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Abstract
4D-QSAR and 3D-pharmacophore models were built and investigated for the cytotoxicity using a
training set of 25 lamellarins against human hormone dependent T47D breast cancer cells. Receptor-
independent (RI) 4D-QSAR models were first constructed from the exploration of eight possible
receptor binding alignments for the entire training set. Since the training set is small (25 compounds),
the generality of the 4D-QSAR paradigm was then exploited to devise a strategy to maximize the
extraction of binding information from the training set, and to also permit virtual screening of diverse
lamellarin chemistry. 4D-QSAR models were sought for only six of the most potent lamellarins of
the training set as well as another subset composed of lamellarins with constrained ranges in
molecular weight and lipophilicty. This overall modeling strategy has permitted maximizing 3D-
pharmacophore information from this small set of structurally complex lamellarins that can be used
to drive future analog synthesis and the selection of alternate scaffolds. Overall, it was found that
formation of an intermolecular hydrogen bond and hydrophobic interactions for substituents on the
E ring most modulate the cytotoxicity against T47D breast cancer cells. Hydrophobic substitutions
on the F-ring can also enhance cytotoxic potency. A complementary high throughput virtual screen
to the 3D-pharmacophore models, a 4D-fingerprint QSAR model, was constructed using absolute
molecular similarity. This 4D-fingerprint virtual high throughput screen permits a larger range of
chemistry diversity to be assayed than the 4D-QSAR models. The optimized 4D-QSAR 3D-
pharmacophore model has a LOO cross-correlation value of xv-r2 = 0.947, while the optimized 4D-
fingerprint virtual screening model has a value of xv-r2 = 0.719. This work reveals that it is possible
to develop significant QSAR, 3D-pharmacophore and virtual screening models for a small set of
lamellarins showing cytotoxic behavior in breast cancer screens that can guide future drug
development based upon lamellarin chemistry.
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INTRODUCTION
In 1985 the first four lamellarins, A-D were isolated from the marine prosobranch mollusk,
Lamellaria sp. and their structures determined by an X-ray crystallographic and 1H-NMR
study.1 A family of more than 30 lamellarins which consist of three structural groups such as
an unsaturated D-ring fused (Figure 1(a)), a saturated D-ring fused (Figure 1(b)), and an
unfused central pyrrole ring group (Figure 1(c)) have been isolated and investigated in terms
of their biological activity profiles.2,3 These compounds, especially the fused central pyrrole
ring lamellarins, have been found to be cytotoxic to a wide range of cancer cell lines.
Lamellarins C and U (Tables 1 and 2) demonstrate potent cytotoxicity against 10 human tumor
cell lines (A549, HCT-116, LOX IMVI, MALME-3M, MCF-7, MOLT-4, OVCAR-3, PC-3,
SF-295, UO-31)3 lamellarin D shows potent cytotoxic activity against human prostate cancer
cells (DU-145, LNCaP) and leukemia cells (K562),3 and lamellarins I, K, and L exhibit
significant cytotoxicity against P388 and A549 cultured cancer cell lines.3 Additionally,
lamellarin I and D have an effective cytotoxic activity against multidrug resistant reversal
(MDR) cell lines by inhibiting P-glycoprotein (P-GP) mediated drug efflux.4,5 Some
lamellarins have also been demonstrated to act on cancer cell mitochondria to induce apoptosis.
6,7 Moreover, lamellarin D is an effective stabilizer of human topoisomerase I-DNA covalent
complexes, and, thus, capable of stimulating DNA cleavage.2,8,9 Based on its biological
actions, lamellarin D was identified as a novel lead candidate by Bailly and coworkers.2,3,6–
11

The first reported study on structure activity relationship (SAR) of lamellarin was done by
Ishibashi et al. in 2002.12 It was reported that the hydroxyl groups at position C-8 and C-20
were important for cytotoxicity against a HeLa cell line, while the hydroxyl group at C-14 and
two methoxy groups at C-13 and C-21 were not essential for activity. The C5-C6 double bond
in the D-ring, or planarity of the chromophore, is necessary for activity.5,8,12 In more recent
findings, Chittchang et al. not only substantiated the significant contributions of the C5-C6
olefin moiety, as well as the hydroxyl groups at C8 and C20, but also demonstrated the
importance of the C7-hydroxy group for the first time.13 These findings were also substantiated
by carrying out three-dimensional quantitative structure-activity relationship (3D-QSAR)
analyses this past year.14

Treatment of the lamellarins data set is representative of a class of real-world problems in drug
discovery; namely how to optimize the extraction of SAR information for, in turn, optimizing
lead development efforts from a small number of structurally complex, hard to synthesize
compounds that have been tested and observed to exhibit a wide-range of endpoint activity.
Modeling such small data sets can be criticized on the basis of too little data to generate reliable,
and useful, results to drive lead optimization. Yet doing nothing with the information resident
in such data sets obviously contributes nothing to streamlining lead development efforts. A
key to resolving this dilemma may reside in the type and level of sophistication of the modeling
employed. A high-level modeling approach wherein detailed structural, thermodynamic and
electronic information about each complex compound of the data set may negate some of the
drawbacks to the small size of the data set. In a sense, ‘quality’ is used to compensate for
‘quantity’.

