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Abstract
Despite considerable efforts, description of molecular shape is still largely an unresolved problem.
Given the importance of molecular shape in the description of spatial interactions in crystals or
ligand-target complexes, this is not a satisfying state. In the current work, we propose a novel
application of alpha shapes to the description of the shapes of small molecules. Alpha shapes are
parameterized generalizations of the convex hull. For a specific value of α, the alpha shape is the
geometric dual of the space-filling model of a molecule, with the parameter α allowing description
of shape in varying degrees of detail. To date, alpha shapes have been used to find
macromolecular cavities and to estimate molecular surface areas and volumes. We developed a
novel methodology for computing molecular shape characteristics from the alpha shape. In this
work, we show that alpha-shape descriptors reveal aspects of molecular shape that are
complementary to other shape descriptors, and that accord well with chemists’ intuition about
shape. While our implementation of alpha-shape descriptors is not computationally trivial, we
suggest that the additional shape characteristics they provide can be used to improve and
complement shape-analysis methods in domains such as crystallography and ligand-target
interactions. In this communication, we present a unique methodology for computing molecular
shape characteristics from the alpha shape. We first describe details of the alpha-shape calculation,
an outline of validation experiments performed, and a discussion of the advantages and challenges
we found while implementing this approach. The results show that, relative to known shape
calculations, this method provides a high degree of shape resolution with even small changes in
atomic coordinates.
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Introduction
In cheminformatics research, it is of significant importance to characterize, analyze, and
predict properties that describe the shape of molecules.1 This is particularly true in cases of
molecular interactions, such as in the solid state of homogeneous materials where molecular
interactions determine properties such as melting points.2,3 More important for this study are
heterogeneous environments where the shape of two distinct molecular entities, usually a
small-molecule ligand and the cavity of a protein target, are relevant for molecular
recognition.4 While shape is a crucial component of such intermolecular interactions (the
other important aspect being the type of property the molecule exhibits at each point in
space, such as its electrostatic properties5–7), methods to describe molecular shape concisely
are still not ideal. The main problems derive from the fact that shape descriptions must be
translationally and rotationally invariant, and that molecular shape is rather difficult to
describe due to inherent conformational flexibility.5

During the last twenty years, a variety of molecular shape descriptions have been devised.
An early shape description was implemented in the CoMFA (comparative molecular field
analysis) algorithm,8 which describes molecules by steric and electrostatic fields, but
requires time-consuming alignment of molecules. While the evaluation of electrostatic and
shape similarity at pre-defined grid points takes considerable time to evaluate (particularly
in combination with quantum-mechanical electron distributions), the introduction of
Gaussian functions for the calculation of both shape and electrostatic similarity eases this
computational burden and speeds up CoMFA analysis considerably.9,10 However, alignment
of molecules still proves to be a cumbersome step. As a result, so-called “alignment-free”
molecular descriptions were developed, in which the density function of a molecular
property at a fixed distance (but not a fixed coordinate) from a different point of the
molecule is calculated. Early methods included autocorrelations of surface properties,11

descriptors based on mapping atom properties to molecular surfaces (“MaP” descriptors)12,
and development of radial distribution functions for all combinations of surface properties.12

More recently, “recycling” of alignments13 was proposed to speed up shape comparisons
while giving better than 80% “hit” list overlap with a ROCS (Rapid Overlay of Chemical
Structures) alignment procedure (OpenEye Scientific Software; Santa Fe, NM).

Analogous to 2D fragment-based fingerprints, a variety of 3D shape fingerprints were
developed based on different assumptions. By using a “reference shape library” of several
thousand molecules,14 a molecule can be represented by its similarity (measured as overlap
above a threshold using Gaussian functions) to the reference panel—the result is a bit-string
describing the new shape. A method termed “ultra-fast shape recognition” (USR)15

