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Abstract
Mapping the chemical space of small organic molecules is approached from a theoretical graph theory
viewpoint, in an effort to begin the systematic exploration of molecular topologies. We present an
algorithm for exhaustive generation of scaffold topologies with up to 8 rings, and an efficient
comparison method for graphs within this class. This method uses the return index, a topological
invariant derived from the adjacency matrix of the graph, as defined below. Furthermore, we describe
an algorithm that verifies the adequacy of the comparison method. Applications of this method for
chemical space exploration in the context of drug discovery are discussed. The key result is a unique
characterization of scaffold topologies, which may lead to more efficient ways to query large
chemical databases.

Introduction
The question of how vast is the chemical space of small organic molecules (CSSM) has been
addressed in several ways — all of them related to in silico technologies, such as virtual
chemical library enumeration starting from known lists of reagents. For example, the effort of
enumerating all derivatives of n-hexane, from mono- to 14-substituted hexanes, starting from
a list of 150 substituents, exceeds 1029 unique structures1. Although most of these hexane
derivatives might be, to date, synthetically inaccessible, a small number of building blocks can
lead to an unlimited number of possibilities, as witnessed in living systems: Twenty-two
proteinogenic amino acids and five nucleotides combine to form large arrays of proteins and
nucleic acids, respectively. Representatives of all the “tangible” chemicals2 (in the order of
100 million physical compounds) can be collected and catalogued; and starting from such a
database one could, in theory, expand into the space of virtual chemistry. However, there is
currently no approach that would enable the systematic exploration of this chemical space.
Indeed, most methods explore only the limited space covered by (a) known chemical reactions
and (b) available/known chemical reagents. The question of how large this chemical space
really is has relevance if one considers that adequate sampling2 is required, should one desire
to query biological endpoints using a diverse set of small molecules. To date, the CSSM has
been systematically mapped for organic molecules with 11 or less main atoms and molecular
weight less than 160 Daltons3. Eliminating constrained structures, the total number of
chemicals produced was approximately 44 million. A chemical database of synthetically
feasible structures is available at http://www.dcb.unibe.ch/groups/reymond/. In another
study4, orderly generation was used to produce all possible single-bonded carbon graphs
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ranging from a maximum of 20 atoms and 2 rings to 13 atoms and 8 rings. A total of about
1.45 billion graphs were generated5, but this effort was never completed. Thus, the process of
exhaustively mapping the CSSM is far from trivial, even when the effort is restricted to graph-
reduced scaffolds.

In this paper, we map the CSSM for all molecules containing 8 or fewer independent rings and
any number of atoms, by systematically exploring the topologies that can be present in the
CSSM at the graph level, i.e., carbon-based single-bond scaffolds only. The exploration of
scaffolds is critical, since with few exceptions, medicinal chemistry-based drugs contain
scaffolds. We reduce the discussion of scaffolds to their corresponding topologies, a description
of the connected ring structure of a class of scaffolds. In this paper, we show how the complete
set of scaffold topologies (up to a given size) may be algorithmically generated and uniquely
characterized. The space of possible scaffolds may be partitioned by topology class so that the
union of topology classes is precisely the space of possible scaffolds. We present results for
the population of topologies in systems up to and including 8 rings. In a paired paper6 we
examine a number of chemical databases, some large and general, some smaller and more
biologically oriented, for the properties of their topologies. We compare the results with the
complete coverage developed here for molecules with up to and including 8 rings.

Basic concepts
A graph, G, sometimes called a pseudograph7, is a collection of nodes and edges such that
each edge connects exactly two not-necessarily distinct nodes. Denote the set of nodes by V
(G) = {v1,v2, … ,vn}. A walk is a sequence of contiguous edges, or equivalently, a sequence
of connected nodes, from vi to vj, and a path is a walk in which each node is traversed at most
once. A cycle is a path starting and ending at vi. In a connected graph, any two distinct nodes
are connected by at least one path. All graphs we consider in this analysis are connected graphs.
A graph may be described by any of its corresponding adjacency matrices. An adjacency
matrix of a graph, A , is a symmetric matrix, where each entry (aij) counts the edges connecting
vi and vj. A graph with n nodes may be described by any of up to n! adjacency matrices of size
n × n which are equivalent up to permutation of indices. These matrices are considered
isomorphic. The degree of node vi is its row (or equivalently, column) sum, which describes

