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Abstract 

The information provided by the alignment-independent GRid Independent Descriptors 

(GRIND) can be condensed by the application of Principal Component Analysis, 

obtaining a small number of principal properties (GRIND-PP), more suitable for 

describing molecular similarity. The objective of the present study is to optimize diverse 

parameters involved in the obtention of the GRIND-PP and to validate their suitability 

for applications requiring a biologically relevant description of the molecular similarity. 

With this aim, GRIND-PP computed with a collection of diverse settings were used to 

carry out ligand-based virtual screening (LBVS) on standard conditions. The quality of 
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the results obtained was remarkable and comparable with other LBVS methods, and 

their detailed statistical analysis allowed to identify the method settings more 

determinant for the quality of the results and their optimum. Remarkably, some of these 

optimum settings differ significantly from those used in previous published 

applications, revealing their unexplored potential. Their applicability in large compound 

database was also explored by comparing the equivalence of the results obtained using 

either computed or projected principal properties. In general, the results of the study 

confirm the suitability of the GRIND-PP for practical applications and provide useful 

hints about how they should be computed for obtaining optimum results.  

Introduction 

For a long time it has been generally accepted that two compounds with a high degree 

of chemical similarity are likely to have similar biological properties. This statement, 

albeit true in the vast majority of cases, has striking exceptions, as it was shown in 

recent publications.1 These exceptions are a consequence of the imperfect 

correspondence between the concepts of chemical similarity and biological similarity; 

two compounds might share many structural features, but show disparities in a few of 

them which play a critical role for their interaction with a biological target. 

Unfortunately, in most cases the identity of these biologically relevant features is 

unknown and as a consequence, chemical similarity does not guarantee biological 

similarity, in general terms. 

 

Often, the only hint about how to obtain novel compounds with a certain biological 

property is a small set of compounds already exhibiting this property. In this situation it 

is reasonable to assume that the probability to obtain compounds with this biological 

property is higher in the compounds showing structural similarity with the active 
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compound.2,3 This idea was at the basis of the ligand-based virtual screening (LBVS) 

methods, in which compounds of unknown activity are ranked according to their 

similarity with one or more known active compounds which are used as templates.4  

 

One of the most critical aspects of LBVS methods is how to describe the compound 

similarity. Ideally, the molecular descriptors used should represent the aforementioned 

biologically relevant features, since a structural description, centered on describing the 

template chemotype, is likely to select hits from the same structural family (i.e. if the 

template is a beta-lactamic antibiotic every compound with a beta-lactamic ring will be 

selected as an antibiotic). This is inconvenient even when the selected hits are active, 

because LBVS aims to find compounds with some degree of novelty.5,6 In this respect, 

3D based molecular descriptors offer some advantages over 2D descriptors, since they 

make no direct use of the template 2D structure and are less likely to extract hits based 

on their chemotype. Moreover, when more than one template compound is used, 3D 

based methods can identify common 3D structural features not apparent in their 2D 

structure, and use them for the search. Therefore, the molecular descriptors used for 

similarity search in LBVS must represent biologically relevant properties but with the 

highest possible abstraction of the template chemotype or otherwise the hits will be “too 

similar” to the templates for being of interest.  

 

The GRid-INdependent Descriptors (GRIND)7 are an example of 3D based molecular 

descriptors. They were originally developed for 3D QSAR, but have been applied with 

success in other areas of drug design.8 In few words, the GRIND are obtained starting 

from a collection of molecular interaction fields (MIF) computed using diverse 

chemical probes, which were discretized by finding the more representative positions 
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(hot spots). The relative position of these hot spots was encoded into a few arrays of 

values (correlograms), representing hot spots located at certain distance ranges. Hence, 

every GRIND variable represents couples of grid nodes, belonging to certain MIF types 

and separated by a certain distance range. For a certain compound, the GRIND variable 

is assigned a value of 0.0 when no such couple exists for the MIFs considered or the 

product of their energy values when such couple does exist. A detailed description of 

the algorithm used for computing the GRIND was described elsewhere9 but, as can be 

seen, the GRIND have the advantage of providing a complete abstraction of the ligand 

chemotype and indeed, different 2D structures can produce very similar MIF and 

GRIND. For this reason, providing information relevant for representing the ligands 

molecular interaction potential without making use of their chemotype, the GRIND are 

attractive descriptors for LBVS applications. Indeed, a few applications of GRIND in 

LBVS have been reported10,11 producing good results, often remarked to be original 

with respect to the results obtained with other methods.  

 

One of the peculiarities of the GRIND is the intrinsic redundancy of the variables 

obtained. The presence of any structural feature is reflected in many variables 

simultaneously, often located in different correlograms.8 This is not inconvenient for 

their application in 3D QSAR, since the regression method applied (Partial Least 

Squares) is highly insensitive to this problem. However, this characteristic could be 

detrimental for the quantification of compound similarity for two reasons; (i) the 

relative importance given to diverse structural features depends on the level of 

redundancy of the description and (ii) they are not efficient, both in terms of storage and 

of time required to compute similarity indexes involving so many variables. For these 

reasons it has been suggested8 that the t-scores obtained with Principal Component 
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Analysis (PCA) would be more suitable for molecular similarity applications than the 

original variables and still retain the most relevant information related to their biological 

properties. 

