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Abstract
Drug resistance acquired by Plasmodium falciparum (Pf) is a major problem in the treatment and
control of malaria. One of the major examples of drug resistance is that caused by mutations in the
active site of dihydrofolate reductase (DHFR) of Pf (PfDHFR-TS). A double mutation, A16V
+S108T, is specific for resistance to the marketed drug cycloguanil. In this study, we used 58
cycloguanil (2,4-diamino-1,6-dihydro-1,3,5-triazine) derivatives to explore the relationship between
various physico-chemical properties and reported binding affinity data on wild type and A16V
+S108T mutant type. Using the Hansch 2D-QSAR method, we obtained a parabolic relationship of
hydrophobicity of substituents at the N1-phenyl ring with the wild type binding affinity data.
Hydrophobicity being a key property for wild type binding affinity data, we found steric factors to
be crucial for A16V+S108T mutant resistance. We investigated FlexX, GOLD, Glide and Molegro
virtual docking programs and 13 different scoring functions on 10 of the cycloguanil derivatives to
evaluate which program was best for reproducing the experimental binding mode and correlating the
docking scores with the reported binding affinity data. We identified GOLD using its GoldScore
fitness function as the most accurate docking program for predicting binding affinity data of
cycloguanil derivatives to DHFR and Molegro virtual docker with its template docking algorithm
and MolDock [GRID] scoring function as most accurate for reproducing the experimental binding
mode of a reference ligand that is structurally similar to the cycloguanil derivatives studied. We also
report an interaction index which best describes the structure-activity relationships exhibited by these
analogs in terms of PfDHFR-TS active site interactions.

Introduction
Classified as one of the leading causes of death in the world, malaria is a major threat for public
health, especially in the tropical and sub-tropical countries. Malaria has been declared endemic
particularly in the sub-Sahara African countries, Asia, Oceania and Latin America.1 Malaria
is caused by Plasmodium parasites, of which the most lethal is Plasmodium falciparum (Pf).
The biology of this parasite is well understood with the help of genomics2 and proteomics
projects3 and has aided identification of new molecular targets that could be used to aid rational
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design of drugs or vaccines. Drug resistance acquired by the malarial parasites is a major
problem in the treatment and control of malaria. Dihydrofolate reductase (DHFR) in Pf
(PfDHFR-TS; TS refers to thymidylate synthase, bound to DHFR in Pf), which catalyzes the
reduction of dihydrofolate to tetrahydrofolate, is one of the most widely studied enzymes in
antimalarial drug design due to its potential role in DNA synthesis.4, 5 DHFR is also considered
to be a good target for other protozoal diseases like leishmaniasis, trypanosomiasis and Chagas’
diseases.6 Resistance of the parasite to antifolates has been observed and is mainly caused by
mutations around the enzyme active site.7–9 Some of the resistance-causing mutations include
single S108N, double C59R+S108N, triple N51I+C59R+S108N, C59R+S108N+I164L and
quadruple N51I+C59R+S108N+I164L. A double mutation, A16V+S108T, is specific for
resistance to the marketed drug cycloguanil. Over the past few years, several computational
techniques have been applied to better understand PfDHFR-TS-ligand interactions.10

Currently there are four crystal structures of protozoal DHFR available in the Protein Data
Bank, including the wild type PfDHFR-TS complexed with triazine inhibitor WR99210 (1j3i),
11 a double mutant PfDHFR-TS complexed with pyrimethamine (1j3j),11 a quadruple mutant
PfDHFR-TS complexed with WR99210 (1j3k)11 and wild type Plasmodium vivax DHFR-TS
complexed with pyrimethamine (2bl9).12 Before the release of PfDHFR-TS crystal structures,
researchers developed homology models to study the resistance mechanism of commonly used
antifolate drugs.13 Recently, Fogel et al. performed molecular modeling studies including
docking studies with the GOLD program on pyrimethamine derivatives into the 1j3k DHFR
structure, evaluated several scoring functions, including those from GOLD, Molegro virtual
docker, Discovery Studio and MOE and found Molegro virtual docker’s Protein-Ligand
interaction score to show good correlation with the reported binding affinity data.14 The same
authors performed docking studies of pyrimethamine derivatives into both wild type and
mutant enzymes.15 QSAR studies using neural networks on this class of compounds have also
been performed by the same authors.16 4D-QSAR studies for some of the antifolates have been
published.17 A 3D pharmacophore model has been prepared using Catalyst software on a
diverse set of PfDHFR-TS inhibitors, including cycloguanil and pyrimethamine derivatives.
18 The Autodock program has also been shown to predict the correct binding modes of folic
acid-competitive DHFR antagonists identified by Plouffe et al. through their cell-based high-
throughput screening.19