the number of edge-segments incident to node . Each edge has two terminal
segments and an edge with both terminal segments incident to a node vi is called a loop and
increments deg(vi) by two. A node of degree k is called a k-node and l edges connecting the
same pair of nodes are called an l-edge. A graph with multiple edges between the same nodes
but without loops is called a multigraph, while a graph without multiple edges or loops is called
a simple graph7. The problem of deciding if there exists a relabeling of indices that makes the
adjacency matrices of two given graphs coincide is called the graph isomorphism problem8.
In general, the recognition of the isomorphism of simple graphs with bounded valences can be

carried out in polynomial time9 and of all graphs in moderately exponential time, 
where n is the number of nodes in the graph.

In this discussion, a scaffold topology or, topology, is a connected graph with the minimal
number of nodes and corresponding edges required to fully describe its ring structure. We limit
this analysis to topologies with a maximum nodal degree of four, corresponding to the valence
of neutral carbon. Except for the graph consisting of exactly one ring (one node with a loop),
topologies contain nodes exclusively of degrees 3 and 4. The one-ring graph is referred to as
an isolated loop.

A scaffold, in this context, is a chemical graph composed solely of rings and optional linking
linear structures. All branches of a scaffold terminate in a ring. This description is functionally
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equivalent to the one found in Koch et al.10 and Bemis and Murcko11 (where it is called a
molecular framework). We prefer the terms scaffold and scaffold topology to emphasize its
theoretical, chemistry-free nature. At this level, the objects contain only topological
information, as defined above. A molecule with its corresponding scaffold and topology is
shown in Figure 1. We limit this discussion to scaffolds containing only single-bonds and a
maximum atomic valence of four. Any such scaffold may be constructed from exactly one
topology by distributing 2-nodes along its edges, expanding each edge in the topology into a
chain of one or more edges. To describe the space of carbon-based single-bond scaffolds with,
say, 25 atoms, let nd = 25 − n, the number of 2-nodes to distribute in a graph with n nodes and
e edges. Then a sharp upper bound for the number of scaffolds, nscaffolds, that may exist in each

(n, e) topology class is  with equality if and only if there are no
equivalent edges in the topology. Two edges, ei and ej, are considered equivalent if the graphs
resulting from attaching an isolated loop to each of ei and ej, respectively (as seen in Figure 3
(case 3)), differ only by permutation of indices.

Let n denote total number of nodes in a graph, and Nk denote the number of k-nodes. Summing

over nodal degrees: .

For scaffolds, n = N2 + N3 + N4 and for topologies with 4 ≥ n ≥ 3, n = N3 + N4.

Let e count the total number of edges in a graph, then .

For scaffolds, 2e = 2N2+ 3N3 + 4N4 and for topologies with 4 ≥ n ≥ 3, 2e = 3N3 + 4N4.

The number of independent rings, referred to in this analysis as the number of rings, is
equivalent to Cauchy’s nullity, μ = r = e − n + 1.

For topologies with 4 ≥ n ≥ 3, r = N4 + N3/2 + 1. Holding N4 constant, N3 increments by two
as r increments by one.

Generating topologies
All topologies with r rings and j 4-nodes may be generated by at least one topology with r rings
and j-1 4-nodes by “fusing” together a pair of connected 3-nodes into a single 4-node in an
otherwise identical graph.

A 4-node without any loops may connect to:

i. 4 distinct nodes by 1-edges

ii. 3 distinct nodes: two by 1-edges and one by a 2-edge

iii. 2 distinct nodes by 2-edges, or one by a 1-edge and one by a 3-edge

iv. 1 distinct node by one 4-edge

A 4-node with loops may connect to:

(ii-a) 2 distinct nodes by 1-edges and one loop

(iii-a) 1 distinct node by a 2-edge and one loop, or 2 loops
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In case (i), the 4-node may be constructed three ways. In cases (ii), (ii-a), (iii) with 2-edges,
and (iii-a), the 4-node may be constructed two ways. In case (iii) with a 3-edge and case (iv),
the 4-nodes may be constructed one way.