Multiple complementary applications of the 4D-QSAR paradigm15 may be a good way to
extend our knowledge and understanding the structure-activity relationships of lamellarins
using this ‘quality’ for ‘quantity’ argument. The fourth ‘dimension’ of the 4D-QSAR paradigm
is ensemble sampling the spatial features of the members of a training set.15 This sampling
process, in turn, allows the construction of optimized dynamic spatial QSAR models, in the
form of 3D pharmacophores, which are dependent on conformation, alignment, and
pharmacophore-grouping.16 This method has been proven both useful and reliable for the
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construction of quantitative 3D pharmacophore models, especially for sets of flexible ligand
analogues when the geometry of the corresponding receptor is not known.15–17

Complementary to building 4D-QSAR models that embed 3D-pharmacophores is the
construction of high-throughput 4D-fingerprint models for virtual screening. The 4D-
fingerprints can be derived independent of any molecular alignment, and are based upon an
inductive approach to establish 4D molecular similarity measures across any collection of
chemical compounds.18 The 4D-QSAR paradigm has been successfully applied for a variety
of chemical classes and biological endpoints including glucose analogs, flavonoid analogs,
propofol analogs, the AHPBA and THP inhibitors of HIV-1 protease,18 human serum albumin
(HSA),19,20 a local lymph node assay (LLNA) data base,21,22 skin penetration enhancers,23

and HIV-1 integrase inhibitors.24

The search for structure-activity relationships and/or pharmacophores for natural, and
synthetic, lamellarins screened for cytotoxic activity against 11 cancer cell lines is on-going.
However, the prominent activities observed in a few of the lamellarins screened against human
hormone-dependent T47D breast cancer cells seemed to us to be best explored, and the
corresponding SAR delineated and exploited, by using the 4D-QSAR methodology for the
reasons cited above.

MATERIALS AND METHODS
Lamellarin data set and cytotoxic activity

Twenty six lamellarins were analyzed in this work. The chemical structures of all 26 lamellarins
are given in Table 1 and 2. These compounds were synthesized and purified by Ploypradith et
al.25 The cytotoxic activity (−logIC50) against human hormone-dependent T47D breast cancer
cells have been recently reported and are included as parts of Tables 1 and 2.13

Receptor-independent (RI) 4D-QSAR analysis applied to the lamellarin data set
Since the geometry of the receptor is not available in this study, the receptor-independent form
of 4D-QSAR analysis, referred to as RI-4D-QSAR, has been employed. The ten operational
steps in RI-4D-QSAR have been presented in detail previously,15 and also given in the 4D-
QSAR software version 3.0 User Guide.26 Therefore, these 10 steps of RI-4D-QSAR analysis
are only summarized here as follows:

Step 1—An initial 3D structure of each lamellarin was constructed in the neutral form using
the HyperChem 7.5 software.27 Partial atomic charges were computed using the semiempirical
AM1 method. Each structure was then minimized with no geometric constraint. These energy-
minimized structures were used as the initial structures in the conformational ensemble
sampling of step 3.

Step 2—Atoms of each molecule were classified into seven types of interaction
pharmacophore elements (IPEs). Each type is represented by different number code from 0 to
6 as defined in Table 3.

Step 3—Molecular dynamics simulations (MDS) was used to sample the conformational
states available to each analogue, and to generate its corresponding conformational ensemble
profile (CEP). The MDSs were done using the MOLSIM package28 and MM2 force field.29,
30 The temperature for the MDS is set at 300 K with a simulation sampling time of 40 ps with
intervals of 0.001 ps for a total sampling of 40000 conformations of each lamellarin compound.
The atomic coordinates of each conformation and its intramolecular energy sampled during
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the MDS were recorded every 0.02 ps for a total of 2000 “frames”, or steps, in constructing
the CEP of each compound.

Step 4—The set of three-ordered atoms in trial alignments are defined in Table 4. In this study
eight alignments were explored across the overall lamellarin core structure.

Step 5—Each conformation of a compound from its CEP was aligned in the grid cell lattice
using the invariant coordinates of the three-ordered atom alignment. In this study, the size of
the cubic grid cells of the lattice are 1 Å3, and the overall grid cell lattice size was chosen to
fully enclose each compound of the training set. The normalized occupancy of each grid cell
by each IPE atom type over the CEP for a given alignment forms a unique set of QSAR
descriptors referred to as grid cell occupancy descriptors, GCODs. The GCOD descriptors
were computed, and used as the trial descriptor pool in 4D-QSAR analysis. Non-GCOD
descriptors of the training set compounds can also be included in the trial basis set (descriptor
pool). In this particular study the logarithm of the 1-octanol/water partition coefficient (log
P) and the compound’s molecular weight (MW) were selectively added to the trial basis set
descriptors in some of the model building studies. The log P and MW values the training set
compounds are reported in Table 1.

Step 6—A 4D-QSAR analysis generates an enormous number of trial QSAR descriptors,
GCODs, because of the large number of grid cells and the seven IPEs. Partial least squares
(PLS) regression analysis31 is used to perform a data reduction analysis between the observed
dependent variable measures and the corresponding set of GCOD values.

Step 7—The most highly weighted PLS GCOD descriptors (currently the top 200), generated
in step 6, are used to form the trial descriptor pool for genetic algorithm (GA) model
optimization. The specific GA currently used in the 4D-QSAR software is modification of the
genetic function approximation (GFA).32 The GFA optimization is initiated using N (currently
300) randomly generated 4D-QSAR models. Mutation probability over the crossover
optimization cycle is set at 10%. The smoothing factor, a GFA operations variable, controls
the number of independent variables in the QSAR models, is varied in order to determine the
optimal number of descriptors for the 4D-QSAR models. The diagnostic measures used to
analyze the resultant 4D-QSAR models generated by the GFA include (i) descriptor usage as
a function of crossover operation, (ii) linear cross correlation among descriptors and/or
dependent variables (biological activity measures), (iii) number of significant and independent
4D-QSAR models, and (iv) indices of model significance including the correlation coefficient,
r2, leave one-out, LOO, cross-validation correlation coefficient, xv-r2, and Friedman’s lack of
fit (LOF).33 In this particular 4D-QSAR application, the alignment similarity comparisons
were limited to models having same number GCODs.

Step 8—Steps 4–7 are repeated until all trial alignments are included in the 4D-QSAR
analyses.