exploited the fact that not all pairwise atomic center distances need be used to describe
shape. USR calculates all atomic distances from just four predefined molecular locations:
the molecular centroid, the closest atom to the centroid, the farthest atom from the centroid
(termed “fct”), and the farthest atom from fct. These locations represent the center of the
molecule and its extremes. Each set of distances is then characterized as a histogram and
first through third moments calculated. Thus, each molecule is described by 3 moments from
4 distance histograms, enabling descriptor calculation for thousands of molecules per second
and shape comparisons for millions of molecule pairs in seconds on a single CPU. This 3D
USR descriptor was used in combination with conventional MACCS keys, which are a
binary presence/absence description of 2D molecular fragments.16 The resulting MACCS/
USR hybrid descriptors outperformed pure USR descriptors in a series of retrospective
virtual screening experiments.16 This result underlines the importance of using different
descriptor spaces—both 2D and 3D—that capture different aspects of molecular structure.
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Given that existing descriptions of molecular shape are not ideal (both in the sense of
predictive power of a shape-derived property and their practical ease of handling), we
propose a novel application and characterization of alpha shapes17 to the description of
small molecules. Alpha shapes, which are parameterized (α) generalizations of the convex
hull, were originally conceived of in two dimensions17,18 and later expanded to three
dimensions.19 As α approaches infinity the alpha shape is identical to the convex hull. As α
decreases the shape shrinks by developing concavities and voids. As α approaches zero the
alpha shape is the original point set S, and for other values intermediate shapes are formed.
Each point set S will have a finite set of α describing all the alpha shapes in the alpha
complex of S. An intuitive notion is to think of α as the radius of a sphere centered on each
member of S (for example see, Edelsbrunner et. al.20). An interesting observation occurs
when α corresponds to the spheres of a space filling model. In this case (formally applicable
only to hydrocarbons) the alpha shape is said to be the geometric dual of the space-filling
model. That is, if α corresponds to the radii of a set of spheres in the space-filling model, the
information contained in the alpha shape can be used to exactly describe the union of
spheres—it is a geometric dual. This relationship can be exploited in chemistry by
considering relationships between the alpha-shape, ball-and-stick, space-filling model, and
chemical graph representations (Figure 1).

The notion of alpha shapes is a formalization of the intuitive notion of “shape” for spatial
point sets. An alpha shape is a concrete geometric model which is mathematically well
defined and unique for a given point set. This stands in contrast to other methods, such as
isosurfaces and accessible surface area, which are approximations and dependent upon sets
of poorly defined variables. Thus far, alpha shapes have been used in many diverse
disciplines. Visualization of the relationships among data points in 2D and 3D is often a first
stage of statistical inference. To this end, alpha shapes have been employed to visualize the
irregular shape boundaries of clusters in 3D.21 Other researchers22 used alpha shapes to
visualize and characterize some simple properties of Brownian motion paths and concluded
that alpha shapes are an effective tool to measure the mass of a diffusing particle. In perhaps
one of the most common applications of alpha shapes, a number of researchers in computer
graphics developed methods to improve surface reconstruction from finitely sampled
points.23–26 In the field of solid mechanics, alpha shapes have been used to improve surface
interpolation by avoiding linear displacement fields along convex boundaries.27 Alpha
shapes also provide more accurate linear interpolation over non-convex boundaries.28 More
recently, in the area of image segmentation, alpha shapes have been used to reconstruct
boundaries from noisy, or otherwise non-optimal image segmentations.29 With respect to
experiments at the atomic level (as in this study), Zomorodian and coworkers30 used alpha
shapes to improve protein structure prediction with statistical potentials. These methods are
computationally expensive due to the large number of atomic interactions, and alpha shapes
were used to filter the list of interacting atoms in a protein. The researchers concluded that
filtering the dataset down to just 12.8% of the original resulted in scoring functions that
were competitive with those derived from the full dataset. Alpha shapes have also been used
to study protein structures,31 pockets,32,33 surface area and volume,34 and packing.35

Relying on previous studies that characterized irregular pockets, voids, and depressions,32

Liang and coworkers35 examined the notion of packing in proteins. They found that proteins
resemble randomly packed spheres rather than a jig-saw puzzle. With cavities and voids in
the protein core contributing to densities that are not homogeneous. Further, by looking at
proteins of various sizes, they concluded that small proteins are denser than larger ones.

In this communication, we present our reference compound data and descriptor sets. We
then explain the preprocessing methods that are necessary for using alpha shapes to calculate
molecular shape using a joint density between alpha-shape facet normals and facet distances,
a method we term alpha-shape joint density (AJD). This exposition is followed by a
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description of how we calculate distance between molecular AJD using the Earth-Mover’s
Distance (EMD),36,37 both among all pairwise shape representations and to two a priori
shapes. When taken alone, our results show that the AJD method is keenly sensitive to
molecular shape, but we believe that a complete representation of small molecules can only
result as a combination of descriptors.

