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Abstract
The effects of solvation and entropy play a critical role in determining the binding free energy in
protein-ligand interactions. Despite the good balance between speed and accuracy, no current
knowledge-based scoring functions account for the effects of solvation and configurational
entropy explicitly due to the difficulty in deriving the corresponding pair potentials and the
resulting double counting problem. In the present work, we have included the solvation effect and
configurational entropy in the knowledge-based scoring function by an iterative method. The
newly developed scoring function has yielded a success rate of 91% in identifying near-native
binding modes with Wang et al.’s benchmark of 100 diverse protein-ligand complexes. The results
have been compared with the results of 15 other scoring functions for validation purpose. In
binding affinity prediction, our scoring function has yielded a correlation of R2 = 0.76 between the
predicted binding scores and the experimentally measured binding affinities on the PMF
validation sets of 77 diverse complexes. The results have been compared with R2 of four other
well-known knowledge-based scoring functions. Finally, our scoring function was also validated
on the large PDBbind database of 1299 protein-ligand complexes and yielded a correlation
coefficient of 0.474. The present computational model can be applied to other scoring functions to
account for solvation and entropic effects.
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1 Introduction
Scoring functions that are used to rank putative protein-ligand complexes are crucial in
structure-based drug design.1–5 Despite the developments of the past two decades, the
scoring problem remains to be a challenge. There are three types of scoring functions: force-
field, empirical, and knowledge-based scoring functions. Force-field based scoring functions
use force field parameters to measure the binding energy between the protein and the
ligand.6–8 Despite its lucid physical meaning, rigorous force field-based scoring functions
are normally computationally expensive and sometimes involve empirical weighting
coefficients that are difficult to be generalized.4,5 Empirical scoring functions are based on a
set of weighted energy terms whose coefficients are derived by reproducing the binding
affinity data of a training set of protein-ligand complexes with known three-dimensional
structures.9–16 Although the empirical scoring function is computationally efficient because
of its simple energy forms, its general applicability is training set-dependent.
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The knowledge-based scoring functions offer a good compromise between the accuracy/
general applicability and the computational speed.17–33 The principle behind knowledge-
based scoring functions is simple, and its pairwise potentials are directly converted from the
the occurrence frequency of atom pairs in a database by an inverse Boltamann relation34–37

(1)

where kB is the Boltzmann constant, T is the absolute temperature of the system, ρ(r) is the
number density of the protein-ligand atom pair at distance r, and ρ*(r) is the pair density in a
reference state where the interatomic interactions are zero. Because the potentials in eq 1 are
extracted from the structures rather than reproducing the known affinities by fitting and
because the training structural database can be very large and diverse, the knowledge-based
scoring functions are robust and insensitive to the training set.24,25,38,39 Their pairwise
feature also enables the scoring process to be as fast as the empirical scoring functions.

Despite significant progress, there exist limitations in knowledge-based scoring functions.
One major limitation arises from the inaccessible reference state associated with ρ*(r)
defined in eq 1.36 Most of the current knowledge-based scoring functions approximate ρ*(r)
with an atom-randomized state by ignoring the effects of excluded volume, interatomic
connectivity, etc.36 Researchers have introduced useful approximations of the reference state
(e.g. refs 24 and 31). Yet, the reference state problem remains unsolved. A second limitation
is that existing knowledge-based scoring functions do not explicitly include the
contributions from solvation and entropy. One of the reasons may be due to the difficulty in
determining the reference states for solvents and entropy. Another challenge may be from
the parameterization of pairwise potentials, solvation and entropy, which belong to different
energetic categories. Therefore, despite the importance of solvation and entropy in ligand
binding,40–52 little effort has been made to account for their effects in the knowledge-based
scoring functions.

In the present work, we have developed a new computational model that explicitly includes
the contributions from solvation and entropy in the knowledge-based scoring functions. We
chose ITScore as an example for illustration. The pair potentials of ITScore were recently
developed using a novel iterative extraction method for protein-ligand interactions.38,39 The
iterative method circumvents the long-standing reference state problem. The basic idea of
the method is to iteratively improve the pair potentials by comparing the calculated and
predicted pair distribution functions until the predicted pair distribution function converges
to the experimentally observed one. ITScore has been extensively validated using diverse
test sets on binding mode identification, binding affinity prediction, and virtual database
screening.39,53–55 The good performance of ITScore makes it a nice candidate to assess the
feasibility and necessity of including solvation and entropy in the knowledge-based scoring
functions. The newly developed scoring function, named as ITScore/SE, was tested with
three important benchmarks of diverse protein-ligand complexes. The results showed that
the performance of ITScore/SE was significantly improved compared to ITScore and 14
other published scoring functions in both binding mode and affinity predictions.