 

The use of t-scores, also called principal properties (PP), for replacing the original 

molecular descriptors is not new and early examples can be found in the 

characterization of heteroaromatics12 or aminoacids.13 A more recent example is the use 

of t-scores for building chemical spaces14,15 where large numbers of compounds can be 

localized according to relevant physico-chemical properties, providing a global 

similarity metric. Such chemical spaces have been used with success for practical 

purposes, like the identification of drug-likeness regions or subset selection.  

 

In the present work we aim to explore the suitability of principal properties obtained 

from GRIND (GRIND-PP) for applications which require a description of the molecular 

similarity. LBVS was chosen to illustrate such applications here, because it is a 

technique well known in the field of drug design and there are simple and reliable 

indexes to describe the quality of the results. With this aim, preliminary studies were 

carried out in order to investigate the effect of diverse method parameters (like the 

number of PCA components, the scaling and the size of the template sets) on the quality 

of the results obtained. Then, the method was applied again, with optimum settings, in 

order to evaluate the overall performance of the method in practical applications. 

However, it is important to remark that the main aim of the present work is not to 

benchmark the new descriptors for LBVS applications, but to obtain a preliminary 

quality assessment revealing their generic suitability for molecular similarity 

applications. 
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In addition, properties of such t-scores spaces relevant for their practical use will be 

tested, like their stability upon addition of new compounds or compounds sets and the 

suitability of projected t-scores spaces in LBVS applications. 

 

Materials and methods  

 

Data 

The GRIND-PP were tested by carrying out LBVS on several standard compound 

databases: WOMBAT, DUD and ZINC. 

 

WOMBAT (Word of Molecular BioAcTivity)16 is a database containing molecules 

collected from articles published in medicinal chemistry journals since 1975. In this 

study the version 2007.v2, containing 203,924 chemical compounds, was used. In order 

to enrich the content of lead-like compounds17 and to obtain more realistic results, 

compounds with a molecular weight lower than 450 and a computed logP value (AlogP) 

below 5.5 were removed,17,18 thus obtaining a set of 123,370 compounds. We made use 

of the 2D to 3D conversion program CORINA 2.419 to generate a single 3D 

conformation for each compound, using default parameters. The conversion was 

possible for 123,276 compounds and produced diverse errors for 94 compounds, which 

were discarded from the study. Database annotations were used to extract active 

compounds (activity value over 6) for the following seven different targets: 5-HT3 

antagonists, 5-HT1A agonists, D2 antagonists, angiotensin II AT1 antagonists, thrombin, 

HIV protease inhibitors and protein kinase C inhibitors. In order to select a suitable set 

of templates for each target, the GRIND descriptors obtained for every set of actives 

were exported to GOLPE,20 where subsets of 5% and 10% representative compounds 
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were extracted using two alternative algorithms: MDC (most descriptive compound)21 

and LMD (longest minimum distance).22 In both cases, the selection was carried out in 

the PCA t-scores space using 2 PC. 

 

The DUD (Directory of Useful Decoys) database23 was originally developed to 

provide a realistic assessment of structure-based VS performance, even if it has been 

also used for ligand-based VS.24 It contains 2950 active compounds against a total of 40 

target proteins and every ligand has 36 decoy molecules that are physico-chemically 

similar but topologically distinct, leading to a database of 98,266 compounds. In this 

work the database was used to run separate LBVS for each target, using as templates a 

set of either 5% or 10% of the active compounds, which were selected using the MDC 

algorithm on the PCA t-scores space, as described above for the WOMBAT dataset. For 

each target the search was carried out on a database containing only the decoys and the 

active compounds not included in the template set.  

 

ZINC is a free database of commercially-available compounds including around 8 

million of compounds.25 In this work, we used only the drug-like subset (subset #3, as 

defined in Zinc version 7), containing 2,066,906 “drug like” compounds, as an example 

of a large compound database.  

 

GRIND 

All the GRIND computed in this work correspond to the next generation (GRIND-2) 

of alignment-independent descriptors, developed around the idea of GRIND7 but 

including some major improvements, like the use of AMANDA,9 a novel MIF 

discretization algorithm which offers several advantages over the original GRIND 
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algorithm in terms of speed of calculation and quality of the hot spots extracted. 

However, for the sake of simplicity, they will be mentioned in the manuscript as 

GRIND and not as GRIND-2. These new descriptors are more suitable than the original 

GRIND for VS applications, since they can be obtained for series containing highly 

structurally dissimilar compounds without any manual adjustment of the algorithm and 

are much faster to compute. In this work, the GRIND-2 were obtained as implemented 

in program Pentacle,26 using default settings (DRY, O, N1 and TIP probes, with 0.5Å 

grid step, dynamic parameterization, default AMANDA MIF discretization and default 

MACC2 with 0.8 smoothing window).  