Step 9—The inspection and evaluation of the population of models are obtained from the set
of trial alignments in this step. The goal of this step is to identify the best and distinct set of
4D-QSAR models which is referred to as the manifold model of the analysis.

Step 10—The “active” conformation of each compound is hypothesized at this step. This
conformer is achieved by identifying all conformer states sampled for each compound that are
within ΔE of the global minimum energy conformation of the CEP. Currently, ΔE is set at 2
kcal/mol. Each member of the resultant set of energy-filtered conformations is then
individually evaluated in the best 4D-QSAR model. The conformation within 2 kcal/mol of
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the apparent global minimum that predicts the highest activity in the best 4D-QSAR model is
defined as the active conformation.

4D-fingerprint virtual screening analysis applied to the lamellarin data set
The theory and corresponding methodology of the universal 4D-fingerprints for constructing
the main distance-dependent matrix (MDDM) and computing corresponding eigenvalues for
each matrix, using 4D molecular similarity (MS), have been presented in detail in previous
work.18,34 The types of atoms composing a molecule are currently defined as the IPEs shown
in Table 3. A unique MDDM is constructed for each of the eight distinct and identical IPE
pairs. The elements of the MDDM are defined as following:

(1)

The “universal constant (ν)” in eq. 1, which is equal to 0.25,34 has been selected such that the
difference in the sum of eigenvalues for any two arbitrary compounds with the same number,
n, of a particular IPE type, m, is maximized. The term 〈dij〉 is average distance between the
atom pair ij of IPE type u and v.

(2)

where p(k) refer to the thermodynamic probability of the kth conformer state sampled in the
assessment of conformational flexibility, and dij(k) is the corresponding distance between atom
pair i and j of IPE types u and v for the kth conformer state. Then, similarity eigenvalues are
derived by the diagonalization of the MDDM. For same-term IPE pairs, such as u = v, the
MDDM are square upper/lower triangular. These matrices can be directly diagonalized. The
resulting eigenvalues determined from the MDDM are normalized and ranked in numerically
descending order in their eigenvector representation. The nth normalized eigenvalue for IPE
type m of a compound α,∈mn(α), can be obtained by scaling the non-normalized eigenvalue
∈mn′ (α) relative to the rank of its MDDM.

(3)

Determination of eigenvalues of the MDDM for u ≠ v, the so-called cross-terms for IPE pairs
that are not the same, requires a different strategy since these matrices may, or may not, be
square. In the case of rectangular MDDM (u ≠ v), the following square MDDM are constructed

(4)

(5)

For MDDM(u,u) and MDDM(v,v) have the same rank and trace, both have the same set of
eigenvalues. Hence, for each pair of IPE (u ≠ v)
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(6)

According to all possible combinations of the eight IPE types, there are 36 possible molecular
similarity eigenvectors from the MDDM for each compound α. The similarity eigenvectors
have been calculated for the set of compounds, the estimation of molecular similarity for a pair
of compounds α and β begins with a definition for molecular dissimilarity, given by

(7)

where i = ith eigenvalue in the corresponding eigenvetor of a specific IPE pair. Molecular
similarity is then defined as

(8)

where ϕ = |rank(α) − rank(β)|/(rank(α) + rank(β). The rank of the matrices is essentially the
number of atoms of a specific IPE type present. The ϕ term in eq. 8 serves to reincorporate
molecular size information. Similar to the measure for dissimilarity, the similarity measure is
a value between 1 and 0, where a value closer to 1 refers to compounds that are more similar,
and closer to 0 refers to compounds that are more dissimilar.

The descriptor set for α consists of all of the eigenvalues of all of the eigenvectors derived from
all of the MDDM for compound α. In this work, a threshold cutoff value which equal to 0.002
is applied, and those normalized eigenvalues below the threshold value are disregarded.

The maximum number of significant eigenvalues specific to that data set for a particular
compound and a particular IPE type, m, is determined, ∈m,max. All the eigenvectors for IPE
type, m, for each molecule across lamellarin data set are then assigned ∈m,max eigenvalues for
IPE type m. Eigenvectors that otherwise contain less than ∈m,max elements have the “missing”
eigenvalues set to zero.

The total set of descriptors, ∈total, for a compound in the data set will be the sum of the 36
eigenvalues of ∈m,max length which can be a large number for the data set in this work.

Finally, the sets of 4D-fingerprints across each of the molecules of the training set form the
trial descriptor pool to build the 4D fingerprint virtual screens. The building procedure of these
virtual screens is identical to that employed in constructing the RI-4D-QSAR models. That is,
steps 6 through 9 given above for the RI-4D-QSAR methodology are used.

RESULTS AND DISCUSSION
Receptor-independent (RI)-4D-QSAR analysis

Optimized RI-4D-QSAR models were constructed for each of the eight trial alignments listed
in Table 4. Alignments 1, 2, 4, and 7 contain atoms from two rings (A and B), (B and C), (C
and D), and (C and F), respectively. Alignment 5 and 6 only contain atoms from ring E and
ring F, respectively. Only two alignments, 3 and 8, distribute the three-ordered atoms across
three rings namely rings A, B, and C for alignment 3 and rings A, E, and F for alignment 8.
The r2 and xv-r2 values from the best corresponding five-term RI-4D-QSAR models of each
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alignment are given in Table 4. Five terms in a model corresponds to the largest model that
can be built by allowing at least 5 observations [compounds] per model-term for the training
set. The optimized 5-term model represents an initial upper-bound exploration of the type, and
corresponding quality, of an RI-4D-QSAR model that can be expected from the structure-
activity data set. Alignment 1 yields the poorest fits with r2 = 0.964 and xv-r2 = 0.929. The
differences among r2 and xv-r2 of the remaining alignments are quite small, or the alignment
of lamellarin is not significant to the 4D-QSAR model. However, based on the greater r2 (0.999)
and xv-r2 (0.998), alignment 3 appears to be the best alignment for 4D-QSAR analysis of
lamellarin data set.