2 Materials and Methods
2.1 Inclusion of the Solvation Effect

2.1.1 Formalism to account for the solvation effect—Ligand binding is a
desolvation process, in which water plays two roles:46,49 strongly screening the electrostatic
interactions among charged atoms, and causing hydrophobic effect for nonpolar atoms/
groups and hydrophilic effect for polar atoms/groups. The dielectric screening effect is

Huang and Zou Page 2

J Chem Inf Model. Author manuscript; available in PMC 2011 October 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



implicitly accounted for in the knowledge-based pair potentials during their derivations. The
hydrophobic/hydrophilic effect has been proposed to be accounted for by a simple solvent-
accessible surface area (SASA)-based energy term.56 Thus, the binding energy score of a
protein-ligand complex can be expressed as follows

(2)

where uij(r) is the pair potential between the protein atom of type i and the ligand atom of
type j at the interatomic distance r, σi is the solvation parameter of the atom of type i, and
ΔSAi is the change of the SASA for the atoms of type i from the unbound state to the bound
state.

In the present study, the SASA of an atom was calculated by using the algorithm of uniform
atom-based spherical grids by Zou et al.46 The probe radius was set 1.4 Å. The van der
Waals (VDW) radii for polar atoms O and N were reduced by 0.2 Å to account for a
potential involvement in hydrogen bonding.57

2.1.2 The iterative method to extract the effective potentials and atomic
solvation parameters—The effective potentials uij(r) and σi defined in eq 2 were
simultaneously derived using a novel iteration method. The iterative method circumvents the
long-standing reference state problem.34,38,55,58 The basic idea of the method is to improve
the trial potentials iteratively by comparing the experimental and predicted structures until
the potentials can reproduce the experimentally observed pair distribution functions for the
training set of protein-ligand complexes.38 The detailed derivation of the effective pair
potentials uij(r) and atomic solvation parameters σi are described as follows.

The iterative procedure for the pairwise potentials uij(r) can be expressed as follows38

(3)

where n stands for the iterative step, kB is the Boltzmann constant, and T denotes the system
temperature. Without loss of generality, kBT was set to 1 during the iteration. λ is a

parameter to control the convergence speed and was set to be 1/2 in this work.38,58 
are the experimentally observed pair distribution functions in the native structures of the

training database, and  are the predicted pair distribution functions at the n-th iterative
step that are calculated by using a Boltzmann-weighted average over the ensemble of native
and decoy structures. The details about the calculations of the pair distribution functions

 are referred to our previous study.38

Similar to the pair potential uij(r), the atomic solvation parameter σi in eq 2 can be obtained
by the following iterative equation

(4)

where  is the SASA change of the atoms of type i divided by the total SASA change of
all the atoms in the experimentally observed native structures between the bound and
unbound state, and is calculated as follows:
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(5)

where  is the total SASA change of the atoms of type i in the native structure of the m-
th complex in the training database, and M is the number of the complexes in the training
set.

The  is the the SASA change of the atoms of type i divided by the total SASA change of
all the atoms for the lowest-energy modes predicted by the current potentials defined in eq 2
at the n-th iterative step, which is calculated by a Boltzmann-weighted average over the
decoy structures as

(6)

where β = 1/kBT and is set to 1 as aforementioned.  is the total SASA change of the
atoms of type i for the l-th ligand orientation/decoy of the m-th complex in the training

database at the n-th iterative step.  is the binding energy score of this orientation
calculated by eq 2 with the current potentials. L is the total number of ligand orientations/
decoys generated for each complex (including the native structure).

Thus, given a guess of initial , the effective pair potentials uij(r) and atomic
solvation parameters σi can be improved iteratively using Eqs. (3)–(6) until the convergence

criterion is satisfied. In the present study, the initial  were set to be a weighted
combination of the potential of mean force and Lennard-Jones VDW potential,38 and the
initial value of every σi was set to zero. The convergence criterion was set as

 for all i and j, in which S is the
number of the divided shells for the reference sphere in the calculation of pair distribution
functions38 and η is set to be 10−4 in this study. Our iterative method converges rapidly,
usually within 50 steps.