Methods
Reference compound collections

To investigate the behavior of alpha shapes for molecular shape description, we used three
sets of compounds. One set comprises multiple conformers of each of the 16 structural
isomers of octane (OCT; see Supplementary Table S1), with increasing alkyl-branching and
decreasing number of rotatable bonds. For each isomer, we used the Molecular Operating
Environment (MOE 2007.09; Chemical Computing Group; Montreal, QC, CA) to build a
conformational pool by systematically varying each rotatable bond by 60° torsional
increments (Supplementary Table S2). Resulting conformers were energy minimized using a
three-step free-energy minimization procedure.38 To reduce the total number of conformers
per isomer while keeping maximum conformational coverage, we first filtered using the
torsional space, binning each rotatable bond into 40° torsions per angle and selecting
conformations representative of each unique combination of torsion angles for each
molecule. To eliminate identical conformers related by symmetry, we superposed all
torsional bin representatives and eliminated duplicates using pairwise RMSD among the
atomic coordinates. For the figures presented in this study, we focused on four octanes,
including one enantiomeric pair, sharing a terminal tert-butyl function (2,2-dimethylhexane
(5), 2,2,4-trimethylpentane (13), (R)-2,2,3-trimethylpentane (12), and (S)-2,2,3-
trimethylpentane (12*)), and representing a total of 37 unique conformations. This small
collection allows us to explore relatively small topological and conformational changes in a
closely related set of compounds. The second set is a collection of 388 known biologically
active (BIO) compounds with a large number of potential shapes to compare.39 In addition,
we used a diverse set of 22,831 compounds from ChemBank from several synthetic and
natural sources for algorithm development. These compounds represent several sources and
synthetic methods including natural products, commercial vendor libraries, and products
resulting from diversity-oriented organic syntheses.40 We performed filtering on the two
latter compound collections by removing compounds with metals, compounds with fewer
than 6 heavy atoms, and those for which no stable conformation could be generated. These
filtering steps resulted in the final numbers of compounds indicated in the Figures and
Figure Legends.

Reference descriptor sets
For comparative descriptor sets, we used published methods and commercially available
software. First, we implemented a normalized principal moments-of-inertia (PMIs) ratio
method.41 To do this, we calculated the ratios of the smallest and medium eigenvalues of the
diagonalized mass tensor to the largest (i.e., X = Ismall/Ilarge, Y = Imedium/Ilarge). The Y
coordinate of these ratios was then scaled by  to produce an equilateral PMI space,
allowing meaningful Euclidean distances between compounds to be computed in the
resulting PMI space. Second, we implemented a recently published descriptor termed
Ultrafast Shape Recognition (USR).15 Third, we calculated the functional class fingerprints
(FCFP6s; Pipeline Pilot/Accelrys 7.0.1; San Diego, CA; USA), which are amenable to
Tanimoto similarity analysis.42,43 Finally, we calculated the descriptors from MOE
(Molecular Operating Environment 2007.09; Chemical Computing Group, Montreal,
Quebec, Canada) listed in Supplementary Table 3. These latter descriptors were individually
correlated using Kendall’s Tao44,45 with the EMD of each compound to a set of reference
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shape priors (vide infra). Calculation of PMI, USR, and Tanimoto distances, hierarchical
clustering, and statistical analysis were performed in MATLAB R2008s (version 7.6.0.324;
The MathWorks; Natick, MA; USA).