The optimum number of descriptors in a model is determined by monitoring when xv-r2

becomes effectively constant, or decreases, with increasing model size. Figure 2 is a plot of
the number of descriptor terms in an optimized alignment 3 model versus the corresponding
r2 and xv-r2. An inspection of Figure 2 reveals that the maximum number of descriptor terms
in the RI-4D-QSAR model providing additional fit to the training set data is three. There is no
meaningfully enhanced model fitting by including more than three descriptor terms. Thus, the
optimized RI-4D-QSAR model for the 25 lamellarins generated from alignment 3 is given by
eq. 9. Among top-ten 4D-QSAR models obtained from alignment 3, eq 9 (or model 3) is the
best 4D-QSAR model since it has the highest xv-r2, and all other top-ten models are basically
the same as model 3. This commonality to model 3 by the other top-ten models can be inferred
from Table 5 by the high cross-correlations of their residuals of fit to those of eq. 9;

(9)

GCi (x, y, z, X) is the ith GCOD descriptor term located at (x, y, z) in the reference grid cell and
alignment space, and having the X type IPE as defined in Table 3. Figure 3 is a plot of the
predicted, using eq. 9, versus actual −logIC50 values. All of the predicted −logIC50 values are
within ± 1 log unit of the corresponding observed values, and there are no outliers.

Two GCODS (GC1 and GC3) of eq. 9 correspond to pharmacophore sites of nonpolar atom
occupancy, both of which increase potency. These two GCODS both have positive regression
coefficients with values of 16.90 and 64.62, respectively. GCOD GC2, having an ‘any’ IPE
type, has a negative regression coefficient with value of −56.33. Consequently occupancy of
the GC2 site by any type of atom will lead to a decrease in the potency of anti-breast cancer
activity of the corresponding lamellarin. From an analysis of eq. 9 it is found that the any IPE
type at (−3, 4, −5) has about three times more of a negative effect upon −logIC50 than the
positive effect of the nonpolar IPE type at (−5, 6, 2), and about the same, but opposite effect
on −logIC50 as the nonpolar IPE type at (−1, 5, 0). None of the best models from GFA model
optimization contain GCOD descriptors which deal with specific atom-atom interactions like
hydrogen bonding.

In order to further search for pharmacophore sites which are specifically associated with
lamellarins exhibiting high cytotoxic activity, an additional RI-4D-QSAR analysis was carried
out. The training set of this study was limited to the six lamellarins (D, M, N, X, ε, and
Dehydrolamellarin J of Table 2) that have the highest −logIC50 values, and are not redundant
in their structural features. The RI-4D-QSAR models were constructed and optimized by using
the same methodology and alignment used to build eq. 9. The best RI-4D-QSAR model from
this small high activity data set of lamellarins is given by eq. 10.
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(10)

The regression coefficients of the descriptors of eq. 10 suggest placing any type of atom at (−1,
1, −6) has about 30 times more negative effect on −logIC50 than the positive gain by locating
a nonpolar atom or group at (−1, 4, −6). Certainly eq. 10 is, or borders upon, being an over-fit
model. However, eq. 10 and its 3D-pharmacophore are only used as adjuncts to eq. 9 and its
3D-pharmacophore. That is, eq. 10 is being used to provide a higher-resolution view of the
SAR features most characteristic of the high activity lamellarins of the training set. Equation
9 and its 3D-pharmacophore are used outside that context.

The 3D-pharmacophores defined by eqs. 9 and 10 are shown in Figures 4(a) and 4(b),
respectively. The reference structure superimposed on each of the 3D-pharmacophores in these
two figures is the predicted active conformation of the most active compound (lamellarin D)
using eq. 9. The red spheres in Figures 4(a) and 4(b) represent those GCOD descriptor terms
which have negative regression coefficients. Correspondingly, the blue spheres delineate
GCOD descriptors having positive regression coefficients in the corresponding best RI-4D-
QSAR equation. From an inspection of Figure 4(a), a red sphere near the R2 and R3 groups
specifies a pharmacophore site where occupancy by any type of atom, or group, decreases
potency since the corresponding regression coefficient −56.33. Two blue spheres are found
near R4 and R5 suggesting that substitution of nonpolar groups to occupy one, or both, sites is
conducive to increasing the cytotoxic activity of the lamellarins.

The 3D-pharmacophore of the high activity model, eq. 10, is represented by one red sphere
(GCOD) located around R1 and R2, and a blue sphere (GCOD) positioned near R2 and R3. The
most active compounds of the potent lamellarins seemingly achieve most of their additional
−logIC50 potency, as compared to the less potent lamellarins, by not having any atoms or groups
at (−1, 1, −6) in contrast to increasing occupancy by nonpolar atoms or groups at the GCOD
located at (−1, 4, −6). The 30:1 ratio of not occupying the GCOD at (−1, 1, −6) as compared
to having a nonpolar atom or group at (−1, 4, −6) is consistent with the relative binding energy
contributions of an intermolecular hydrogen bond involving the OH near (−1, 1, −6) as
compared to a hydrophobic binding effect due to the methyl of the methoxy group near (−1,
4, −6) as is shown in Figure 4(b).

Overall, the highly active compounds are seemingly distinguished from one another in eq. 10
by their ability to form an intermolecular hydrogen bond where the hydrogen bond acceptor
atom in the receptor is expected to be near (−1, 1, −6). Some additional increase in −logIC50
can also be realized by having a hydrophobic substituent group of the ligand occupying the
(−1, 4, −6) site. The two GCODs of eq. 10 may be a higher resolution representation of the
single GC2 (−3, 4, −5, any) GCOD found in eq. 9.