2.1.3 The Training Database for the Iterations—In the present iterative procedure,
the same training set was used as the set used in our previous study,38 which consists of 786
diverse protein-ligand complex structures from the Protein Data Bank (PDB)59. They are all
crystal structures under near-neutral pH conditions (i.e. 6.5 < pH < 7.5) with resolution
better than 2.5 Å. The training set also excludes nonconventional ligands such as RNA,
DNA, covalently bound ligands, peptide inhibitors, or ligands with less than 5 or more than
66 heavy atoms. For each complex structure, up to 200 putative ligand orientations were
generated by one-time calculation using the molecular docking program DOCK 4.0,60

serving as the decoy ensemble of the training set. The decoy structures were then used for
the iterative extractions. Details of the preparation of the training set and the corresponding
PDB entries are described in our previous work.38

In the training set, water molecules and hydrogen atoms were removed from the complexes.
A total of 27 atom types were used to represent non-hydrogen atoms in the proteins and
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ligands, based on the definitions provided by the SYBYL software (Tripos, Inc.). The 27
atom types with their corresponding VDW radii are listed in Table 1.

2.2 Inclusion of the Entropic Contributions
In addition to the solvation effect, we also added two additional energy terms to the derived
knowledge-based scoring function defined in eq 2 to account for the ligand configurational
entropy, which is partitioned into a conformational component and a vibrational
component:52

(7)

2.2.1 Calculation of the ligand conformational entropy ΔGconf—The energy term
for ligand conformational entropy arises from the loss of the torsional degrees of freedom
for a flexible ligand upon binding. This entropic contribution can be crudely approximated
by an empirical term proportional to the number of rotatable bonds in the molecule
(Nrot):61,62

(8)

where ΔSconf stands for the loss of ligand conformational entropy upon binding and Wconf is
a weighting coefficient to balance the entropic and VDW/electrostatic terms. As shown in
the scoring function of AutoDock4, the weighting coefficients for ligand conformational
entropy, van der Waals (VDW) and electrostatic energy terms are 0.298, 0.166 and 0.141 for
the native complexes, respectively.62 In other words, in their formalism, the weighting
coefficient for the ligand conformational entropy is about 1 ~ 2 times of the coefficient for
the other two energy terms. Considering that the knowledge-based potentials defined in eq 2
roughly represents an overall contribution from VDW and electrostatic interactions, for
simplicity, a mean value of 1.5 between 1.0 and 2.0 was used for the weighting coefficient
Wconf in the present study. Namely,

(9)

2.2.2 Calculation of the ligand vibrational entropy ΔGvib—ΔGvib results from the
loss of ligand translational and rotational degrees of freedom upon binding (i.e. vibrational
entropy loss). It is thought that there exist multiple minima on the ligand binding energy
landscape. The vibrational entropy in a specific energy minimum can be approximately
proportional to the probability of a ligand binding mode found in the local minimum.63–65

Therefore, given clustered ligand modes generated by an appropriate docking program, the
vibrational entropy contribution for the l-th mode can be approximated by

(10)

where Nnb is the number of the neighboring ligand modes within a rmsd cutoff from the l-th
ligand binding mode. Here, the rmsd cutoff was set to 2.0 Å, same as the criterion for
defining the success of binding mode prediction. Wvib is a scaling factor. It was estimated
that the the vibrational entropy and the true binding energy have about the same order of
magnitude.63,64 Therefore, in the present study, Wvib was set to 9.0, same as the scaling
factor that roughly relates measured affinities (or true binding energies) to the binding scores
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calculated with our knowledge-based scoring function in eq 2. At T = 300K, kBT = 0.596
kcal/mol. Thus, the vibrational entropic contribution for the l-th ligand binding mode can be
approximated by

(11)

2.3 Test sets for Validation
Three benchmarks of protein-ligand complexes were used to test the new iterative
knowledge-based scoring function with explicit inclusion of solvation and ligand entropy,
ITScore/SE. The first benchmark was the test set of 100 diverse protein-ligand complexes
constructed by Wang et al., which includes 43 different proteins and covers a range of
binding affinities spanning nearly 9 orders of magnitudes.66 For each complex in this set,
100 putative ligand binding conformations were generated using the docking program
AutoDock.61,66 The second benchmark was the test set prepared by Muegge and Martin to
validate their PMF, which consists of 77 protein-ligand complexes.24 The set covers five
diverse classes: 16 serine protease complexes, 15 metalloprotease complexes, 18 L-
arabinose binding protein complexes, 11 endothiapepsin complexes, and 17 different
protein-ligand complexes. These two benchmarks were widely used to evaluate many
different knowledge-based, force field-based, and empirical scoring functions, which
facilitates our comparative evaluation of ITScore/SE. The third benchmark was the
PDBbind database constructed by Wang et al.67,68 We downloaded the latest version
(v2007) of the database that includes a total of 1300 protein-ligand complexes in its general
set. After removing an inappropriate complex (PDB code: 1FO069), we obtained a large test
set of 1299 protein-ligand complexes.