Alpha-shape facet and surface normal calculation
Starting from a structure-data format (SDF) file representing the 22,831 diverse ChemBank
compounds (vide supra), we extracted the 3D molecular coordinates, and calculated the
alpha-shape indices. These indices are triplets which indicate each facet of the surface of the
alpha-shape. We used code provided in the Computational Geometry Algorithms Library
(CGAL 3.3.1)46 to calculate each alpha shape. This library provides the option to select
from all possible values of α the one α that is optimal for a given S. This optimal value is the
smallest α within all α’s that constrain all points in S to the interior or the surface of the
alpha shape, leaving no disjoint members of S. With the resultant facets comprising the
surface, we calculated normal vectors for each facet across the entire shape. However, one
problem with this approach is that the indices for facet construction are returned with
arbitrary handedness. To resolve this problem we used ray-tracing and the parity of
intersections to determine which side of each facet is facing “outward.” This method
resolved the handedness of 99.3% of the facet normals. The remaining 0.7% of facets have
ambiguous parity information (e.g., 1/1, 2/2, etc.). To assign correct handedness for these
remaining ambiguous facets, we examined the parity of their intersecting facets. With parity
and location information—in front or behind—a vote on the handedness of the ambiguous
facet was cast. When all intersecting facets were examined, the final tally of votes was used
to set the handedness. With this method we unambiguously resolved 85% of the 0.7%, thus
0.105% of total facets remained unresolved. This is an exceedingly small number given that
these remaining facets are spread over a large number of compounds. Thus, the occurrence
of more than one unresolved facet within one compound is small. A final class of facets that
we addressed was planar facets, i.e., parts or whole compounds that have no 3D volume.
These facets were detected in two ways: facets whose ray-tracing parity revealed no
intersections and facets with only two of three sides connected. We address these facets by
including a surface normal on both sides. In the analysis stage we include only the one
normal that satisfies a minimization of change in angle between the two normals.

Joint densities of distance and surface normal orientation
Once the surface normals were resolved for handedness, we used them—in conjunction with
distance information—to calculate the shape of each compound. With every facet as a
starting point, we calculated the Euclidean distance to all other facets using the facet inter-
centroid distances. Ranking these distances, we then calculated the angle between facet
normals, expressing change in orientation in terms of change in distance (Figure 2). The
result is a bivariate dataset with sorted distances and each change in orientation (ΔΘ).
Similar analyses in 2D have been conducted on image contours.47 To characterize the
relationship between distance and orientation change, we generated the joint probability
function with 24 fixed bins for orientation and 24 variable bins for distance. Allowing the
bin centers to vary with distance gives the method a large degree of size independence,
which is an intended consequence of this choice. Each location in this 24x24 matrix
represents the probability of two events occurring simultaneously. For example, each
location in the joint density represents a unique probability of the combined change in
orientation at a given distance.

Similarity between small-molecule joint densities using EMD
To determine the similarity/dissimilarity among the joint-probability functions we used a
method termed Earth-Mover’s Distance (EMD).36,37 With this method, the transportation
simplex between two distributions is solved for a given “ground distance.” The amount of
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work required to move one distribution to match the other is the EMD. Traditionally, EMD
has been computationally too expensive to use in all but very size-limited datasets.
However, Ling and Okada48 recently developed a tree-based algorithm that uses L1 (i.e.,
city-block or Manhattan) ground distance which they termed EMD-L1. In our
implementation (MATLAB mex) of the original algorithm37 a single EMD comparison in
our configuration takes 1.41 seconds. Our current implementation of the source C++ code,48

as a loadable library in MATLAB for Windows, has reduced this to 0.005 seconds per
comparison. This is a decrease of 282-fold in compute time, and allows us to make very
large numbers of comparisons. With the calculated distances we then performed hierarchical
clustering to determine which groups of shapes can be resolved by this method.

Similarity of small-molecules to reference shape priors
With this method we were also able to employ a second level of shape analysis. We
followed the lead of previous researchers41 in developing a small number of shapes that are
used as reference points. To this end, we developed spherical and flat shape prior models to
determine the extent to which compounds are flat or spherical. For the spherical prior, we
calculated the joint probability of the arcsine and square root functions. The flat prior is
simpler since the only variation will occur across distance. Using least-squares methods, we
parametrically fit a gamma density function to only the distance data of all compounds. That
is, we used one set of parameters for all compounds to characterize size change. The result
was placed in the first column of a matrix the same size as the molecular joint densities with
the remainder being zeros. For each class of priors we calculated the distance from flat and
spherical for every compound in our dataset using EMD. This gives us a measure to indicate
how spherical or flat a given compound is relative to the others.

Results
Alpha-shapes discriminate topology, conformation, and stereochemistry among
constitutional isomers

Using a reference set of octane conformations (OCT; see Methods), we compared pairwise
distances computed using EMD between alpha-shape joint density distributions (AJD-
EMDs; Figure 3) to pairwise distances computed using PMI41 and USR15 shape descriptions
(Figures 4 and 5, respectively). The motivation for using a small dataset was ease of
characterization and interpretation (See Methods). With only 4 different compounds and 37
total conformations (see Supplementary Table S2), this set allows us to understand the
primary mechanisms of similarity exposed by our method. Specifically, we are interested in
comparing similarities between conformers, stereoisomers, and geometric isomers between
the selected methods.