In order to evaluate the possible roles of ligand molecular weight, MW on cytotoxic potency,
−logIC50, this property were included as part of the trial basis set of descriptors in a GFA model
optimization study. Unfortunately, no GFA model optimization could be realized. An
inspection of the MW value of the training set compounds revealed that three lamellarins (lam
K-triacetate, lam χ-triacetate, and lam U-diacetate) have very high MWs relative to the other
training set compounds. These three lamellarins were removed to form a revised training set.
Two lamellarins (lam F and K) were defined as a test set. GFA model building and optimization
repeated for this 21 compound training set in the same manner as employed in developing eqs.
9 and 10. Ten best models were determined from the GFA optimization, and the residuals of
fit cross-correlations between each pair of these models are given in Table 6. All pairs of the
top-ten models have residuals of fit highly correlated to one another, with a value of at least
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0.70, indicating these 10 models are all very nearly the same model. Therefore, the best of the
ten models was selected as the preferred RI-4D-QSAR model for this training set, and is given
by eq. 11.

(11)

Figure 5 is a plot of the observed versus the predicted −logIC50 values determined from using
eq. 11. The 3D-pharmacophore embedded in the RI-4D-QSAR model given by eq. 11 is shown
in Figure 6 with lamellarin D again the reference compound. All three GCOD descriptors of
eq. 11 correspond to pharmacophore sites where an increasing occupancy decreases activity.
One pharmacophore site, (−3, 4, 5, any) from eq. 11, is identical to a site from eq. 9, while the
pharmacophore site at (−2, 1,−6, np) from eq. 11 is very close to the pharmacophore site of eq.
10 located at (−1, 1,−6, any) as can be seen by comparing Figure 6 to Figures 4(a) and 4(b).
The third pharmacophore site of eq. 11 located at (3, 3, 2), which predicts the occupany of
nonpolar groups to decrease −logIC50, is unique to this model as compared to eqs. 9 and 10.
This new GCOD descriptor term of eq. 11 and the decrease in r2 and xv-r2 may be an indication
of a significant pharmacophore-site dependence on one, or more, of the four lamellarins
eliminated from the training set used to build eq. 11 and its corresponding 3D-pharmacophore.

An attempt was made to further explore if log P plays a role in the structure-activity relationship
of the lamellarin training set by forcing an overfitting in the GFA model building and
optimization process. The log P descriptor was the only non-GCOD descriptor added to the
trial basis set (descriptor pool) at step 5 of 4D-QSAR methodology. Overfit RI-4D-QSAR
models were permitted under the same methodology, same alignment, and for all lamellarins
in training set as used to develop eq. 9. None of the 10 most significant overfit 4-term or 5-
term RI-4D-QSAR models contained a log P descriptor term. Therefore, it was concluded that
molecular lipophilicity is not a major contributing factor in the specification of the cytotoxic
activity for the lamellarins studied in this analysis.

The predicted −logIC50 of lamellarin F calculated by using eq. 11 is 5.74. This value are very
close to actual −logIC50 value of 5.34. The RI-4D-QSAR model obtained by removed out high
MW compounds showed a good predict the activity of lamellarin F. Lamellarin K was
synthesized and tested after the 4D-QSAR models reported in this paper were constructed.
However, lamellarin K has an unexpected high activity [−logIC50 = 7.04] for the saturated D-
ring series of compounds. Hence, it was thought important to see if this high activity could be
predicted by the 4D-QSAR models, or if this saturated D-ring analog had features outside those
captured by the models. The predicted −logIC50 values of lamellarin K obtained from eqs. 9,
10 and 11 are 5.33, 9.77 and 6.00, respectively. Thus, the 4D-QSAR models developed in this
study cannot well-predict the activity of lamellarin K, but their composite set of predicted
activities bracket around the observed activity. Moreover, while the individual models did not
adequately predict the experimental endpoint, it is to be noted that the average of these three
predicted values is 7.03 which is a value very close to the experimental −logIC50 value of 7.04.

Lamellarin K has a unique three hydroxyl substituent pattern at R1, R4 and R7. However, other
analogs in Table 1 have three hydroxyl substituents, and some analogs without hydroxyl
substutuents are more active than those with three hydroxyls, for example, compare lamellarin
χ triacetate (5.54) to lamellarin E (5.28) in Table 1. All of the best 4D-QSAR models, eqs. 9,
10 and 11 are rich in GCOD terms involving nonpolar IPE types. Polar and/or hydrogen
bonding capabilities from hydroxyl groups are not explicitly present in the descriptor terms of
the 4D-QSAR models. All of these observations, in composite, suggest that the unique hydroxyl
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substituent pattern of lamellarin K make it the ‘magic bullet’ in terms of high inhibition potency
relative to the other saturated D-ring analogs of Table 1.

4D-fingerprint virtual screens
4D-fingerprint virtual high throughput screens permit a larger range of chemistry diversity to
be assayed more quickly than do RI-4D-QSAR models. In this study 4D-fingerprints models
were generated using all 25 of the lamellarins in the training set. Lamellarin K was used as a
modest means to validate 4D-fingerprints model as well as RI-4D-QSAR models. Two types
of 4D-fingerprints can be constructed: those 4D-fingerprints explicitly dependent upon a
particular alignment, and absolute 4D-fingerprints which are alignment independent.35

Absolute 4D-fingerprints were used in this analysis to maximize the range of lamellarin
chemical diversity that could be reasonably screened. That is, a 4D-fingerprint screening model
built independent of alignment is more general than its corresponding alignment-dependent
screen, but at the cost of being somewhat less significant in its fit to the training set data.

The absolute 4D-fingerprints were derived for each of the 25 training set lamellarins using the
modeling methodology given above in the Methods section. These 4D-fingerprints formed the
trial basis set for model building. No non-4D-fingerprints were added to this trial descriptor
pool. Model building and optimization in deriving the 4D-fingerprint QSAR equations, which
are the high-throughput virtual screens, was carried in the identical fashion used to build the
RI-4D-QSAR models.