In summary, previous modeling studies focused on studying the interactions of various small
molecule inhibitors of DHFR with the active site residues of wild and mutant types using
different arbitrarily chosen docking programs and QSAR studies. However there is need for
new research on the importance of physico-chemical properties such as the linear and/or
bilinear relationship of hydrophobicity with binding affinity data and on systematic attempts
to find a good docking program/scoring function to study molecular interactions accurately for
this highly interesting and therapeutically important class of compounds. Hence our report has
two main objectives: (1) to gain new insights into the structure activity relationship (SAR)
among the cycloguanil derivatives binding to wild and mutant type PfDHFR-TS and (2) to find
an optimal docking program/scoring function combination to study the binding interactions
between these compounds and wild type PfDHFR-TS that are not revealed by the SAR studies.
For objective 1, we made use of QSAR to study a series of 58 cycloguanil (2,4-diamino-1,6-
dihydro-1,3,5-triazine) derivatives20–22 which all originated from the same laboratory, since
well-defined binding constants against wild and mutant types of PfDHFRTS have been
reported for them. We chose to use traditional Hansch 2D-QSAR analysis for this series of
compounds for two main reasons. First, 48 of the 58 compounds had an undefined stereogenic
center at C6 of the triazine ring of cycloguanil, which rendered the data unsuitable for 3D-
QSAR studies. Secondly, Hansch 2D-QSAR is well known for its simplicity and ease of
mechanistic interpretation. For the docking studies, we used the only 10 compounds with well-
defined stereochemistry to study interactions with the wild type PfDHFR-TS that could not be
delineated from our 2D-QSAR studies. For objective 2, we evaluated FlexX, GOLD, Glide
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and Molegro virtual docking programs. We then investigated in detail the interactions of the
analogs with the active site of PfDHFR-TS, using what we found to be the most suitable docking
program for this class of protein-ligand interactions. The two objectives of this work fit together
well since the methods of 2D-QSAR and docking give complementary information on the
structure-activity relationship.

Materials and Method
1. Hansch 2D-QSAR

2D-QSAR models were constructed using the data set of 58 compounds.20–22 The compounds
used for the present analysis along with their observed affinities for wild and mutant type
PfDHFR-TS are listed in Table 1. We used two types of standard descriptors: indicator
variables and physico-chemical constants. A complete list of all the descriptors used in 2D
model generation is given in Table 2. An indicator variable designated as I with a relevant
subscript was set to 1 if a particular substituent is present and to 0 if absent. R1 and R2 are both
equivalently attached at C6, so to make sure the indicator variables were well defined, we
ordered the R1/R2 substituents so that for any analog the less bulky substituent is at R1. Physico-
chemical constants—hydrophobic (π); electronic (σ), including resonance effect (R) or field/
inductive effect (f); molar refractivity (MR); and hydrogen bond donor (HDR) or acceptor
(HAR)—were taken from the literature.23, 24 The substituent hydrophobicity constant (π) which
we used from the literature is in fact measured experimentally. The hydrophobicity constant
(πX) for any substituent X is calculated according to the equation, πX = logPX − logPH, where
PX and PH are the partition coefficients of the reference compound with and without
substituent, respectively. The Hammett electronic parameter (σ) is calculated based on the
influence of substituent X on the ionization of benzoic acid. The molar refractivity (MR),
defined in the Lorenz-Lorentz equation as , where n is the refractive index, MW
is the molecular weight and d is the density, is considered to be a measure of the volume
occupied by an atom or group of atoms according to Hansch and co-workers, since usually
there is only very slight variation in the refractive index between a set of analogs.25 A
correlation matrix was used to correlate the biological activity with physico-chemical and
structural predictor variables. Descriptors with inter-correlation |r| > 0.6 were not included in
the same QSAR model. Predictor variables with p > 0.05 were eliminated whilst deriving the
QSAR models, in order to assure statistical reliability. Linear regression analysis was
performed using Systat Version 11. The Student’s t-distribution was used to assess the
significance of individual regression terms. Forward stepping regression was used to build the
QSAR models. This method initially generates a QSAR model containing only one variable,
which is chosen to be the one with the highest t-statistic, and subsequent variables are added
based on their relative importance, also as determined by t-statistics. The QSAR models were
evaluated using standard statistical parameters including the correlation coefficient (r),
coefficient of determination (r2), standard error of estimate (s) and Fisher F-value. The figures
within the parentheses following the coefficient terms are the standard error of regression terms
and constants. A data point was considered as an outlier if its residual value exceeded twice
the standard error of estimate of the model. Self-consistency of the derived models was verified
using the leave-one-out (loo) process, and the predictability of each model was assessed using
cross-validated r2, called q2. The best measure of reliability of a QSAR model is a high q2, not
just a high r2 which could be a result of over-fitting to data. In general, a value of q2 > 0.5 is
considered acceptable.26, 27