We find two primary results that are worth discussing here. First, we find that with AJD-
EMD we can discriminate chemical “shapes” with high precision. That is, the shapes tend to
be well-distinguished from one another with even slight changes in atomic coordinates and
with little regard for topology (Figure 3). In contrast, PMI analysis shows that the resolving
power of this method is coarse. Clusters of “shape” tend to be directly aligned with
molecular topology (Figure 4), with the exception of three conformers of 12 or 12* that tend
to cluster with conformers of 13. A pattern intermediate to AJD and PMI emerges with our
implementation of the USR algorithm (Figure 5), with the additional observation that the
conformers of 5 are split into two distinct groups, as (to a lesser extent) are those of 13.
Second, we find that with this test collection, AJD-EMD analysis easily reveals pairs of
conformations that are conformational enantiomers (pairs along the diagonal in Figure 3). In
contrast, other pairs of molecules sharing topology and even absolute stereochemistry are
well-resolved. Inspection of the dendrogram in Figure 3 shows how pairs of conformational
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enantiomers are easily distinguished from all other pairs of conformers, both within and
between distinct compounds. Notably, one pair of enantiomeric conformers did not
necessarily have similar values, due to the alpha-shapes having slightly different facet
configurations; nevertheless, this pair remained closest to each other in EMD, just with a
higher value than the other pairs, which were all at or near zero. USR was also able to
discriminate enantiomeric conformers (pairs along the diagonal in Figure 5). However, the
distances between such pairs is not significant by this method and could result in
inaccuracies if searching for conformational enantiomers. With PMI analysis, distances
among conformers of the same molecule tend to be similar and difficult to distinguish,
typically resulting in small distances among conformers of a given molecule. These results
are confirmed with our larger dataset of bioactive compounds as well.

Alpha-shapes resolve diverse compounds into rational shape groups
Using a reference set of bioactive compounds (BIO; see Methods), we compared pairwise
distances computed using AJD-EMDs (Figure 6a) to pairwise distances computed using
PMI and USR shape descriptions15,41 (Figure 7a and 8a, respectively) and pairwise
Tanimoto distances computed on FCFP6 descriptors (Figure 9a; see Methods). The first
apparent observation with our method is that there are two distinct classes: perfectly flat
compounds and everything else. To examine this relationship more closely, we clustered
these distances into the first five groups determined by hierarchical clustering with either a
distance criterion (Figures 6a, 7a, and 9a, outlined boxes) or with a cophenetic (consistency)
criterion49 (Figure 8a). For each cluster, we constructed a composite “member”. For AJD
this was done by summing the AJDs of all members and re-normalizing the density
distributions. We chose representative compounds from each cluster with the minimum
EMD to this composite AJD (Figure 6b). Examining these representative compounds reveals
that the trend from “globular” to flat is gradual. For comparison to these AJD-EMD results,
we selected representative members of each of five clusters among PMI similarities (Figure
7b) by choosing the compound closest to the cluster centroid for each cluster in the PMI
map. Unlike the AJD-EMD, the PMI clusters do not display significant shape classes.
However, there was a slight trend for the members of the fourth cluster (Figure 7a, white
box and Supplementary Table S4) to be larger than the others across many calculated
descriptors (e.g., heavy atom counts, bond counts, and molecular volume). In addition, both
the fourth and fifth clusters (Figure 7a, white and magenta boxes, respectively) had a
significantly higher globularity than the other three clusters. We also compared members of
clusters derived from Tanimoto distances between FCFPs (Figure 9b), by choosing
compounds with the minimum average distance to all other compounds in the cluster. In the
Tanimoto distance-based clustering we failed to find any intuitive classes of shape, with the
possible exception of the first cluster (Figure 9a, red box), which contains a large number of
small compounds. Given that FCFP6 fingerprints are based on connectivity only this might
not seem surprising. However, some kind of shape complementarity needs to be present for
ligand-target binding. Thus, paying attention to three-dimensional properties such as AJD
descriptors may prove beneficial. Our method of clustering these three datasets did not
produce reasonable clusters for the pairwise distances calculated using USR, so we used a
slightly different clustering method for USR with a cophenetic (consistency) criterion,49 and
then chose representative members of each of the resulting six clusters (Figure 8a) by
summing and renormalizing the moments of all members of a cluster. The compounds with
the smallest distance to this composite USR compound were selected as representatives
(Figure 8b). Like the PMI clusters, these USR clusters do not show a strong indication of
distinct shape-classes, with the exception that there is a size bias with two of the largest
compounds in the collection being very different from all other compounds. This cluster of
two members has 48.6% more atoms than the average of all other clusters. Two of the
remaining clusters contain a large proportion of small compounds with 23.2% and 36.1% of
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the number of atoms as the large-compound cluster. In addition, there is a trend among the
clusters to show significant differences in size-related descriptors such as molecular weight,
molecular surface area, polar surface area, solvent accessible volume, etc., indicative of a
size bias in the USR method (see Supplementary Table 4).