Figure 7 is a plot of number of descriptor terms in a 4D-fingerprint model versus r2 and xv-
r2. The xv-r2 of the 4D-fingerprints of the 4- and 5-term models are very nearly the same, and
xv-r2 behaves in something of an erratic fashion for models having 5, or more, descriptor terms.
The optimized 4-descriptor term virtual screening model appears, on the basis of xv-r2, to
capture maximum fitting to the training set data without overfitting. Thus, the 4-term QSAR
model given by eq. 12 was selected as the preferred absolute 4D-fingerprint virtual screen.
Equation 12 is the best 4-term model from the top-ten 4-term models derived in the GFA
optimization. Table 7 shows the linear cross-correlation matrix of the residual of fit for the top-
ten 4-term models. This table reveals that all pairs of models have highly correlated residuals
of fit, greater than 0.85, to one another. Thus, eq. 12 represents the best and only distinct fit to
the training set data using absolute 4D-fingerprints.

(12)

For reference in defining the 4D-fingerprints, ∈7(any,np) represents the seventh largest
eigenvalue from the MDDM of the IPEs u = (any) and v = (np) molecular similarity vector
capturing all pairs of atoms in each lamellarin assigned IPEs of any and nonpolar, respectively.

The relative significance and weight of each 4D-fingerprint descriptor term in eq. 12 was
measured in terms of its frequency of use in the GFA model optimization process. The idea in
monitoring frequency of use is that the more significant is a descriptor to establishing a fit to
the training set data, the more often it will be used in the repetitive GFA optimization process.
The frequencies of descriptor usage during GFA optimization are shown in Table 8. An
inspection of Table 8 indicates that ∈11(any,hs) and ∈7(any,np) are the first and second
important features governing the SAR of lamellarin cytotoxicity potency, respectively.
Increased potency of the lamellarins arises from increasing the values of ∈11(any,hs) and/or
∈3(p+,aro), while a decrease in lamellarin cytotoxicity accompanies an increase in the values
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of the ∈7(any,np) and ∈2(np,hs) 4D-fingerprints. Figure 8 is a plot of −logIC50 values predicted
using eq. 12 versus the corresponding observed −logIC50 values.

The predicted activity of lamellarin K, the test compound, using eq. 12 is 7.33 which differs
from the observed activity of 7.04 by only 0.29 log unit. Additional −logIC50 predictions using
eq. 12 were made for a small virtual library of eight lamellarin derivatives, see Table 9,
generated by making substitutent changes at R1-R5. These results indicate that the 4D-
fingerprint model is responsive to predicting −logIC50 values over a wide −logIC50 potency
range from nearly inactive values for ML6 to very potent activities for lamellarins ML4, ML5,
and ML7. Equation 12 also has captured the SAR that both the number and positioning of –
OH on the E-ring is a critical factor to potency. In general, more hydroxyls on the ring are
better. But the importance of hydroxyl positioning, particularly at R3 is dramatically shown
for ML5, the most active analog in Table 10 [10.05], as compared ML6, the least active analog
[3.03] which differs only from ML5 by having no hydroxyl at R3.

Comparison of the 4D-fingerprints QSAR virtual screening model to the RI-4D-QSAR models
The RI-4D-QSAR model given by eq. 9 with three descriptor terms is a more significant fit to
the training set data (xv-r2 = 0.947 and r2 = 0.971) than the four descriptor 4D-fingerprint
model given by eq. 12 (xv-r2 = 0.719 and r2 = 0.831). Presumably the inclusion of alignment
information in eq. 9 provides this boost in the overall fitting quality of this model as compared
to eq. 12. But eq. 12 in not being dependent on alignment correspondingly permits a wider
range of variations lamellarin chemistry to be considered. Table 10 is the linear correlation
matrix of the residuals of fit of eq. 9, the RI-4D-QSAR, to eq. 12, the absolute 4D-fingerprint
virtual screen, as well as correlations of both models to the observed −logIC50 cytotoxicity
values. The correlation coefficient of 0.797 between the residuals of fit for eqs. 9 and 12
indicates that these two models are basically the same, but eq. 9, owing to inclusion of
alignment, fits the training set better, overall, than eq. 12.

Comparison of the predicted inhibition potencies from the 4D-fingerprints QSAR virtual
screening model to the (RI)-4D-QSAR models was also investigated using ML5 and ML6, the
most and the least potent compounds given in Table 9. The predicted −logIC50 values of ML5
obtained from the (RI)-4D-QSAR models by eqs. 9 and 11 are 5.39 and 9.20, respectively, and
the −logIC50 values of ML6 obtained from the two equations are 7.44 and 10.23, respectively.
It was found that there is an agreement in prediction only for ML5 between the (RI)-4D-QSAR
model (9.20 by eq. 11) and the 4D-fingerprint QSAR model (10.05 by eq. 12).

CONCLUSION
This work puts forth a ‘quality in place of quantity’ strategy to handle small data sets composed
of structurally complex, hard to synthesize compounds that can exhibit a wide-range in
endpoint activity. A high-level modeling approach providing detailed structural,
thermodynamic and electronic information about each complex compound of the data set is
used to negate the lack-of-data drawbacks to the small size of the data set. In this study the
flexibility, yet high-level of modeling sophistication of the 4D-QSAR paradigm is used to
explore different subpopulations of the data set in extracting the maximum SAR information
from the data set in terms of a pseudo consensus RI-4D-QSAR model and its corresponding
3D-pharmacophore. The consensus aspect to the RI-4D-QSAR modeling arises from the fact
that the same methodology and parameters, including alignment, can be used in any manner
across any subpopulations of the data set. As such, all resulting models are not only directly
comparable, but to an appreciable extent can be combined to elucidate a high-resolution 3D-
pharmacophore. In addition, the 4D-fingerprint formulation of the 4D-QSAR paradigm permits
alternate model generation, particularly useful in virtual screening. Still, the 4D-fingerprint
models are once again directly comparable to the RI-4D-QSAR models so as to exact additional
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information from the data set, as well as to evaluate the self-consistency across all the models
constructed.