 

PCA 

PCA is a multivariate analysis tool used for data supervision and dimensionality 

reduction. The method has been described elsewhere27 but basically it works by 

computing an approximated representation of the original data matrix X, in terms of the 

product of two matrices; the matrix of objects T (scores) and the matrix of variables P 

(loadings). In the matrix T, every object is represented by a few number of new 

variables (Principal Components, PC), which are a linear combination of the original 

variables, chosen to explain as much as possible the variance present in X. In this work, 

PCA was applied on large matrices of GRIND descriptors using in-house software 

written in ANSI-C, implementing the original NIPALS algorithm.27 In all applications, 

the X matrix was centered but not scaled. 

 

Assessing the performance 

The quality of the LBVS results obtained using diverse methods settings was 

quantified using standard metrics like ROC derived enrichment factor and, preferably, 



 9 

the BEDROC. A description of these metrics together with a detailed discussion which 

can be found in recent reviews,28 but they will be briefly described here. The enrichment 

factor (E)10 used in this work was obtained from ROC curves, by describing the 

percentage of area under the curve (AUC) that is over the random ROC (a diagonal 

line), calculated as indicated by eq. 1 

 

E = (AUC - AUCR) / (AUCT –AUCR)                                eq .1 

 

where AUC is the value of the area under the curve, AUCT is the maximum value of 

the area under the curve (corresponding to the result in which the n active compounds 

correspond to the first n compounds selected) and AUCR is the value of the area under 

the curve for a purely random identification (0.5 was used). All area values were 

normalized. According with this definition the E value will range between -1.0 and 1.0, 

the value of 0.0 corresponding to a random identification. This metric was reported here 

because is conceptually simple and fast to compute but has the disadvantage of being 

rather insensitive to the “early recognition” of active compounds. 

 

The BEDROC28 is a more sophisticated and reliable metric which emphasizes the 

early recognition of actives; a higher value is obtained when the actives are recovered 

early. The BEDROC is calculated using eq. 2 
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where n is the number of known active structures, N is the number of inactive 

structures, ri is the rank of the ith active structure, Ra is the ratio of active to inactive 

structures n/N. The coefficient α is a weighting factor which controls the weight 

assigned to the “early recognition”, and higher α values displace the region of 

importance towards the beginning of the ranked list. In the present work the α value was 

set to 32.2, according to the recommendations in.28 

 

Evaluating the similarity between different PCA spaces 

The present work aims to validate the equivalence of the LBVS results yielded by 

GRIND-PP obtained after the application of PCA to the whole database and those 

obtained by projecting the GRIND of the whole database on a pre-calculated PCA 

model. The metric proposed here is based on the assessment of the similarity between 

the lists of hits obtained in VS searches and therefore GRIND-PP spaces are considered 

equivalent if the application of LBVS yields the same results. The procedure for 

comparing the results obtained with settings A and B works as follows: two lists with 

the 20 first compounds (an arbitrary small number) were extracted and the percentage of 

common elements present in the topmost positions of both lists was computed. As an 

additional indicator of the list similarity, the order of extraction of the common 

elements in both lists was compared by using Spearman correlation coefficient, 

obtaining values that range between 1.0 if the order of the common elements is identical 

(including non-common elements for calculating the ranks) and -1.0 if they were 

extracted in reversed order. During the application of this evaluation procedure we 

found a small number of highly similar compounds with identical GRIND-PP values, 

corresponding to database duplicates or equivalent compounds (i.e. tautomers or 

enantiomers), the position of which within the list is arbitrary. In these cases and, in 
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order to avoid artifactual results, elements which appear twice in the list with identical 

GRIND-PP were removed from the analysis. Please notice that both kind of indexes 

must be considered together, and the A and B results can be considered similar only if 

the percentage of common elements in top-most positions is high and the value of the 

Spearman correlation coefficient is positive and close to 1. 

 

Here, and in order to obtain an exhaustive analysis, every single compound was used 

as a template in a separate LBVS run, so the calculated and the projected results were 

compared by using the aforementioned metrics averaged for all the compounds in the 

database. In these LBVS runs the following settings, identified as optimum in the 

previous tests, were used: 30 PC, minimum distance (the template is a single 

compound) and original scaling. 

 

Results and discussion 

 

Optimization of the method setting for LBVS  

As stated before, LBVS results will be used as a tool for investigating the ability of 

the GRIND-PP to describe molecular similarity with an emphasis on biologically 

relevant features. However, before it can be applied with this purpose, the methodology 

used for computing GRIND-PP must be optimized. It must be remarked that, even if the 

application of the GRIND-PP in VS is not new and some applications have been 

published, no systematic study has ever explored the influence of some parameters 

involved in their computation. In particular, it is important to understand the effect of 

the t-scores space dimensionality and of the t-scores scaling in the quality of the results 

obtained. Other parameters that might also affect the results in LBVS (but not in other 
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molecular similarity applications) are those related with the template selection (% 

templates and method used for select them) and the method used to handle multiple 

templates. In this study we run a large number of LBVS queries, in which the 

parameters were systematically changed according to a full factorial pattern. For each 

run, the quality of the results was evaluated using the E and BEDROC parameters 

(computed as described in the Methods Section) and finally the effect of every method’s 

settings on the quality was estimated using ANOVA. 