Alpha-shapes provide complementary information to existing 2D and 3D shape
descriptors

To further understand how our method compares to other shape descriptors, we performed
comparative analyses between PMI, USR, Tanimoto FCFPs, and our method. To do this, we
compared the complete set of pairwise distances from our octane (OCT) test dataset between
the PMI, USR, and AJD methods (Figure 10). In the case of perfect information
correspondence, all data points would fall along the diagonal. Even for such a small and
chemically homogeneous dataset there is significant departure from the diagonal. To
quantify this variation, we calculated the distance of each point perpendicular to the linear
regression and computed descriptive statistics on these distances (Table 1). AJD and USR
(Figure 10a) are the most similar of the three comparisons when considering just the slope
and intercept. However, this similarity becomes much less apparent when looking at the
statistics of the distances (Table 1). We performed the same analysis on our larger set of
bioactive (BIO) test compounds (Table 2). Any sign of a high degree of correspondence
disappears as the slopes flatten and spread increases. That is not to say that there is no
correspondence as there are members along the diagonal. We were also concerned with how
the methods may differ so we examined compounds that lie at the extrema (the 4 corners) of
these comparisons. These corners represent areas where the methods are in good agreement
(compounds are deemed to be similar or dissimilar with both methods) or disagreement
(compounds are similar with one method and dissimilar with another and vice versa), and
we identified compounds by their normalized distances from these extrema for a comparison
of AJD and USR (Table 3). In order, the rows of the table represent the compounds that both
methods determined to be similar (small distance), both methods deemed to be dissimilar
(large distance), and where the methods differed (one large distance and the other a small
distance). The first case, where both methods determined compound were similar, is not a
surprising finding given that earlier results (vide supra) showed that these methods are
sensitive to compounds that are stereoisomers. In the case where both methods agreed that
both compounds were different is a marked size change (and for AJD one compound is
planar and other a long chain of rotatable carbons—pentadecane). Finally, in the cases
where the methods differed markedly is the instance of a large AJD and a small USR
distance. There does not appear to be much difference between the molecules, but one
conformation is perfectly flat while the other is not. Thus, they have no overlapping bin
locations in the joint density. Conversely, in the case with a small AJD and a large USR
distance shows the size dependence of the USR method. USR determines that these are very
different shapes because one is much longer than the other despite having similar overall
shapes.

Alpha-shapes provide information similar to a small number of existing descriptors
The correlations of our derived AJD flat and spherical prior comparisons with 183
descriptors from MOE reveals further relationships between the AJD description and
existing descriptors (Figure 11). The values are sorted in ascending order of the total
absolute values of spherical and flat correlation. The descriptors with high correlations show
that spherical shape correlates well with ‘globularity’, ‘standard dimension 3’, and ‘BCUT
3’ descriptors.50 These descriptors are meant to compare the extent to which compounds
contain volume that extends into the third dimension. Comparing the same descriptors to the
flat prior shows a strong negative correlation since these flat compounds have little or no
volume in the third dimension. Lower in the sorted correlation list, the flat prior shows a
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positive correlation with the zero dimensional BCUT descriptor and the spherical prior
shows a negative correlation with this descriptor. That is, some of the descriptors show a
high degree of intuitive similarity with the AJD-prior method. However, taking all these flat
and spherical correlations into account, there is a −0.84 normalized covariance between the
two, showing that our two priors do share quite a bit of information. This is evident because
a positive correlation in one prior often leads to a negative correlation in the other. However,
across all descriptors the spherical prior shows an average correlation of 0.086 and the flat
prior an average of −0.023. Thus, there are a small number of descriptors that are capturing
the similarities between existing methods and alpha shapes.