The consensus set of 4D-QSAR models expressed by eqs. 9–12, suggest that the ability to form
a ligand-receptor intermolecular hydrogen bond and hydrophobic interactions for substituents
on the E ring most modulate the cytotoxicity against T47D breast cancer cells. The optimization
of this intermolecular hydrogen bond, and, to a lesser extent, the hydrophobic interactions, are
coupled to the alignment freedom of a lamellarin owing, in turn, to other possible substitutions
across the molecule and their possible interactions with sites on the receptor.

Hydrophobic substitutions on the F-ring can also enhance cytotoxic potency, but given that
the 3D-pharmacophore sites for these interactions arise for the entire data set, and not the
restricted high activity data subset, would indicate these are likely minor binding
pharmacophore sites. Attempts to force the lipophilicity of the entire lamellarin into a 4D-
QSAR model were unsuccessful. Thus, the finding of 3D-pharmacophore sites, where
occupancy by nonpolar atoms and/or groups can modulate activity, likely reflect specific
interactions at these sites, and not global lipophilic features of the lamellarins.

Lamellarin K, synthesized and tested after the modeling studies reported here were carried out,
likely has its very high activity relative to other saturated D-ring analogs because of its unique
three hydroxyl group substituent pattern. The average predicted −logIC50 value developed in
this study sufficient predicts the activity of lamellarin K. This suggests that in order to get a
high-resolution 4D-QSAR model to distinguish some substituent patterns from others for the
saturated D-ring lamellarins analogs, more lamellarins data set is required.

The 4D-fingerprint virtual screening model, eq. 12, is highly consistent with the general RI-4D-
QSAR model given by eq. 9. Consequently, eq. 12 can be used to rapidly screen prospective
compounds without concern for alignment, but with the expectation that the 3D-
pharmacophore of eq. 9 will be relevant to helping understand findings from virtual screenings.
A good test to evaluate how much SAR information is actually captured in eq. 12 as a virtual
screening tool, given it is based upon this relatively small training set of lamellarins would be
to make and test ML5 and ML 6 of Table 9. These two compounds are predicted to differ by
seven orders of magnitude in −logIC50 values, yet they differ by at their respective R3
substituents. A large difference in measured −logIC50 values would help to validate eq. 12,
while a small difference would suggest that eq. 12 has very limited resolution in correctly
explaining small structural differences in the lamellarins.
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Figure 1.
The three scaffold groups forming the training set of lamellarins.
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Figure 2.
Plot of the number of RI-4D-QSAR model descriptor terms versus r2, and xv-r2 for the complete
training set.
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Figure 3.
Predicted −logIC50 values, using the RI-4D-QSAR model for the 25 lamellarins data set, versus
the observed −logIC50 values.
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Figure 4.
The 3D-pharmacophores from (a) eq. 9 based upon the full training set of 25 lamellarins, and
(b) from the 6 high activity compounds of the lamellarin training set. The 3D-pharmacophores
are shown relative to the predicted active conformation of the most active compound
(lamellarin D). The red spheres refer to pharmacophore sites having negative regression
coefficients in the 4D-QSAR equation, and blue spheres refer to pharmacophore sites having
positive regression coefficients.
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Figure 5.
Predicted −logIC50 values, using the RI-4D-QSAR model for the 21 lamellarins data set, versus
the observed −logIC50 values.
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Figure 6.
The 3D-pharmacophores from eq. 11 based upon the 21 lamellarins training set. The 3D-
pharmacophores are shown relative to the predicted active conformation of the most active
compound (lamellarin D). The red spheres refer to pharmacophore sites having negative
regression coefficients in the 4D-QSAR equation, and blue spheres refer to pharmacophore
sites having positive regression coefficients.
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Figure 7.
Plot of the number of 4D-fingerprint model descriptor terms versus r2, and xv-r2 for the
complete training set.
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Figure 8.
Predicted −logIC50 values, using the 4D-fingerprint model for the 25 lamellarins data set,
versus the observed −logIC50 values.
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Table 3

The set of Interaction Pharmacophore Elements (IPEs) used in the RI-4D-QSAR and 4D-
fingerprint QSAR Analyses

IPE description Symbol Number code

all atoms in the molecule any 0

nonpolar atoms np 1

polar atoms of positive partial charge p+ 2

polar atoms of negative partial charge p− 3

hydrogen bond acceptor atoms hba 4

hydrogen bond donor atoms hbd 5

aromatic atoms aro 6

non-hydrogen atomsa hs 7

a
hydrogen-suppressed use only in 4D-fingerprint QSAR analysis

Thipnate et al. Page 38

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ta
bl

e 
4

Thipnate et al. Page 39

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Se
t o

f t
ria

l a
lig

nm
en

t u
se

d 
in

 c
on

st
ru

ct
in

g 
th

e 
be

st
 fi

ve
-te

rm
 R

I-
4D

-Q
SA

R
 m

od
el

s.

A
lig

nm
en

t
Fi

rs
t a

to
m

Se
co

nd
 a

to
m

T
hi

rd
 a

to
m

r2
xv

-r
2

1
a

b
c

0.
96

4
0.

92
9

Thipnate et al. Page 40

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A
lig

nm
en

t
Fi

rs
t a

to
m

Se
co

nd
 a

to
m

T
hi

rd
 a

to
m

r2
xv

-r
2

2
d

e
f

0.
99

6
0.

99
2

Thipnate et al. Page 41

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A
lig

nm
en

t
Fi

rs
t a

to
m

Se
co

nd
 a

to
m

T
hi

rd
 a

to
m

r2
xv

-r
2

3
g

h
i

0.
99

9
0.