 

LBVS queries were carried out trying to simulate realistic conditions. The initial 

round of tests were run on WOMBAT (Word of Molecular BioAcTivity)16 using seven 

subsets of compounds with significant biological activity against known targets (see 

Table 1). Full details about the filtering of the database and the selection of the subsets 

were provided in the Methodology section. 

 

GRIND descriptors were computed for all the compounds in the WOMBAT dataset, 

obtaining 930 variables. Principal Component Analysis (PCA) was applied to this 

matrix, extracting an excess of 50 principal components (PC) which explained more 

than 85% of the variance. For every target, a small subset of the active compounds (of 

about 5% or 10% of the original size) was extracted and used as template structures. 

The choice of the templates was made trying to include representatives from the diverse 

structural class present in the set of active compounds, by using two different subset 

selection algorithms; the longest minimum distance (LMD)22 and the most descriptive 

compound (MDC).21 

 

The query run using this template set extracted compounds from the database 

according to their similarity with the templates in terms of Euclidean distances in the t-
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scores space. Since the template set contains more than one compound, this scoring 

distance can be computed as the minimum distance with any of the compounds in the 

template set or as the distance to the whole template set, represented by the centroid of 

all the compounds. Both options were tested in our study. In any case, compounds were 

selected according to distances, and therefore the scaling applied to the t-scores can be 

expected to have a large impact on the results. It has been previously hypothesized 8 that 

the use of the original PC scaling might produce unrealistic similarity scores due to the 

high degree of redundancy present in the GRIND descriptors. The application of a 

simple PC normalization (often called PC whitening29) will be able to remove this 

redundancy, and the Euclidean distances on the scaled scores will be equivalent to 

Mahalanobish distances. A more advanced alternative is to apply a scaling adjusted ad 

hoc for the series, using the following method: when the template set contains more 

than one compound, the PCj can be scaled by a factor which reflects the ratio of the 

dispersion within the template set and the overall dispersion in the database (eq. 3)  

 

Ratioj = SD j database / SD j templates      eq. 3 

 

From its definition, the ratio will be large for PC which discriminate well template-

like compounds from other compounds and therefore, when used as scaling factor, it 

will enhance the weight of such “good” PC in the computation of the distances. In the 

present study, the influence of the scaling in the quality of the LBVS results was tested 

by applying the three aforementioned scaling schemes to the PC: no-scaling, normalized 

and ratio. 
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The effect of the aforementioned parameters in the final quality of the results was 

tested by carrying out a systematic analysis in which the values of these parameters 

were set according to a full factorial experimental plan, summarized in Table 2, 

including a total of (2x2x2x3x2) LBVS queries for each of the seven targets listed in 

Table 1.  

 

The quality of the results was quantified using E and BEDROC (see Methods 

section). In general, the quality indexes exhibit a large variability. For the BEDROC 

values, the average value for all the targets was 0.32, but with a large SD of 0.21, 

stressing the importance of using appropriate method settings for obtaining good results. 

In order to extract objective conclusions the data was imported to SPSS 12.030 and 

analyzed using ANOVA, with BEDROC as dependent variable and assuming a model 

with main effects only. The effects obtained were listed in Table 3, including the 

optimum values for all the settings studied. 

 

The results show that the more important effect is the multiple templates handling 

method, followed in importance by the target set, the template selection method and the 

template set size. Remarkably, the effect of the PC scaling was not statistically 

significant and the number of PC ranked last in importance. 

 

In this study, the settings related with how the template set is built seem to be 

critically important, showing that the best results were obtained when the template set 

was large (10%) and when it was selected using the MDC algorithm. In both cases, the 

best results are obtained when the settings increase the chances of incorporating in the 

template set of representatives for all the chemotypes present in the active set. This is 

not surprising in a ligand-based method and can be explained by the structural richness 
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present in the WOMBAT database, in which the active sets often contain several highly 

dissimilar structures.  

 

The most statistically significant effect found in the study was the choice of method 

used to handle multiple templates; in all instances, the best results were obtained using 

the minimum distance scoring. This finding is consistent with previously reported 

results31 and it can be justified here by the presence of well defined structural families in 

all the sets of active compounds. Algorithms based on the centroid of a set of bioactive 

structures could be expected to perform better when the templates are not too 

structurally diverse. Besides, the use of the centroid can serve to base the similarity 

search in common structural features, not necessarily associated to a certain chemotype 

and present in all the members of the template set. The results from this kind of search 

can be more useful in terms of the originality of the compounds found, but in a study 

like the present (with active compounds belonging to defined chemotypes), there is a 

high chance that the compounds extracted were not recognized as active and therefore 

rank low in terms of BEDROC or E. 