Discussion
We developed a novel alignment-free method of describing and comparing molecular shape
that is rotation- and size pseudo-invariant. Making use of computational geometry and
surface characterization techniques, we have shown that our method is keenly sensitive to
molecular shape variations, including the ability to resolve constitutional isomers and
molecular coordinates differing only in stereochemistry and conformation. Specifically, we
showed that our method discriminates enantiomeric poses from other conformations of the
same compound, using a reference set of different poses among constitutional isomers. For a
diverse reference set of bioactive compounds, a high-level analysis using this method
differentiates flat compounds from everything else. As our resolution of similarity increases,
we see a gradual change in shape from globular to flat when pairwise EMDs are clustered
into five groups. We also showed that our method of determining distance from two
preconceived reference shapes offers an alternative, to a good degree orthogonal, measure
compared with most existing shape descriptors—globularity being one of the existing
descriptors exhibiting a high degree of similarity. Finally, we compared our shape descriptor
to existing algorithms with the hypothesis of a large degree of overlap between them. While
this is sometimes the case, we also find considerable disagreement for many pairs of
molecules.

To date, we have relied on two sources of open source code for calculating alpha shapes.
One is C source that was written by Ken Clarkson thirteen years ago (recently found here:
http://www.netlib.org/voronoi/hull.html). The second is the Computational Geometry
Algorithms Library (CGAL 3.3.1), written in C++.46,51 However, as our development
progressed, we moved to exclusive usage of the CGAL implementation, meaning that we
lack control of this aspect of our algorithm. In general, this has not been a problem, but we
did fail to have identical alpha-shapes with one pair of conformational enantiomers with our
octane dataset. We are currently examining this issue. With our current configuration,
following considerable optimization, our runtime is about 1.7 seconds per compound. This is
the total time from the start of reading the SDF file to the end of EMD calculations versus
our flat and spherical shape priors. Clearly, we would like to reduce this time further. We
have observed that a large portion of the time is spent with file I/O in calculating alpha-
shapes.

We have shown that the AJD descriptor does share information with existing descriptors.
For example, both AJD and USR descriptors well discriminate conformational enantiomers
from other conformations. However, due to the nature of the USR descriptor, it contains a
size bias that the AJD descriptor avoids. The AJD method, being nearly size-independent, is
more sensitive to changes in global shape than, say, the number of atoms. We showed this
by pairing compounds of dissimilar results between the methods. In Table 3, a small AJD
and a large USR shows compounds that are in “curved” conformations (i.e., “banana-like”),
but markedly differ in size. Thus, the combination of varying descriptors—both 2D and 3D
—that capture different aspects of molecular structure could result in a more complete
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molecular description (as illustrated recently52,53). Combining similar and dissimilar
descriptors could happen in a number of ways depending on which molecular characteristics
are deemed important for a particular physical or biological property. For example, the AJD
descriptor is pseudo-size independent but there may be instances where size is important—
along with shape. Thus, combining AJD with other descriptors that determine size (e.g.,
molecular weight, volume, and heavy-atom count) would produce a hybrid description that
is sensitive to both properties. An additional area we have been examining is how the
number of rotatable bonds can affect shape. Combining AJD with other descriptors that are
sensitive to the number of rotatable bonds might thus result in a joint descriptor that captures
the mutual information between shape and rotatable bonds. Another approach, which might
be well-suited for examining certain libraries, would be to perform alpha-shape analysis on
molecular skeletons or scaffolds only. This would reduce the dependence of the result on
flexibility due to rotation among side chains. In addition, combining dissimilar information
is statistically favorable since mutual information would be minimized. These combinations
could be done on an ad hoc basis, but future work will involve examining methods to
combine descriptors to produce a complete hybrid description of compounds. We also aim
to examine how modern variants of alpha-shape calculation may benefit our algorithm, such
as employing weighted or conformational alpha shapes which may enhance the shape
sensitivity of our method. Also, alpha shapes have been used to characterize many properties
of proteins, including the categories of depressions, pockets, and voids. To date, there has
been no attempt to describe the shape of these potential binding sites. We plan to adapt our
method to characterize the shape of protein binding sites and thus complement small
molecule ligand shape analyses.