2. Docking
For docking studies, we used 10 of the 58 compounds (indicated in Table 1) to study the
interaction of these compounds with the active site residues of PfDHFR-TS, information not
uncovered from our QSAR studies. The 10 were the only compounds with well defined
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stereochemistry at C6 of the triazine ring among the 58 cycloguanil derivatives used in the
QSAR studies. For all the docking studies we used wild type PfDHFR-TS complexed with
WR99210 (1j3i).11 The structure of this reference ligand is shown in Table 1. The whole
tetrameric protein was used. All water molecules and the co-crystallized ligand, WR99210,
were removed before docking. All the docking analyses were confined to chain A of 1j3i.
Hydrogen atoms were added to the protein for each type of docking. The protein was optimized
to remove any bad contacts only for Glide docking (it is a part of the standard protein
preparation in the Glide program). The 10 ligands were each constructed starting from an
overlay with the bioactive conformation of WR99210 and then minimized using MMFF94 in
Sybyl 7.2. We used two types of measures to evaluate the accuracy of the docking programs.
First, we considered the ability of the docking program to reproduce the experimental binding
mode of WR99210. For this we used the minimized structure of WR99210 and docked it along
with the 10 other ligands during each docking run and then compared the RMSD between the
predicted binding mode and the experimental structure of WR99210. We used an all-atom-in-
place superposition using Schrödinger 8.5 suite of programs to calculate the RMSD. The
second measure we used was R2 for correlation between the docking scores and the
experimental binding affinity data.

2.1 FlexX—FlexX Release 2.0 implemented in Sybyl 7.228 was used as one of the four docking
programs investigated. We prepared an active site comprising of all complete amino acids
containing any atom within 6.5 Å of any ligand atom of WR99210. We considered four scoring
functions, DScore,29 GScore,30, 31 CScore,32 PMF Score33 and the composite FlexX Total
scores. 30 poses for each ligand were generated and all were considered for the RMSD
calculation, whereas the scores from only the top-most pose were used to correlate with the
reported binding affinity.

2.2 Glide—We used the Glide program from Schrödinger 7.5 software, which is well known
for its speed and accuracy.34–36 We used the standard precision (SP) module of Glide. The
Glide GScore and EModel which are based on the ChemScore function of Eldridge et al.32

were considered. The protein was prepared using the protein preparation and refinement tool
in Glide. For the active site, a grid box centered at the ligand, WR99210, was used, set to
accommodate a maximum ligand length of 15 Å. We docked the ligands flexibly, allowing for
the flip of 5- and 6-membered rings, writing out a maximum of 30 poses per ligand and also
enabling the post-docking minimization of the ligands. We also evaluated the performance of
Ruvinsky’s correction to GScore and EModel.37, 38 This uses a number of docked poses within
each energy well and calculates a refined docking score. For Ruvinsky’s correction treatment,
we generated 100 poses per ligand using the SP mode of Glide. These poses were then clustered
and the entropy was calculated for each cluster. This was accomplished using the pose_entropy
script (revision 1.8) available within the Schrödinger suite of programs.

2.3 Molegro virtual docker—We used Molegro virtual docker, which has been recently
introduced and gained attention among medicinal chemists.39, 40 Due to the availability of the
bioactive conformation of a structurally-related compound, WR99210, we used the template
docking available in Molegro virtual docker and evaluated MolDock, rerank and protein-ligand
interaction scores from MolDock and MolDock [GRID] options. Template docking is based
on extracting the chemical properties like the pharmacophore elements of a ligand bound in
the active site and using that information for docking structurally similar analogs. We used
W99210 from 1j3i as the template. We used the default settings, including a grid resolution of
0.30 Å for grid generation and a 15 Å radius from the template as the binding site. We used
the MolDock optimizer as a search algorithm, and the number of runs was set to 10. A
population size of 50, maximum iteration of 2000, scaling factor of 0.50, crossover rate of 0.90
and a variation-based termination scheme for parameter settings were used. The maximum
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number of poses to generate was increased to 10 from a default value of 5. Since the Molegro
virtual docker works by an evolutionary algorithm, consecutive docking runs do not give
exactly the same fitness scores. To address this issue of inherent randomness, we used five
consecutive runs and then used the top ranked score from each run to calculate the average
score for each ligand to correlate with the experimental binding