See Figure 2.

Denote the family of topologies with r rings, N3 3-nodes and N4 4-nodes by (r, N3, N4). For a
particular r and N4, we may generate all topologies in (r, N3, N4) from the family (r , N3 + 2 ,
N4−1), 1 ≤ N4 ≤ r−1, where N3 = 2(r − N4 − 1).

As a topology is the reduced form of a family of scaffolds, where the corresponding scaffolds
may break up any edge in a topology into a chain of contiguous edges, we may consider edge-
i in a topology to contain any number of “virtual” 2-nodes, ui,k, i = 1, 2, …, e; k = 1, 2, …; that
is, in a graph with n nodes, an edge may be added by connecting ui,k to uj,l which then acquire
degree three and become vn+1 and vn+2, respectively.

There are three ways to increment the number of 3-nodes in a topology holding N4 constant:
(r, N3, N4) ↦ (r+1, N3 + 2, N4), where N4 = r − N3/2−1

1. connecting uI,kto uj,l, i≠j

2. connecting ui,kto ui,l

3. connecting ui,kto uloop, where uloop denotes the 2-node of an isolated loop (the isolated
loop may also be considered “virtual” until it is connected to the topology via an edge).

See Figure 3.

With these three operations to increment r by one, e by three and N3 by two, and a single
operation to decrement N3 by two and e by one, and increment N4 by one, we may generate
all topologies with a given number of rings by starting with any complete family of topologies
containing only 3-nodes: (r, 2(r− 1), 0). We choose to start with the two topologies in (2, 2,
0). See Figure 4.

The completeness of the generation scheme follows from the following two observations:

1. If in a graph with N3 3-nodes and N4 4-nodes and thus r= N3/2+ N4+1 rings, we replace
one 4-node by two 3-nodes by following any of the steps in Fig. 2 from left to right,
there results a graph with N4−1 4-nodes and N3+2 3-nodes, the same number of rings
and one less edge

2. In a graph containing only 3-nodes, there are only three ways to remove an edge,
given by the reverse of each of the steps shown in Fig. 3. Hence, if we consider any
graph containing N3 3-nodes and zero 4-nodes, and thus r= N3/2+1 rings, and we
remove any edge by the reverse of moves of type 3(1) or 3(2) such that the graph
remains connected and also remove the resulting 2-nodes, or if we remove a loop, its
associated node, and the node connected to it (the reverse move of 3(3)), we end up
with a graph with N3−2 3-nodes, and consequently r−1 rings (and 3 fewer edges)

Now, if we assume that we have all possible graphs with N3 3-nodes and zero 4-nodes, it follows
from observation (2) above that we will get all possible graphs with N3+2 3-nodes and zero 4-
nodes (and r+1 rings). Beginning with all possible graphs with two 3-nodes (the two graphs
shown in Fig. 4), it follows by induction that we may generate all possible graphs with arbitrary
(but even) numbers N3 of 3-nodes and zero 4-nodes (and thus r= N3/2+1 rings). And, following
observation (1), if we assume that we have all possible graphs with N3 3-nodes and N4 4-nodes
and r= N3/2+ N4+1 rings, then we may get all possible graphs of N3−2 3-nodes and N4+1 4-

Pollock et al. Page 4

J Chem Inf Model. Author manuscript; available in PMC 2009 August 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



nodes by following all possible moves shown in Fig. 2 from right to left. This process may be
repeated until we generate all possible graphs with zero 3-nodes and r-1 4-nodes.