 

With respect to the PC scaling method, contrarily to our expectation, the statistical 

analysis did not detect any significant relationship, thus indicating that no setting is 

producing consistently good results in all the runs. A detailed analysis shows that in 

most cases the best results were obtained with original scaling or ratio scaling, even if 

the differences in the BEDROC values obtained with the different methods were not 

large. It is remarkable that the results contradict our previous statement regarding the 

detrimental effect of the redundancy present in the original descriptors.  
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Also interesting, from a practical point of view is the effect of the number of PCs 

included in the search. In the analysis the best results were consistently obtained with 25 

PC, in contrast with previous applications of GRIND-PP where a much smaller number 

of PC was used; 3 scaled PC in10 and 2 unscaled PC in11, probably justifying the 

discrete quality of the results reported. Based on these results we decided to investigate 

the effect of the number of PC in more detail, widening the range of PC explored, and 

carrying out additional runs using from 5 to 50 PC in 5 PC intervals, and setting the rest 

of the parameters to their optimal values (MDC algorithm, 10%, minimum distance 

score and ratio scaling) for three selected targets (5-HT3, thrombin and HIV-1 P). The 

results are shown in Figure 1a, representing the BEDROC versus the number of PC, 

which indicate that the optimum BEDROC values were obtained with 25-30 PC. 

Probably the BEDROC depends from the percentage of X variance explained by a 

certain number of PC, more than from the number of PC and therefore, in order to make 

the results more general, the same quality indexes were represented versus the variance 

explained in Figure 1b. This graph shows that the optimum results were obtained when 

the GRIND-PP explain between 75% and 80% of the variance present in the original 

matrix. It should be noticed, also, that the addition of more PC does not increase 

indefinitely the quality of the results; there is an optimum dimensionality for every 

target. 

 

All the results obtained from this study can be used to define a set of optimum method 

settings. However, all the LBVS queries used to derive them were carried out in a single 

database and it would be sensible to check their general applicability by running 

additional queries on different databases. With this aim, our systematic study was 

extended by using the DUD database.23 Unlike WOMBAT, DUD was specifically 

developed to test the performance of structure-based VS methods (see Methods section 
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for details). For this study, the template sets were built using the same methodology 

described for the WOMBAT dataset and the LBVS queries were run on a database 

containing the rest of the active compounds plus the decoys defined for the 

corresponding target (see the Methods section for details). The name of the targets, the 

number of active compounds and the size of the template sets were detailed in Table 4.  

 

With respect to the method, some of the settings clearly identified as highly 

influential in the previous section (template selection method, and multiple template 

handling) were set fixed to their optimum values (MDC, and minimum distance). 

Conversely, the template sets size, the scaling and the number of PC was changed 

systematically, as summarized in Table 5, resulting in a full factorial design of 2x2x10 

runs per target. 

 

The results obtained in terms of BEDROC with the different settings for the 40 targets 

were analyzed using ANOVA, as described for the WOMBAT dataset. The statistical 

significance of the main effects, and the optimum values for each setting were shown in 

Table 6. 

The variability observed for the different targets was rather high and the differences 

are statistically significant. The highest BEDROC values were obtained for dhfr (0.92). 

As obtained for WOMBAT, the template set size is an important method setting and the 

best results were obtained with the largest value (10%), probably for the same reasons 

discussed above. The PC scaling method follows in importance. Here, the effect is 

statistically significant and the best results were clearly obtained with the original 

scaling, instead of the ratio scaling. One of the possible reasons explaining the 

differences observed in WOMBAT and DUD with respect to this effect is the much 

smaller size of the template sets used in DUD (see Tables 1 and 4). The ratio scaling 
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was based on the dispersion of the PP values for the compounds belonging to the 

template set, and when this set is very short the scaling does not seem to behave as well 

as for larger template sets. 

 

With respect to the number of PC, the effect observed was more statistically 

significant than the effect observed in WOMBAT, probably because here the 

experiments covered from the beginning a wider range of PC (from 5 to 50 in 5 PC 

intervals). Remarkably, there is also an optimum dimensionality and the quality, in 

terms of BEDROC, does not grow linearly with the number of PC, reaching a maximum 

between 20 to 30 PC. The relationship between the performance and the dimensionality 

was also studied using the percentage of X variance explained, as reported for 

WOMBAT, finding that the optimum values were obtained when the GRIND-PP 

explains between 70% and 80% of the original matrix variance. The results for the 10 

targets with the highest BEDROC were represented in Figure 2. 

 

These results further confirm the importance of choosing the right number of PC for 

obtaining good results as well as the relative stability of the optimum dimensionality. In 

general, for the datasets explored the optimum dimensionality is around 20 to 30 PC or 

the number required to explain between 70 to 80% of the X variance. Even if the 

optimum value can vary for different databases and queries, any value within this range 

guarantees a reasonable method performance, unlike the very short values used in prior 

GRIND-PP applications. 

 

GRIND-PP performance test 
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The results obtained with optimum settings for the WOMBAT and DUD datasets, 

reported in the previous section, provided a first quantification of the GRIND-PP 

performance in LBVS applications (see Table 7 and Figure 3).  