2.4 GOLD—We used the GOLD 4.0 docking program.41 The active site was defined as any
atom that lies within a 15 Å radius of the ligand, WR99210. Since GOLD, like Molegro, uses
a genetic algorithm to dock ligands, we performed five consecutive docking runs to obtain an
average docking score for each ligand. Default GA settings that ensure 100% search efficiency
were used for the genetic algorithm (GA). An early termination of the number of GA runs was
allowed when the RMSDs of the top three GA solutions were within 0.5 Å. We evaluated
GoldScore, ChemScore and Astex Statistical Potential (ASP) scoring functions.42 ASP is an
atom-atom potential that is based on a database of protein-ligand complexes. Its accuracy is
comparable to GoldScore and ChemScore.42

Results and discussion
1. Hansch 2D-QSAR

Hansch 2D-QSAR models are listed in Table 3, and the corresponding statistical parameters
of the regression equations are given in Table 4. Models 1–2a were developed by considering
the observed binding affinity data on the wild type enzyme as a dependent variable (pKi(wt))
and the derived physico-chemical and indicator variables as independent variables. Model 1
explains 80.2% variance in observed binding affinity data on wild type. We found 22 to be a
serious outlier when deriving Model 1. Model 1a, prepared without 22, had significantly
improved statistical parameters such as much higher r2 compared to Model 1, supporting that
22 is an outlier. Model 1a explains 90.4% variance in the observed binding affinity. The
coefficients for the descriptors are nearly the same for Model 1a as those for Model 1, so we
analyze in detail Model 1a. None of the descriptors used in Model 1a are auto-correlated with
each other. Model 1a gave the order of importance of the variables as I4 > I7 > I2 > I5 > Σ;πR
> I6 > I8 > I3. It is quite obvious that other than hydrophobicity, which is a very common feature
for compounds acting on DHFR, certain structural features of these analogs are crucial for
PfDHFR-TS inhibition. Published results show that substituents at the C6 position interact with
Ala16 in the wild type enzyme.9 For example, one of the C6-methyl groups of cycloguanil
showed hydrophobic interactions with this residue.9 The negative regression coefficient of the
indicator variable I2 in Model 1a indicates that a hydrogen atom at both C6 positions on the
triazine ring eliminates the attractive hydrophobic interactions which other substituents can
make with the adjacent alanine side chain. The negative contribution of I4, showing the
untoward effect of the isopropyl group at the R2 position, is probably due to a steric clash of
this bulky hydrophobic group with the alanine side chain. On the other hand, the positive values
of the regression coefficients for other descriptors such as I3 (Me at R1) or I5, I6, I7 and I8 [for
3-phenoxyphenyl, 3-benzyloxyphenyl, 4-phenoxyphenyl and 3-(4-chlorophenoxy)phenyl at
R2, respectively] indicate that some bulky substituents increase the binding affinity of the
ligands towards the wild type. This in part may be because the compounds in the data set with
bulky aryloxy R2 substituents have only a hydrogen atom at the R1 position and have either 3-
or 4-chloro substitution at the N1-aryl ring (R position) (note that cycloguanil possesses a 4-
chloro group at this position).

The positive coefficient of the ΣπR term of Model 1a shows that hydrophobic substituents at
R increase the binding affinity of the ligands to the wild type. The importance of the
hydrophobicity of these anti-folates is well documented in the literature and has previously
been studied using Hansch 2D-QSAR.43–45 We then tested for any non-linear relationship
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between hydrophobicity and the binding affinity data on the wild type. Model 2, developed
using the square of ΣπR, shows that adding in this new descriptor is not statistically acceptable,
since the standard error of the regression term for this descriptor is more than the regression
coefficient, making a low t (two-tail) value considerably lower than the tabulated value at a
95% confidence interval. An explanation for this is that Model 2 suffers from the presence of
2 outliers, namely compounds 5 and 22. Model 2a was developed after eliminating 5 and 22
as outliers. Model 2a shows that the addition of the (ΣπR)2 term is statistically acceptable at
greater than 95% confidence interval. The occurrence of a non-linear relationship is not very
surprising as several bilinear relationships between hydrophobicity (using π) and DHFR
binding affinity data for various species have already been reported in the literature.44, 45 The
optimum π values for meta substituents of the N1-aryl ring of cycloguanil analogs towards
chicken, human, rat, murine, E. coli, Leishmania casei, L. major and P. carinii were 5.00, 2.10,
5.00, 1.76, 3.00, 4.31, 4.54 and 4.00, respectively. According to our literature search, there is
no report about optimal hydrophobicity requirements for cycloguanil analogs against PfDHFR-
TS binding affinity. Hence, we calculated the optimum value of the hydrophobicity of
substituents at R for better binding affinity towards the wild type using simple differentiation
of the parabolic equation (Model 2a) with respect to ΣπR, treating contributions from all other
indicator variables as constant, and found d[pKi(wt)]/d[ΣπR] = −0.349*2(ΣπR) + 1.303 = 0.61
as the optimum πR value. Most of the potent compounds possess either a 4-chloro or 3-chloro
substituent (π = 0.71 for Cl); however most of the compounds containing di-chloro substituents
are inactive (π = 1.42 for di-Cl because of the additive effect of hydrophobicity). Neither a
methyl substituent (π = 0.56, which is low) nor the ethyl substituent (π = 1.02, which is too
high) are optimal for binding affinity. Substituents like CF3, CH2Br, SCH3, SeCH3,
CH=CH2, SCOC2H5, NHC3H7 with π values 0.88, 0.79, 0.61, 0.74, 0.62, 0.82, 0.64,
respectively, would be some better choices, depending upon the synthetic feasibility of these
analogs. Some thioalkyl, selenium and CF3 containing-derivatives have already been reported
to show promising activity on Pneumocystis carinii and human DHFR binding affinity.44, 45