Conclusions
We have developed a method to describe the shape of small molecules. This method is
extremely sensitive to changes in atomic coordinates. It was our aim to produce a shape
descriptor that would capture global information about shape. Given that current theory
predicts that compounds of a similar shape will produce similar biological activity we
believe that being able to search biological activity space with high precision is of utmost
importance. Unlike previously developed methods our method categorizes shapes into a
logical continuum. We also found that our method does not correlate well with current 3D
descriptors indicating that we are capturing shape information previously neglected.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Visual representations of structure
Four different representations of the same structure illustrating the relationship of alpha
shapes to other methods of small-molecule structure depiction (hydrogen-suppressed): A)
alpha shape, B) ball-and-stick model, C) space-filling model, D) hydrogen-suppressed
molecular graph.
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Figure 2. Calculating relationships between distance and facet orientation change
A simple small-molecule alpha shape with surface normals. Distance (broken blue trace) and
angle change (broken red trace) for each pair of surface normals is calculated. Joint
probability distributions are calculated based on all distance and angle change pairs.
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Figure 3. Earth-mover’s distance (EMD) between alpha-shape joint density (AJD) distributions
Hierarchal clustering of ADJ-EMD distances between octanes and octane conformations,
including conformers of 5 (red branches), 12 or 12* (green branches), and 13 (blue
branches).
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Figure 4. Distance relationships based on principal moment-of-intertia (PMI) ratios
41 Hierarchal clustering of normalized PMI distances between octanes and octane
conformations, including conformers of 5 (red branches), 12 or 12* (green branches), and 13
(blue branches).
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Figure 5. Distance relationships based on ultra-fast shape recognition (USR) descriptors
15 Hierarchal clustering of USR distances between octanes and octane conformations,
including conformers of 5 (red branches), 12 or 12* (green branches), and 13 (blue
branches).
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Figure 6. EMD-AJD pairwise distances for “bioactive” compounds
(A) Hierarchical clustering of AJD-EMDs among 388 bioactive compounds resolves
compounds into groups with different shapes (colored boxes). (B) Representative structures
from each cluster (colors correspond to the boxes in A).

Wilson et al. Page 19

J Chem Inf Model. Author manuscript; available in PMC 2011 August 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7. PMI pairwise distances for “bioactive” compounds
(A) Hierarchical clustering of PMI-based distances among 388 bioactive compounds
resolved into five clusters (colored boxes). (B) Representative structures from each cluster
(colors correspond to the boxes in A).
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Figure 8. USR pairwise distances for “bioactive” compounds
(A) Hierarchical clustering of USR-based distances among 388 bioactive compounds
resolved into six clusters (colored boxes); six clusters were chosen for comparison due to the
small size of one of the clusters. (B) Representative structures from each cluster (colors
correspond to the boxes in A).
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Figure 9. Tanimoto pairwise distances between functional-class fingerprints (FCFP6) for
“bioactive” compounds
(A) Hierarchical clustering of Tanimoto distances among 388 bioactive compounds resolved
into five clusters (colored boxes). (B) Representative structures from each cluster (colors
correspond to the boxes in A).
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Figure 10. Comparison of three methods of calculating molecular shape
Each data point is a pairwise distance calculated by one method, plotted against the distance
between the same pair of compounds calculated by an alternative method. Data were
normalized within each method and a linear regression plotted (black trace). (A) AJD vs.
USR, (B) AJD vs. PMI, (C) PMI vs. USR.
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Figure 11. Correlations between calculated molecular descriptors from MOE54 and alpha-shape
priors
Descriptors are sorted by total absolute value of spherical and flat correlation for each
descriptor. Spherical (red circles) and flat (blue squares) prior similarities are correlated with
each descriptor.
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Table 1
Statistics of method comparison for octane conformation dataset

Distances of data points to the linear regression (see Figure 10) were calculated. Statistics and slopes/
intercepts of these distances are shown. Kurtosis shown is not relative to a Gaussian distribution.

Distance Statistic AJD v USR AJD v PMI PMI v USR

Intercept −0.0927 −0.2578 0.3026

Slope 1.0451 0.9819 0.7299

Mean Distance 0.0961 0.0979 0.1222

Median Distance 0.0888 0.0843 0.1152

STD Distance 0.0656 0.0738 0.0785

Kurtosis Distance 2.6858 4.0209 3.2227
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