets.

Influence of the class of molecules

As with QM charges, some classes of molecules are more challenging for the QSPR 

modeling of pKa (carboxylic acids), see Table 11 and Supplementary Table S8. Nonetheless, 

the differences between the quality of EEM QSPR models for various classes of molecules 

are markedly smaller than for the QM QSPR models.

Influence of 3D structure preparation methodology on the quality of the EEM QSPR model

Table 8 and Supplementary Table S6 show that EEM QSPR models are markedly less 

sensitive to the selection of 3D structure source and optimization method.

As with QM QSPR models, 3D structures from DTP NCI and Pubchem can be successfully 

used for all of the tested molecular classes and all EEM parameter sets, even without 

optimization (i.e., more than 90% of EEM QSPR models based on non-optimized NCI 3D 

structures and all EEM QSPR models based on non-optimized Pubchem 3D structures have 

R2 > 0.85).

Frog2 also preforms very well. More than 80% of EEM QSPR models based on non-

optimized Frog2 3D structures have R2 > 0.85. Additionally, these models seem to be 

applicable for all molecular classes and all EEM parameter sets tested here.

For the other four tools, the accuracy of EEM QSPR models depends on the molecular class 

and EEM parameter set, as certain combinations of these can produce lower accuracy QSPR 

models.

For all six sources of 3D structures tested in this study, QM optimization produces an 

improvement in the EEM QSPR models in most cases.

Quality of GM QSPR models

Gasteiger-Marsili charges does not depend on the 3D structure of molecules, therefore we 

prepared only one model for each class of molecules. The R2 values of these models are 

given in Table 13 and further quality criteria are available in Supplementary Table S3. These 

results show that GM QSPR models are markedly less accurate than EEM QSPR models and 

therefore, GM charges are not applicable for pKa prediction. These conclusions are in 

agreement with results published in the past.15

Conclusion

Our results confirmed that QSPR models based on QM and EEM partial atomic charges are 

are able to predict pKa with high accuracy. Specifically, more than 60% of ab-initio and 

semiempirical QM QSPR models and nearly 40% of EEM QSPR models are very good 

quality (R2 ≥ 0.9). We also confirmed that ab-initio and semiempirical QM charges provide 

very accurate QSPR models and using EEM charges is also acceptable, and moreover 

advantageous because their calculation is very fast. Afterwards, we evaluated the predictivity 
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of our QM, semiempirical QM and EEM QSPR models via cross-validation and via testing 

on an independent test data set. This way, we verified that all the types of ab-initio and 

semiempirical and EEM charges used are applicable for QSPR modeling. On the contrary, 

QSPR models based on empirical Gasteiger-Marsili charges showed low quality, suggesting 

that Gasteiger-Marsili charges are not suitable descriptors for the prediction of pKa.

We then focused on the influence of molecular class. We found that some molecular classes 

are more amenable to QSPR modeling (phenols and anilines), while some are more 

challenging (carboxylic acids).

In this context, we compared the influence of the different 3D structure sources. We found 

that the selection of 3D structure source and optimization method can strongly influence the 

quality of QSPR models for pKa prediction. The 3D structures from the DTP NCI and 

Pubchem databases, i.e. structures generated by CORINA and Omega, respectively, 

exhibited the best performance. These 3D structures provided very accurate QSPR models 

for all the tested molecular classes and charge calculation approaches, and they do not 

require optimization. Frog2 also performed very well for all of the tested molecular classes 

and charge calculation approaches. Other 3D structure sources can also be used, but they are 

not so robust, and an unlucky combination of molecular class and charge calculation 

approach can lead to weak QSPR models. Additionally, these structures generally need to be 

optimized in order to produce high quality QSPR models. Specifically, the best approach is 

to apply MM optimization to 3D structures used with QM QSPR models, and QM 

optimization to 3D structures used with EEM QSPR models.

The main point of this article is that a workflow for the fast and accurate prediction of pKa 

or other important properties for in silico designed molecules can be as follows: Preparation 

of 3D structures by CORINA or Omega (with no further optimization), calculation of EEM 

charges for these structures and then the EEM QSPR calculation of pKa.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) dissociation of phenols, b) dissociation of carboxylic acids and c) association of anilines. 

The particular atomic charges used in our QSPR models are marked by their denotations.
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Table 1

Summary information about the EEM parameter sets used in this study.

Parameter set name QM charge calculation approach Published by

Svob2007_chal2 HF/STO-3G/MPA Svobodova et al.38

Chaves2006 B3LYP/6-31G*/MPA Chaves et al.39

Bult2002_npa B3LYP/6-31G*/NPA Bultinck et al.40

Bult2004_aim B3LYP/6-31G*/AIM Bultinck et al.41
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Table 3

Number and percentage of QM QSPR models with R2 higher than a defined limit.

R2 ≥ 0.95 (0.95, 0.9> (0.9, 0.8> < 0.8

Number of models 55 90 69 14

Percentage of models 24% 39% 30% 6%
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Table 5

Quality criteria for testing of selected QM QSPR models.

QSPR model description: phenols, charges: B3LYP/6-31G*/NPA, 3D structure: NCI with no optimization

Quality criteria R2 RMSE Δ̄

Training set 0.960 0.415 0.333

Test set 0.948 0.532 0.437

QSPR model description: phenols, charges: HF/STO-3G/MPA, 3D structure: RDKit with no optimization

Quality criteria R2 RMSE Δ̄

Training set 0.782 1.067 0.896

Test set 0.715 0.421 0.328
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Table 6

Number and percentage of QM QSPR models with R2 higher than a defined limit for individual charge 

calculation approaches.

QM charge calculation approach

R2

≥ 0.9 (0.9, 0.8> < 0.8

HF/STO-3G/MPA 67% 30% 4% 0.914

B3LYP/6-31G*/MPA 60% 25% 16% 0.888

B3LYP/6-31G*/NPA 68% 28% 4% 0.906

B3LYP/6-31G*/AIM 60% 39% 2% 0.898

Note:  is the average value of R2 for all QSPR models, which use charges calculated by a given QM charge calculation approach.
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Table 7

Number and percentage of QM QSPR models with R2 higher than a defined limit for individual classes of 

molecules.

Class of molecules

R2

≥ 0.9 (0.9, 0.8> < 0.8

Phenols 32% 49% 17% 0.927

Carboxylic acids 0% 29% 57% 0.849

Anilines 41% 41% 17% 0.929

Note:  is the average value of R2 for all QSPR models, which were built for a given class of molecules.
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Table 10

Number and percentage of semiempirical QM QSPR models with R2 higher than a defined limit.

R2 ≥ 0.95 (0.95, 0.9 > (0.9, 0.8 > < 0.8

Number of models 15 25 17 0

Percentage of models 26% 44% 30% 0%
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Table 12

Number and percentage of EEM QSPR models with R2 higher than a defined limit.

R2 ≥ 0.95 (0.95, 0.9> (0.9, 0.8> < 0.8

Number of models 82 106 38 2

Percentage of models 36% 46% 17% 1%
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Table 13

R2 describing the correlation between calculated and experimental pKa for GM QSPR models.

Class of molecules Phenols Carboxylic acids Anilines

R2 0.747 0.737 0.870
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