The low coefficient of this π term shows that there exists a total desolvation of substituents in
the PfDHFR binding site. Since this descriptor is not a whole molecular property, it is difficult
to say whether the hydrophobic contributions of the C6-position substituents are important or
not; but certainly the hydrophobic contribution from the N1–aryl ring substituents are additive
and an optimal value is required for enhanced binding affinity to the wild type.

Model 3 was obtained by considering binding affinity data reported on the A16V+S108T
mutant form of the enzyme, pKi(mut), as the dependent variable and the physico-chemical and
indicator variables as independent variables. Model 3a was obtained by removing 22 as an
outlier from Model 3. The positive contribution of the indicator variable I1 in Model 3a suggests
that having the R1 position unsubstituted is favorable for enhancing binding to the mutant form
of the enzyme. This is consistent with the SAR observations of Vilaivan et al.,21 who showed
that removal of one of the dimethyl groups of cycloguanil at the C6 position results in better
binding affinity to the mutant form. The reason, as pointed out by that research group, is that
one of the methyl groups experiences a steric clash with the Val16 side chain in the A16V
+S108T mutant (referred to as the “steric constraint hypothesis”9). Analogous to our
observation for the wild type, a bulky isopropyl group (reflected by the negative contribution
of the indicator variable, I4) is detrimental for binding to the mutant form. The positive
contributions of the indicator variables I5, I6, and I7 show that 3-phenoxyphenyl, 3-
benzyloxyphenyl and 4-phenoxyphenyl at R2 are favorable for enhanced binding affinity.
However the strong binding of these analogs is in part due to the presence of H as the other
substituent (at the R1 position) of C6, a fact that was already described above for Model 1a.
B1

Para(R) is a measure of the width of the first atom of the R substituents. Its negative coefficient
indicates that bulkier para substituents around the N1-aryl ring (R) are detrimental for binding
to this mutant type. This is again because of steric constraints imposed by Ser108. Most of the
active compounds for this mutant type possess, instead, meta substituents.
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Compound 22, an outlier in Models 1–3, is the least active among the series, and possesses a
bulky t-butyl group at the R2 position. Interestingly, a compound with a t-butyl group at the
meta position of the N1-aryl ring of cycloguanil was noted as an outlier in the QSAR study of
cycloguanil analogs for Pneumocystis carinii DHFR inhibition by Marlowe et al.45 It was
pointed out by those authors that the t-butyl group’s interaction with Pneumocystis carinii or
Leishmania major DHFR is more highly twisted than in bacterial and mammalian DHFRs.
The probable reason suggested for such behavior is that certain bulky amino acids like Trp, Ile
or Phe restrict the entry of cycloguanil analogs to the hydrophobic binding pocket of DHFR
in the former species; the inactivity of 22 suggests that this also occurs for Pf DHFR. Since
compound 5 does not have any unusual substitution pattern and its binding affinity can be
captured adequately by the descriptors used in Model 2, the outlying behavior of this compound
may be due to experimental error. The reported binding affinity data (Ki) for these compounds
were an average of triplicated assay results and there was a relatively high standard error
reported for compound 5 (Ki = 1.5±0.8) compared to for other compounds 9 (Ki = 1.4±0.2),
16 (Ki = 1.6±0.2), 17 (Ki = 1.5±0.3) and 57 (Ki = 1.4±0.3) with Ki’s in a similar range to that
for compound 5. The major results derived from the Hansch 2D-QSAR models are summarized
in Figure 1.

Docking
A summary of all the average RMSDs and the R2 between docking scores and reported binding
affinities is given in Table 5. Here we present the results for the 4 docking algorithms.