Return-Index
The algorithm described above generates all possible topologies, but due to symmetries
generates many topologies more than once. To enumerate the complete collection of distinct
topologies, we compare each topology with the members of its (r, N3, N4) class. As mentioned
previously, a graph with n nodes has up to n! associated adjacency matrices, considered
isomorphic. It is possible to avoid comparing n! matrix permutations, as would be required to
determine isomorphism from adjacency matrices directly. Several algorithms exist for solving
the graph isomorphism problem efficiently for different categories of graphs, among which
McKay’s package nauty12 is considered state-of-the-art for both exhaustive generation and
solution of the isomorphism problem13. The most relevant algorithms in nauty for our purpose
are GENG, which may produce an exhaustive enumeration of simple graphs that may include
up to one loop per vertex but not multiedges, LABELG, which produces a canonical labeling
of all simple graphs of the type generated by GENG, and MULTIG, which can generate all
possible distinct multigraphs corresponding to a given simple graph with no loops and test
them for isomorphism (but does not produce a canonical labeling). Since pseudographs with
both loops and multiedges are not allowed12, one would need to include 2-nodes, then prune
the graphs thus generated, removing all 2-nodes and discarding equivalent graphs. Although
it could be possible to use this approach with some effort, it would result in huge numbers of
redundant structures that would have to be generated, pruned and compared. There have been
other attempts to separate pseudographs into equivalence classes via a labeling scheme and
then explore the corresponding chemical space. Lipkus14 classifies the CSSM with a trio of
topological descriptors, while Xu and Johnson15,16 used molecular equivalence numbers,
which produce finer-grained classes than our topologies, but the method was potentially subject
to classification noise.

These considerations led us to seek a direct approach, one that would work for the scaffold
topology type graphs considered here. In general, a graph may be associated with a diverse set
of topological invariants that are independent of the specific indexing. Such invariants which
both possess discriminating power and can be computed in polynomial time may help reduce
the isomorphism problem. Different types of invariants have been introduced by various
authors (see, e.g., Ivanciuc et al.17 and the references therein). One such set of invariants are
the eigenvalues of the adjacency matrix, the spectrum of the graph18. It is well known that the
spectrum of a graph does not fully discriminate between graphs, in that isospectral but
nonisomorphic graphs do exist19. For our purposes, we were able to arrive at a simple,
discriminating method for comparing scaffold topologies with up to 8 rings that can be carried
out in polynomial, O(n3 ) time, as well as a unique characterization for such graphs, by
introducing the ordered return-index.

Let a k-walk denote a walk of length k. It is well known7 that the entries of Ak,  contain

the number of k-walks from vi to vj. In particular,  contains the number of return-walks,
starting and ending at vi. We construct the return-index, R, an n × n matrix whose columns,

R(k), contain the diagonal entries of, Ak , j = 1, 2, …, n. In practice, R is constructed by
taking the powers of A´, the adjacency matrix with all entries on the main diagonal set to zero.
No information is lost as all nodes in A are of degree 3 or 4, and subtracting off loops leaves
affected nodes with degree zero, one, or two, respectively, distinguishing them from other
nodes in the topology. The degree is zero in exactly one case, depicted in Figure 4, where the
single node with two loops is the only member of the family (2, 0, 1). The first column of R
(return-walks of length one) does not contain any distinguishing information, and is replaced
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with the number of 1-nodes each respective node has as first-order neighbors in A´, in a linear-
time algorithm. The full calculation of R is a cubic-time algorithm. Each column of A (or A´)
has at most four entries, and the calculation of each power is at most 4n2 operations. Since we
need to calculate n−1 powers, the total operations count is of the order of n3.

The rows of R, each of which contains information with respect to a particular node of A´, may
be sorted in descending numerical order. The row R´ corresponding to node vi is its return-
string. The ordered matrix, R´, may be used to compare graphs. It is clear that two graphs with
different return-indices are not isomorphic. It is not true in general that two graphs with the
same ordered return-index are necessarily isomorphic. We demonstrated by exhaustive
pairwise comparison that for topology graphs of up to and including 8 rings, the ordered return
index fully distinguishes non-isomorphic graphs (data not shown). These topologies can be
queried interactively at the UNM Biocomputing website20.