 

In WOMBAT, the BEDROC values rank from 0.41 for PKC to 0.81 for AT1, with an 

average value of 0.56. According with the meaning of the BEDROC scores, the method 

behaves well in terms of its early recognition capabilities, being able to extract a 

significant percentage of the active compounds in the top 5% of the hits. 

 

In DUD, the average BEDROC value obtained for all the targets is very similar 

(0.55), thus allowing to draw similar conclusions even if the values exhibit a wider 

span, from 0.17 (cox1) to 0.92 (dhfr). This result is remarkable if we take into account 

the high content of decoy structures in this latter database, in particular for a ligand-

based VS method. In both cases, the method compares well with other state-of-the-art 

methods,32 even if the differences in the quality testing methodology do not allow a 

direct numerical comparison of the metrics. 

 

In any case, as stated before, the aim of the present work is not to carry out a 

comparative analysis of the GRIND-PP with other methods in LBVS, but to evaluate in 

general the suitability of the GRIND-PP for representing molecular similarity. It is our 

belief that such analysis should not be limited to compare ROC curves and enrichment 

values but must also incorporate the potentialities of this 3D-based similarity method to 

extract original structures, and include a detailed analysis of the topmost structures 

obtained using diverse methods. This study is currently in progress in our group and 

will be submitted in due course. 
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Stability of the GRIND-PP spaces. 

The applicability GRIND-PP in fields like LBVS is not related only with the quality 

of the results obtained and depends also of technological and practical issues. In this 

respect, it is important to consider if these descriptors can be used for characterizing 

extremely large databases. Today, databases containing several million compounds are 

not uncommon, particularly in corporate environments. Most PCA software is not ready 

to handle matrices with so many objects, and even if special software is applied, the 

process would be slow and not suitable for being applied after every database update. 

However, in most cases the addition of a few new compounds to a large X matrix is 

unlikely to change the results of the PCA, provide that the new compounds do not 

contain extremely different structural or physicochemical features. Indeed, in our 

experience, the PCA t-scores spaces obtained for large collections of compounds are 

relatively stable and the values of the t-scores assigned to the new compounds after the 

PCA are very similar to the projected t-scores (Tp) which could be obtained very 

simply, as described by eq. 4. 

 

Tp= X.P         eq. 4 

 

where Tp are the projected t-scores, X is the matrix containing the (centered) 

descriptors for the new compounds and P the p-loadings of a pre-computed PCA model. 

 

This observation suggests that it would be possible to build t-scores spaces by 

carrying out PCA on a “core dataset” of compounds and then expanding the space 

simply by applying eq. 4 to new compounds, without the need of recomputing the PCA 

for the whole database. A similar approach was used with success by Oprea for 
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obtaining a “chemspace map” (ChemGPS) with diverse applications in the field of drug 

discovery.14 

 

As a part of the present study, we decided to validate the suitability of the projected t-

scores for replacing PCA computed t-scores in LBVS applications. A numerical 

comparison of the t-scores would not be useful, since their equivalence for 

characterizing molecular similarity depends only on how well the relative distances 

between the compounds is preserved. For this reason, the test was based on carrying out 

LBVS using both kinds of GRIND-PP and comparing the results obtained, with an 

special emphasis on the top-most compounds.  

 

The first test was run on a large subset of the Zinc database. The objective was to test 

the similarity of the results obtained with original GRIND-PP computed after a PCA on 

the whole set and GRIND-PP obtained by projecting the GRIND of core databases of 

diverse size. The procedure started by selecting randomly 100,000 compounds from the 

Zinc database (see Method section for details), computing GRIND and obtaining 

regular GRIND-PP (t-original) for them. Then, 5 subsets of 1000, 5000, 10000, 25000 

and 50000 compounds were randomly selected, and 5 different core PCA models were 

obtained. These were used to project the GRIND of the 100,000 compound set, thus 

obtaining five projected GRIND-PP (t-1K, t-5K, t-10K, t-25K and t-50K). The potential 

equivalence of such t-spaces for being applied in LBVS applications was thoroughly 

tested by carrying out a VS query for every compound in the dataset, in which this 

compound was used as template and a ranked list of the 20 more similar compounds 

was extracted (see Method sections for details). For every compound, the lists obtained 

in the projected t-spaces were compared with those obtained in t-original and their 
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similarity was quantified using different indexes, described in detail in the Method 

section.  

 

Table 8 shows that the results obtained with the projected t-scores are, in general, 

rather similar to those obtained in t-original. Even for the smaller subset (t-1K), the first 

hit is found as first or second hit in 95% of cases. The comparison of the results 

obtained projecting in t-10K (10% of the original size) shows that the first hit is 

identical in both lists in 92% of cases and first or second in a 99% of cases. The high 

percentages of common hits and the large Spearman correlation coefficient obtained 

also indicates that the correspondence is rather general for all the list members and does 

not affect only the topmost. All in all, these results confirm our prior experience, and 

avail the use of projected GRIND-PP for LBVS. 