1.1 FlexX
FlexX docking scores, including the Total score, GScore, ChemScore, PMF Score and DScore,
all resulted in a poor correlation of R2 < 0.3 with the reported binding affinity data. FlexX
predicted consistent binding modes for 9 of the 10 cycloguanil derivatives. Compound 39,
which is unsubstituted at R1 and R2 and with a 4-F substitution at R, was predicted to adopt a
different binding mode than the other 9 compounds. In contrast, the only other compound with
such unsubstituted R1 and R2 and with a 4-Cl substitution at R was predicted to bind in a similar
way to the other 9 compounds. This shows that the predictions of FlexX are inconsistent
because such a big change in the binding mode is not expected to be caused by the small steric
change from the F to the Cl atom at the R position, considering the space available in the active
site. The average RMSD between the 30 docked poses from FlexX and the crystal structure of
W99210 was 4.971 Å. The RMSD between the top-ranked of the 30 poses and the experimental
structure was 3.3 Å. This high RMSD shows that FlexX was not capable of reproducing the
experimental structure. Together with the performance of the docking scores, it can be
concluded that FlexX as implemented in Sybyl 7.2 is not an accurate docking program to study
this class of protein-ligand interactions. The binding modes of the 10 cycloguanil derivatives
and the reference ligand, W99210, are given in Supplementary Figure S1. The individual
docking scores for the 10 cycloguanil derivatives from FlexX and the RMSD values are given
in Supplementary Tables S1 and S2, respectively.

1.2 Glide
The Glide SP module predicted consistent binding modes for all 10 compounds, matching the
reference ligand binding mode. Ruvinsky’s treatment of the docking scores also resulted in
similar binding modes of 9 compounds, but one compound, 17, for no apparent reason failed
to refine through this procedure. The correlation R2 between the Glide GScore and the reported
binding affinity data for the 10 compounds was 0.416. The correlation R2 between the Glide
EModel and the reported binding affinity data was 0.426. As can be seen from the correlation
coefficient values, neither the Glide GScore nor the EModel was satisfactorily able to predict
the binding affinities of these analogs. The Glide GScore and EModel refined using Ruvinsky’s
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correction were still worse than the corresponding unprocessed GScore and EModel from
Glide. R2 between the reported binding affinity data and the Ruvinsky refined Glide GScore
and EModel for the nine compounds were 0.167 and 0.196, respectively. The average RMSD
between the experimental and 30 predicted binding poses of W99210 was 3.399 Å. But the
RMSD of the top-ranked pose among the 30 poses of the reference ligand and the experimental
structure was only 1.734 Å, and hence, it can be concluded that the top-ranked pose from Glide
can be confidently used for further calculations, since RMSD < 2 Å. The top-ranked pose of
each ligand and the reference molecule from a Glide SP run before and after Ruvinsky’s
treatment are given in Supplementary Figure S2. The individual docking scores for the 10
cycloguanil derivatives from Glide SP and the RMSD values are given in Supplementary
Tables S3 and S4, respectively.

2.3 Molegro virtual docker
The chemical properties used in the bound ligand, W99210, which was used for template
docking using Molegro virtual docker are given in Figure 2. Four hydrogen bond donor atoms
(purple), three hydrogen bond acceptors (green) and 12 ring atoms (yellow) of the reference
ligand, as shown in Figure 2, were used to dock other compounds. Molegro predicted consistent
binding modes for all 10 compounds, matching the binding mode of the reference ligand, just
as was found with Glide. The predicted binding modes are given in Figure 3. Three different
scores can be obtained using two different scoring methods, MolDock and MolDock [GRID],
so a total of six sets of scores were investigated using Molegro, and the results are given in
Supplementary Table S5. Each score in the table is an average of five consecutive runs. The
correlation R2 between the reported binding affinity data of the 10 cycloguanil derivatives and
the MolDock, rerank and Protein-Ligand interaction scores from the MolDock scoring method
were 0.741, 0.740 and 0.740, respectively. The correlation R2 between the reported binding
affinity data of the 10 cycloguanil derivatives and the MolDock, rerank and the Protein-Ligand
interaction scores from the MolDock [GRID] scoring method were 0.735, 0.703 and 0.739,
respectively. This shows that Molegro docking scores were approximately equally successful
in predicting the binding affinity, and that for docking scores Molegro performed better than
FlexX or Glide. Also, since hydrogen bonding interactions do not influence the variation in
the binding affinity data exerted by these analogs (discussed in detail below, under active site
interactions), the correlation obtained with the two scoring functions used, MolDock and
MolDock [GRID], which differ only by taking hydrogen bond directionality into account, was
similar. The RMSDs obtained using the two different scoring functions are given in
Supplementary Table S6. The average RMSDs were 2.14 and 2.18 Å, respectively. We found
an impressively low RMSD = 1.02 Å between the top-ranked pose and the experimental
structure of W99210 using the MolDock [GRID] scoring function. This clearly demonstrates
that the Molegro virtual docker was very accurate in reproducing the experimental binding
mode and the software also gave a reasonably accurate prediction of binding affinity of the
cycloguanil derivatives.