99
8

Thipnate et al. Page 42

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A
lig

nm
en

t
Fi

rs
t a

to
m

Se
co

nd
 a

to
m

T
hi

rd
 a

to
m

r2
xv

-r
2

4
j

d
k

0.
99

7
0.

99
5

Thipnate et al. Page 43

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A
lig

nm
en

t
Fi

rs
t a

to
m

Se
co

nd
 a

to
m

T
hi

rd
 a

to
m

r2
xv

-r
2

5
l

m
n

0.
99

5
0.

98
4

Thipnate et al. Page 44

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A
lig

nm
en

t
Fi

rs
t a

to
m

Se
co

nd
 a

to
m

T
hi

rd
 a

to
m

r2
xv

-r
2

6
o

p
q

0.
99

7
0.

99
3

Thipnate et al. Page 45

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A
lig

nm
en

t
Fi

rs
t a

to
m

Se
co

nd
 a

to
m

T
hi

rd
 a

to
m

r2
xv

-r
2

7
k

o
r

0.
99

9
0.

99
7

Thipnate et al. Page 46

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A
lig

nm
en

t
Fi

rs
t a

to
m

Se
co

nd
 a

to
m

T
hi

rd
 a

to
m

r2
xv

-r
2

8
s

t
u

0.
99

9
0.

99
5

Thipnate et al. Page 47

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ta
bl

e 
5

Th
e 

cr
os

s-
co

rr
el

at
io

n 
m

at
rix

 fo
r t

he
 to

p-
te

n 
m

od
el

s o
f t

he
 2

5 
la

m
el

la
rin

s t
ra

in
in

g 
se

t

M
od

el
 n

o.
1

2
3

4
5

6
7

8
9

10

1
1.

00
0

2
0.

51
8

1.
00

0

3
0.

76
0

0.
81

6
1.

00
0

4
0.

57
8

0.
87

2
0.

90
3

1.
00

0

5
0.

62
4

0.
64

0
0.

80
6

0.
85

8
1.

00
0

6
0.

52
5

0.
40

5
0.

63
5

0.
63

1
0.

68
3

1.
00

0

7
0.

60
1

0.
66

5
0.

82
3

0.
88

7
0.

96
2

0.
63

8
1.

00
0

8
0.

61
8

0.
68

9
0.

83
7

0.
90

2
0.

98
7

0.
65

4
0.

97
9

1.
00

0

9
0.

61
8

0.
68

9
0.

83
7

0.
90

2
0.

98
7

0.
65

4
0.

97
9

1.
00

0
1.

00
0

10
0.

60
8

0.
67

4
0.

82
8

0.
89

2
0.

96
3

0.
64

4
0.

99
8

0.
98

1
0.

98
1

1.
00

0

Thipnate et al. Page 48

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ta
bl

e 
6

Th
e 

cr
os

s-
co

rr
el

at
io

n 
m

at
rix

 fo
r t

he
 to

p-
te

n 
m

od
el

s o
f 2

1 
la

m
el

la
rin

s t
ra

in
in

g 
se

t

M
od

el
 n

o.
1

2
3

4
5

6
7

8
9

10

1
1.

00

2
0.

91
1.

00

3
0.

83
0.

97
1.

00

4
0.

93
0.

93
0.

90
1.

00

5
0.

92
0.

99
0.

97
0.

93
1.

00

6
0.

83
0.

97
0.

99
0.

90
0.

97
1.

00

7
0.

93
0.

93
0.

90
0.

99
0.

93
0.

90
1.

00

8
0.

94
0.

79
0.

72
0.

93
0.

80
0.

73
0.

93
1.

00

9
0.

91
0.

98
0.

95
0.

91
0.

98
0.

95
0.

91
0.

80
1.

00

10
0.

84
0.

97
0.

99
0.

90
0.

97
0.

99
0.

90
0.

73
0.

96
1.

00

Thipnate et al. Page 49

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ta
bl

e 
7

Th
e 

lin
ea

r c
ro

ss
-c

or
re

la
tio

n 
m

at
rix

 o
f t

he
 to

p-
te

n 
m

od
el

s f
ro

m
 th

e 
fo

ur
 d

es
cr

ip
to

r t
er

m
 4

D
-f

in
ge

rp
rin

t m
od

el
s

M
od

el
 n

o.
1

2
3

4
5

6
7

8
9

10

1
1.

00

2
0.

93
1.

00

3
0.

96
0.

90
1.

00

4
0.

93
0.

94
0.

93
1.

00

5
0.

89
0.

94
0.

90
0.

96
1.

00

6
0.

91
0.

86
0.

94
0.

88
0.

85
1.

00

7
0.

95
0.

90
0.

99
0.

93
0.

91
0.

94
1.

00

8
0.

92
0.

91
0.

92
0.

91
0.

89
0.

92
0.

93
1.

00

9
0.

90
0.

92
0.

90
0.

90
0.

97
0.

87
0.

91
0.

89
1.

00

10
0.

91
0.

92
0.

92
0.

90
0.

96
0.

89
0.

94
0.

90
0.

98
1.

00

Thipnate et al. Page 50

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Table 8

The frequency of use and corresponding significance ranking of each descriptor term in 4D-
fingerprint virtual screening model

∈7(any, np) ∈11(any,hs) ∈3(p+,aro) ∈2(np,hs)

Frequency 124 128 51 17

Ranking 2 1 5 11
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Table 10

The linear cross-correlation matrix of the predicted −logIC50 values of the RI-4D-QSAR model
(1), the 4D-fingerprint model (2), and the observed cytotoxicity −logIC50 values (3)

1 2 3

1 1

2 0.797 1

3 0.972 0.823 1

Thipnate et al. Page 61

J Chem Inf Model. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