 

Against this conclusion it can be argued that the subsets were selected randomly from 

the database and therefore they can be considered random samples of the same chemical 

space. In pharmaceutical industry, compound databases are often enriched with batches 

of compounds belonging to novel projects and therefore the chemical space represented 

by the database will diverge more and more from the original one from which core 

datasets were extracted. In order to test this scenario a second test was run, in which the 

whole WOMBAT database was projected using subsets of 50,000 and 100,000 

compounds extracted from the Zinc database. Figure 4 represents the WOMBAT 

database using the first and second PC of the t-original (4a) and the projected t-5K (4b). 

In both plots, the shape of the database is rather similar, but the projected t-scores 

appear slightly rotated with respect to the original. The effect of these differences in the 

relative distances between the compounds cannot be appreciated by visual inspection of 

the plots and require a comparison of the LBVS results. 
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The procedure used for the comparison of the original and the projected t-scores was 

identical to the method used in the previous run. The results were shown in Table 8, and 

are clearly worse than those obtained for compounds of the same database. However, 

even for the smaller dataset tested (50,000 compounds), the first hit is found as first or 

second hit in 93% of the cases, the mean percentage of common hits is over 83% and 

the Spearman correlation coefficient is rather high. In our opinion, the results indicate 

that the projected t-scores spaces are reasonably stable, and the projection methodology 

can be safely used as a fast method to update GRIND-PP databases, in most cases. 

However, the addition of novel compounds representing diverse chemical spaces can 

deteriorate progressively the quality of the values obtained and therefore, the core 

dataset must be updated from time to time before it wears out. 

 

Conclusions 

The results obtained confirm that the GRIND-PP are promising molecular descriptors 

for applications requiring a biologically relevant representation of compound similarity. 

The application of PCA compacts the original GRIND into a few number (20 to 30) of 

information rich PC, easy to store, and to apply in many computational methods. The 

study shows that optimum results in some typical applications can be obtained with a 

limited number of PC, which can be easily assessed by the percentage of variance 

explained (around 70-80%) and does not grow indefinitely. For LBVS applications the 

best results were obtained using GRIND-PP without any scaling or with an ad-hoc ratio 

scaling, contradicting previous statements recommending the application of 

normalization. These conclusions can probably be extended to other t-scores descriptors 

derived from other kinds of molecular descriptors. 
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With respect to the suitability of the GRIND-PP for being used in large collection of 

compounds, the results obtained shown that the PP can be obtained in a simple and fast 

way from projection on a core PCA model obtained for a small set of representative 

compounds. The properties of the projected descriptors were thoroughly compared with 

the PCA derived ones, in terms of the results obtained with both in VS applications. In 

general, the results support the use of the projected PP in practical applications, 

provided that the core PCA model was obtained using a set with enough compounds 

(around 10% or the full database size), which are reasonably similar to the projected 

compounds. 

 

Most of the above investigations were carried out using LBVS, as a reference 

technique requiring an accurate description of the compound similarity. The testing 

allowed a fine tuning of the method parameters for obtaining good results in terms of 

high BEDROC and provided a first evaluation of the performance of the method. 

However, the true relevance of these results to assess the performance of GRIND-PP in 

LBVS has to be considered with care, because the standard quality indexes used here do 

not reflect the originality of the structures extracted and are biased by the fact that the 

active compounds often belong to the same chemotype than the templates. Therefore, 

the results reported here reflect mainly the ability of the GRIND-PP to describe generic 

molecular similarity, including non-biologically relevant chemotype features, which 

defines the bottom-line of the descriptors quality. Even under these non-favorable 

testing conditions, the t-scores space performed well, obtaining results which can be 

compared with other state-of-the-art methods. A more complete study, specifically 
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aimed to validate the usefulness of the proposed methodology for obtaining original hits 

is now in progress and the results will be reported in due term. 

 

Future developments of this work will involve the testing and validation of GRIND-

PP for diverse purposes. Among them, structure masking33 appears like a highly 

interesting application, for which the GRIND-PP have unique properties. Good masking 

descriptors must encode chemical structure into biologically relevant descriptors, from 

which it would not be possible to guess the original structure. In this respect the 

GRIND-PP are not only highly relevant for representing biological properties, the 

peculiarity of being obtained using a PCA projection makes the resulting t-scores 

impossible to revert into the original GRIND without the p-loadings of the core PCA 

dataset. Therefore, as far as this information is kept confidential the t-scores cannot be 

reverse engineered to guess the compound structure. It must be emphasized that this is 

not only a technological barrier; during the projection only a certain percentage of the 

GRIND is retained (between 70% and 80% for optimum results), while the remaining 

information is irreversibly lost, thus making a backprojection virtually impossible. 

 

All in all, the results of this work provide very useful information regarding the 

application of GRIND-PP for the description of molecular similarity and demonstrate 

that they produce results at least comparable with other state-of-the art methods in 

LBVS. This is a first step before they can be applied for drug design tasks requiring an 

accurate and biologically relevant description of the molecular similarity and exploiting 

the unique properties of these descriptors.  