2.4 GOLD
Using GOLD software, among the three available docking scores investigated, only GoldScore
predicted a consistent binding mode for all 10 cycloguanil analogs which was similar to that
of the reference ligand. The correlation R2 between the reported binding affinity and the
GoldScore, ChemScore and ASP were 0.911, 0.855 and 0.626, respectively. Hence, the order
of accuracy of the scoring functions for predicting the binding affinity was GScore >
ChemScore > ASP. The average RMSD between the predicted binding modes of W99210 and
the experimental structure using GoldScore, ChemScore and ASP were 2.99, 3.88 and 1.96 Å,
respectively. The order of accuracy for reproducing the experimental binding mode was ASP
> GoldScore > ChemScore, and this order was maintained when the RMSDs of only the top-
ranked poses were considered. This data demonstrates that the GoldScore scoring function
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predicted the binding affinity of the cycloguanil analogs very well, whereas the ASP was most
accurate for reproducing the experimental binding mode. The ChemScore performance was
not satisfactory for predicting either the binding mode or the binding affinity when compared
to the other two scoring functions. Since the GoldScore yielded consistent binding modes and
also an excellent correlation with the experimental binding affinity data, we selected the top-
ranked binding pose of each ligand from GoldScore to study in detail the interaction of these
derivatives with the active site residues. The predicted binding modes from GoldScore are
given in Figure 4, whereas results from the other two scoring functions, ChemScore and the
ASP, are given in Supplementary Figure S3.

2.5 Active site interactions
We analyzed the top-ranked poses of the 10 cycloguanil ligands from GOLD (GoldScore) for
important hydrogen bond and hydrophobic interactions (Figure 4). Two polar interactions are
conserved in all the 10 cycloguanil derivatives: the 4-amino group forms a hydrogen bond with
the side chain carboxylic acid of Asp54, and the 2-amino group forms a hydrogen bond with
the backbone carbonyl of Ile14. Except for 31 and 39, which are unsubstituted at the C6
position, all the compounds showed an additional hydrogen bond with Asp54, between the
carboxylic acid OH of Asp54 and N5 of the triazine ring of the ligand.

C6 of the triazine ring of cycloguanil derivatives lies within 4.5–5.0 Å of the methyl of Ala16
(Dist1 in Table 6). C4′ of the N1 phenyl of the triazine ring lies within 4.8–5.3 Å of the side
chain methyl of Ser108 (Dist2 in Table 6), allowing favorable hydrophobic interactions. Both
of these hydrophobic interactions are roughly equally important for these analogs as we can
see from the correlations, R2 = 0.793 and 0.725 between the reported wild type binding affinity
and Dist1 and Dist2, respectively. To make one interaction index which would account for
both these interactions we used the average of the two distances = (Dist1+Dist2)/2, which
showed an excellent correlation of R2 = 0.874 with the binding affinity data (Figure 5). We
also calculated a key dihedral angle C2-N1-C1′-C2′ (atom labels given in Table 1) involved in
the various substitution patterns in these analogs, using the docked poses, and found it to show
a good correlation of R2 = 0.873 with binding affinity data (Figure 5). This clearly demonstrates
that hydrophobic interactions of these analogs with the active site of PfDHFR-TS and the C2-
N1-C1′-C2′ dihedral angle are crucial for their binding affinity in the wild type enzyme.

Since the X-ray structure is unavailable for the double mutant relevant to these cycloguanil
compounds, A16V + S108T, we did not proceed with docking into the mutant protein. It would
be possible to mutate the wild type protein or another mutant X-ray structure and then perform
docking but this would be less reliable than working directly from a crystal structure, as we
were able to do for the wild type.

Conclusions
In the modern scenario of the drug design program, in addition to designing potent and safer
drug candidates against malaria, necessary care has to be taken in addressing the emergence
of resistance to anti-malarial drugs. In order to understand the importance of various physico-
chemical and structural properties of cycloguanil derivatives towards their wild and mutant
type PfDHFR-TS binding and to identify and use an optimal docking program to study the
molecular interactions, we reported herein our extensive 2D-QSAR investigations followed
by comparative docking analysis. Our 2D-QSAR investigations suggested that several
structural features of the chosen ligands and the hydrophobicity of N1-phenyl substituents of
2,4-diamino-1,6-dihydro-1,3,5-triazine scaffold are crucial for effective binding with the wild
type of the enzyme. This observation was analogous to our previously published results on a
different antimalarial enzyme target which have shown the importance of ligands’
hydrophobicity to be crucial for their in vitro antimalarial activities.46 For binding to the A16V

Sivaprakasam et al. Page 9

J Chem Inf Model. Author manuscript; available in PMC 2010 July 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



+S108T mutant form of the same enzyme, we determined that several structural variables such
as the presence of 3-phenoxyphenyl, 3-benzyloxyphenyl and 4-phenoxyphenyl at the C6
position of the triazine ring of cycloguanil derivatives influence binding, and also found a
negative steric tolerance for para-substituents on the N1-phenyl ring.