Verification of the Ordered Return-Index
To verify that R´ fully discriminates topologies up to a certain size, we ran the generation
algorithm, comparing topologies by R´. Where R´ matched another previously generated
topology in the corresponding (r, N3, N4) class, adjacency matrices were compared using all
possibly equivalent graph labelings until we found a match. The determination of possibly
equivalent labelings is described below. In all cases where the return-indices of two graphs
matched, some permutation (labeling) of the adjacency matrices matched as well. In order to
reduce the number of permutations and comparisons, the graphs are first assigned a semi-
canonical numbering with respect to the return-string corresponding to each node. The graph
is then labeled in terms of “blocks” where each block contains nodes with the same return-
string. We implement the following recursive algorithm:

1. For each node, form a neighbor-list specifying to which blocks its first-order
neighbors belong.

2. Reorder nodes within existing blocks according to the neighbor-lists

3. Relabel the graph with a new set of blocks separating previous blocks by neighbor-
lists.

4. If any new blocks were created in (3), and there are less than n blocks, return to (1).

This algorithm is guaranteed to terminate in less than n steps as the number of blocks cannot
exceed the number of nodes. The block structure is the final list of blocks corresponding to the
reordered list of nodes; by construction, the block structure is arranged in ascending numerical
order. The members of each block in the final block-structure are called topologically
equivalent nodes. Two isomorphic graphs must have the same block-structure. In comparing
adjacency matrices, graphs are first relabeled in terms of their block-structure. Only indices
falling within the same blocks need be permuted in order to find a match between matrices.
An example of topologically inequivalent nodes with the same return-string is shown in Figure
5.

A useful byproduct of having established that the ordered return index has discriminatory
power when applied to scaffold topologies with up to 8 rings, is the unique characterization
for such graphs. Indeed, if we tag each such graph with its ordered return index, we have shown
that identical ordered return indices imply isomorphism. The actual proof of this fact still
requires permutation and comparison, since the method does not result in a canonical labeling
of the nodes of a pseudograph, but rather a division of the nodes of a graph into topologically
descriptive subclasses. Thus, the non-isomorphism of two graphs with distinct ordered return
indices is automatic. In order to establish adequacy of the return index for determining
isomorphism in case of identical ordered return-indices, we need to compare all possible
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reindexings of topologically equivalent nodes. This process, although much reduced relative
to a full comparison of all permutations, can still be daunting. However, once carried out for
all possible topologies of up to 8 rings, we found that the ordered return index is indeed adequate
to distinguish all such topologies. Having established this, we have thus reduced the problem
of detecting graph isomorphism of scaffold topologies, i.e. pseudographs of valence three or
four with eight or fewer rings to the simple, polynomial time computation of the ordered return
index and the linear time comparison of the indices of two graphs.

Counterexamples with more than 8 rings
The return index, even without the additional discrimination provided by the neighbor ranking,
has at least the same discriminating power as the spectrum. This is a consequence of the fact
that a matrix satisfies its own characteristic polynomial (Cayley-Hamilton theorem21). Thus,
if the characteristic polynomial is given by

then, since P(A) = 0 , it follows that

so that the coefficients of the characteristic polynomial can be determined completely from the
entries of the return index matrix R, since there are n equations in the n quantities p i i , =1,
…,n, Thus, graphs with the same return index have the same characteristic polynomials and
are therefore isospectral.

The following three pairs of topologies are not differentiated by the return-index, if it is
calculated without replacing the first column of R with 1-node neighbor information; with that
modification, the third pair is distinguished. The topologies in the first pair, with 11 rings,
found among various examples on isospectral graphs in Cvetkovič et al.19, have identical
return-indices but different block structures (Figure 6). The topologies in the second pair, with
12 rings, have identical return-indices and block structures (Figure 7). These graphs are not
isomorphic, as can be shown by permutation of indices within blocks of topologically
equivalent nodes, or by the observation that there is no node in graph (a) with the same
branching structure as that of node (1) in graph (b). The topologies in the third pair, with 13
rings, have identical return indices but different block structures (Figure 8). All three pairs of
graphs contain a pair of nodes with equivalent return-strings, but which fall into different blocks
in at least one of the two graphs in the pair. We have not determined whether there are any
counterexamples with 9 or 10 rings.