 

Acknowledgments 



 26 

We thank Molecular Discovery Ltd. for supporting this research, including a grant to 

one of us (AD). The project also received partial founding from the Spanish Ministerio 

de Educación y Ciencia (project SAF2005-08025-C03) and the Instituto de Salud Carlos 

III (Red HERACLES RD06/0009). We also thank Tudor Oprea for kindly providing us 

the WOMBAT database. 

 



 27 

Figure 1. BEDROC values obtained for a few representative WOMBAT targets (HIV-1 

P, thrombin, 5-HT3) plotted against the number of PC (a) and the X variance explained 

(b). 

Figure 2. BEDROC values obtained for 10 representative DUD targets (cox2, dhfr, 

gart, hsp90, me, p38, pnp, ppar_gamma, thrombing and trypsin) plotted against the 

number of PC (a) and the percentage of X variance explained (b). 

Figure 3. Values of BEDROC obtained for diverse targets in database WOMBAT (top) 

and DUD (bottom). See text for details. 

Figure 4. Scatterplot representing the WOMBAT databases using the first and second 

PC, obtained (a) from a complete PCA and (b) as a projection on model obtained with a 

core database of 50,000 Zinc compounds.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

Table 1. Targets studied in WOMBAT database. 

target name num. actives num. templates (10%) num. templates (5%) 

5-HT3 1166 117 56 

5-HT1A 3501 351 176 

D2 3350 335 168 

AT1 894 90 45 

thrombin 850 85 43 

HIV-1 P 184 19 10 

PKC 166 17 9 

 

 

Table 2. Number of levels and values tested in the full factorial experimental plan used 

in WOMBAT. 

Variable num. levels values 

template selection method 2 MDC, LMD 

template set size 2 5%, 10% 

multiple template handling 2 minimum distance, centroid 

PC scaling 3 no scaling, normalize, ratio 

PC number 2 10, 25 
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Table 3. Statistical significance of the main effects and best value settings. 

Variable F p best value 

target 201.6 <0.001 AT1 

template selection method 154.7 <0.001 MDC 

template set size 32.4 <0.001 10% 

multiple template handling 698.7 <0.001 minimum 

PC scaling 1.2 0.294* ratio* 

PC number 10.0 0.002 25PC 

* non-significant effect at 95% CI 

 

 

Table 4. Targets studied in DUD database. 

name num. actives num. templates (5%) num. templates (10%) 

ace 49 3 5 

ache 107 6 12 

ada 39 2 4 

alr2 26 2 3 

ampc 21 2 3 

ar 79 4 8 

cdk2 72 4 8 

comt 11 1 2 

cox1 25 2 3 

cox2 426 22 43 

dhfr 410 21 41 

egfr 475 24 48 

er_agonist 67 4 7 

er_antagonist 39 2 4 
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fgfr1 120 6 12 

fxa 161 8 15 

gart 40 2 4 

gpb 52 3 6 

gr 78 4 8 

hivpr 62 4 7 

hivrt 43 3 5 

hmga 35 2 4 

hsp90 37 2 4 

inha 86 5 9 

mr 15 1 2 

na 49 3 5 

p38 454 23 46 

parp 35 2 4 

pde5 88 5 9 

pdgfrb 170 8 17 

pnp 50 3 5 

ppar_gamma 85 5 9 

pr 27 2 3 

rxr_alpha 20 1 2 

sahh 33 2 4 

src 159 8 16 

thrombin 72 4 8 

tk 22 2 3 

trypsin 49 3 5 

vegfr2 88 5 9 
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Table 5. Number of levels and values tested in the full factorial experimental plan used 

in DUD. 

Variable num. val values 

template set size 2 5%, 10% 

PC scaling 2 no scaling, ratio 

PC number 10 5 to 50, in 5 unit steps 

 

Table 6. Statistical significance of the main effects and best values settings. 

Variable F p best value 

target 171.3     <0.001 dhfr 

template set size 533.0 <0.001 10 

PC scaling 283.9 <0.001 original 

PC number 18.0 <0.001 30 
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Table 7. Summary of the results obtained with the best method settings. 

  WOMBAT DUD 

E min. 0.54 0.02 

max. 0.95 0.92 

average 0.74 0.55 

median 0.75 0.58 

sd. 0.13 0.24 

BEDROC min. 0.41 0.17 

max. 0.81 0.92 

average 0.56 0.55 

median 0.55 0.54 

sd. 0.14 0.17 

 

 

Table 8. Similarity between the results obtained with complete t-scores and projected t-

scores obtained from core sets of diverse sizes. 

database core size Spearman %common %first %first-sec. 

Zinc 1,000 0.819 85.5 83.8 94.9 

5,000 0.917 91.6 89.4 97.7 

10,000 0.946 93.8 91.9 98.5 

25,000 0.976 96.4 95.3 99.5 

50,000 0.986 97.5 96.8 99.8 

WOMBAT 50,000 0.806 83.2 83.5 92.7 

100,000 0.823 84.5 84.9 93.6 
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