We studied the binding mode of the cycloguanil derivatives with DHFR-TS by focusing on
the 10 reported analogs which had well-defined stereochemistry. Among the four different
docking programs and 13 different scoring functions analyzed, we obtained the best correlation
R2 = 0.911 between reported binding affinity data and docking scores for the GOLD program
using the GoldScore fitness function. Also, among the programs and scoring functions
analyzed, we found the Molegro virtual docker program, with its template docking algorithm
and MolDock [GRID] score, to be very accurate for reproducing the experimental binding
mode of ligand WR99210, with an RMSD of 1.02 Å. The average of two key hydrophobic
distances and a key dihedral angle were found to be well correlated to the wild type activity
exhibited by the 10 cycloguanil derivatives. Hence a combination of 2D-QSAR and docking
analysis provided fresh insights into the existing SAR of cycloguanil derivatives towards their
PfDHFR-TS inhibition.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Summary of Hansch 2D-QSAR results for wild type and mutant binding affinity data.
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Figure 2.
Template used for Molegro template docking. The chemical properties are also shown. Yellow:
ring atoms; green: hydrogen bond acceptors; purple: hydrogen bond donors.
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Figure 3.
Predicted binding modes of 10 cycloguanil analogs and the reference ligand using Molegro.
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Figure 4.
Binding modes of 8 cycloguanil derivatives, showing the key polar and non-polar interactions
predicted obtained using GOLD (with GoldScore).
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Figure 5.
Correlation of binding affinity with the C2-N1-C1′-C2′ torsion angle (upper graph) and with
the distance between the cycloguanil derivatives and active site residues (lower graph).
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Table 2

Descriptors used in the 2D-QSAR analysis.

No. Descriptor Family Description

1 I1 Structural Presence of hydrogen atom at R1
2 I2 Structural Presence of hydrogen atom at R2
3 I3 Structural Presence of methyl group at R1
4 I4 Structural Presence of iso-propyl group at R2
5 I5 Structural Presence of 3-phenoxy phenyl group at R2
6 I6 Structural Presence of 3-benzyloxy phenyl group at R2
7 I7 Structural Presence of 4-phenoxy phenyl group at R2
8 I8 Structural Presence of 3-(4-Chlorophenoxy)phenyl group at R2
9 I9 Structural Presence of methyl group at R2
10 I10 Structural Presence of n-hexyl group at R2
11 I11 Structural Presence of phenyl group at R2
12 I12 Structural Presence of ethyl group at R2
13 I13 Structural Presence of n-propyl group at R2
14 πpara(R) Hydrophobic Hydrophobicity of para-substituents around R
15 ΣπR Hydrophobic Hydrophobicity of para- and meta-substituents around R
16 MRp Steric Molar refractivity of para-substituents around R
17 ΣMR Steric Molar refractivity of para- and meta-substituents around R
18 f Electronic Field (inductive) effect of para- and meta-substituents around R
19 R Electronic Resonance effect of para- and meta-substituents around R
20 σp Electronic Hammett constant for para-substituents around R
21 Σσ Electronic Hammett constant for para- and meta-substituents around R
22 Espara Steric Taft’s steric constant for para-substituents around R
23 Lp Steric Sterimol parameter, length of para-substituents around R
24 B1

para(R) Steric Sterimol parameter, minimal width of para-substituents around R
25 B5para Steric Sterimol parameter, newly defined maximal width of parasubstituents

around R
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Table 5

Summary of average RMSD and the R2 between docking scores and reported binding affinities for the 4 docking
programs.

Program Scoring function R2 Average RMSDa

FlexX Total score 0.116 –
DScore 0.276 –

PMF Score 0.039 –
GScore 0.134 –
CScore 0.008 4.97

Glide-SP GScore 0.466 –
EModel 0.450 3.40

Ruvinsky-GScore 0.167 –
Ruvinsky-EModel 0.196 –

Molegro virtual docker MolDock 0.741 2.14
Rerank 0.740 –

Protein-ligand 0.740 –
GOLD GoldScore 0.911 2.99

ChemScore 0.855 3.88
ASP 0.626 1.96

a
In Å.
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