Results and Conclusions
In this paper, we described a method and an algorithm for the systematic generation of
topologies with up to, and including 8 rings, and an efficient (cubic time) algorithm for
comparing these graphs to determine isomorphism. Furthermore, we produced a unique
characterization for scaffold topology pseudographs with up to 8 rings. A practical application
of this result follows: If all small molecules (up to 8 rings) in a given chemical database are
tagged by the ordered return index characterizing their topologies (an operation that only needs
to be performed once for any given database), then the problem of deciding if a given molecule
is present in the database can be quickly reduced by querying only those database entries with
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the same topology. This renders database searching more efficient, in particular since most
chemical collections now exceed 107 unique chemicals.

The total numbers of topologies in each class of (r, N3, N4) are summarized in Table 1 and
shown in Figure 8. A lower bound for the number of unique topologies in (9, 16, 0) is 204,637.
We have not confirmed whether the return-index is adequate to distinguish between topologies
with 9 or 10 rings, and we have found counterexamples for which the return index
supplemented with only nearest neighbor loop information fails for 11 and 12 rings.

The population density of the topological scaffold space is higher at the mid-level combination
of 3-nodes and 4-nodes for any given number of rings (Fig. 9). The shape of the population
density curves is similar to that of the binomial coefficients. This is in notable contrast to the
population densities of topologies found in the chemical databases discussed in a paired
paper3. Those chemical databases show higher populations for topologies containing not more
that one 4-node.

We note that the number of possible scaffold topologies for up to 6 rings is slightly over 7,000,
and dramatically increases with higher ring numbers. Moreover, the number of non-planar
topologies grows with the number of rings: While there are no non-planar scaffold topologies
with 2 or 3 rings and exactly one with 4, the number grows to roughly 10% of the total for 8
rings. In an accompanying paper, we present the topological scaffold space occupancy
(distribution) for a diverse set of chemical databases6. The probability of finding existing
molecules for a given scaffold topology decreases rapidly for higher ring numbers.
Additionally, there are exactly 44 molecules, belonging to 12 distinct non-planar topology
classes, found in the entire merged database we considered6 (planarity was determined using
the routine PLANARG of nauty12).

Since this is a complete enumeration of all the possible scaffold topologies, we anticipate that
the use of this system can become standard for rapid queries of ultra-large databases.
Furthermore, this system can provide a basis for the systematic topological classification of
organic small molecules, and serve as a first step to the complete mapping of topological
chemical space.
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Figure 1.
a. (5-methyl-2-propan-2-yl-phenyl) 3,3-dimethyl-2-methylidene-bicyclo[2.2.1]heptane-1-
carboxylate. b. The scaffold corresponding to this molecule. c. The topology corresponding to
this scaffold.
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Figure 2.
The correspondence between 4-nodes and pairs of connected 3-nodes.
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Figure 3.
Three operations to increment r by one and N3 by two.
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Figure 4.
Schematic diagram of generation scheme showing all graphs in (2, 2, 0), (2, 0, 1) and (3, 4, 0)
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Figure 5.
Example of topologically inequivalent nodes with same return-string.
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Figure 6.
In graph (a), nodes labeled 1 and 2 have identical return-strings, but fall into different blocks.
In graph (b), nodes labeled 1 and 2 have identical return-strings, and fall into the same block.
Graphs (a) and (b) have identical return-indices but different block structures.
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Figure 7.
In both graphs (a) and (b), nodes labeled 1 and 2 have identical return-strings, but fall into
different blocks. Graphs (a) and (b) have identical return-indices and block structures, but are
not isomorphic.
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Figure 8.
In both graphs (a) and (b), nodes labeled 1 and 2 have identical return-strings, but fall into
different blocks. Graphs (a) and (b) have identical return-indices, but they have different
respective block structures. With the return-index modified to contain the number of 1-node
neighbors instead of return-walks of length one, graphs (a) and (b) are fully distinguished
without comparing block-structures.
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Figure 9.
Total number of distinct topologies with 2 through 8 rings, plotted as a function of N3.
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