3 Results
3.1 Extracted Pairwise Potentials and Solvation Parameters

Using the iterative procedure and the training set described in the Methods section, the
effective pair potentials uij(r) and atomic solvation parameters σi defined in eq 2 were
simultaneously derived according to Eqs. (3) and (4). The extracted parameters were able to
reproduce the experimentally observed pair distribution functions of the training set at the
41-th step, indicating the efficacy of our iterative method.

Figure 1 shows a selected set of derived pair potentials uij(r). For comparison, we also show
the corresponding pair potentials from ITScore, which does not explicitly account for the
solvation and entropic effect.38,39 It can be seen from the figure that the two sets of pair
potentials are close, suggesting our iterative method is robust and yields consistent pair
potentials for these two cases. Several notable characteristics can been observed from Figure
1, showing consistency with the experimental findings.38 Namely, the potential minimum
around 4 Å for C3F-C3F corresponds to hydrophobic interactions between the atom pair.
The valleys between 2.7 Å and 2.9 Å on OC-NC (or NC-OC), O31-O2, O31-O31, and N2N-
O2 curves are consistent with hydrogen bond interactions between these atom types.70 The
stronger interaction for the OC-NC (or NC-OC) pair than the other three pairs is due to the
involvement of an additional favorable salt bridge, as OC and NC are oppositely charged.
The weak interaction for N2N-N2N reflects that being both hydrogen bond donors they
cannot form hydrogen bonds and repulse each other in electrostatics because of carrying the
same type of partial charges.

Table 2 lists the derived atomic solvation parameters σi for the 27 atom types. Here, the
parameter σi is a characteristic measure of an atom type on its favorableness of being
desolvated, reflecting the hydrophobic/hydrophilic property of the atom type. Normally, the
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solvation parameter σi has a negative value for a hydrophilic atom type and a positive value
for a hydrophobic atom type. For example, the non-polar atom types such as C3F and C3X
have positive solvation parameters, indicating their preference in the buried/binding state
resulting from their hydrophobicity. In contrast, the polar atom types such as OC, O2, O31,
NC and N21 have negative solvation parameters, reflecting their hydrophilic features. In
addition, unlike the individual atom ions, in the present ligand binding case, each atom type
is part of a chemical group of ligand or protein. Therefore, the atomic solvation parameters
actually reflect an overall effect of the associated functional group and depend not only on
the atom type itself but also on the connecting atoms in the group.71–73. In other words, in
such cases the sign of σi may alter the common rule. For example, the non-polar atom types
C2− and C2+ have negative solvation parameters, unlike aforementioned C3F even though
they are all carbon atoms. A second example is O32 (positive) vs OC (negative) despite both
being oxygen atoms. The solvation parameters of C2− and C2+ are negative because their
connecting atoms (OC and NC) are highly hydrophilic, which alter their hydrophobicity.
Vice versa for O32, because its connecting atoms are often hydrophobic (e.g. C3X). These
features of the solvation parameters are consistent with experimental findings.71–73

In summary, the resulted scoring function (referred to as ITScore/SE) is expressed as

(12)

where the first term on the right side is the knowledge-based pairwise potential, the second
term represents the desolvation energy of the protein and the ligand, and the last two terms
are the ligand conformational and vibrational entropy, respectively (see Materials and
Methods).

3.2 Validation of ITScore/SE Scoring Function
ITScore/SE was tested for its ability of identifying native-like binding modes and predicting
experimentally measured binding affinities by using three benchmarks. The details are
described as follows.

3.2.1 Test on the benchmark constructed by Wang et al—The first benchmark was
the test set constructed by Wang et al., which consists of 100 diverse protein-ligand
complexes and each complex has been generated 100 putative ligand conformations.66

Specifically, first, ITScore/SE was used to calculate the binding energy scores of the 101
ligand conformations (100 decoys plus one native structure) for each complex. These ligand
conformations were then ranked from low to high according to their calculated scores. In the
present work, the native binding mode of a complex was defined to be successfully
identified if the rmsd value of the best-scored ligand conformation is ≤ 2.0 Å from the
experimentally observed native structure, which is the default criterion unless otherwise
specified.

Table 3 and Figure 2 show the success rates of ITScore/SE with the criteria set from rmsd ≤
1.0 Å to rmsd ≤ 3.0 Å. For comparison, the success rates of 15 other scoring functions
extracted from the literature are also listed.27,31,39,66 It can be seen from the table that
ITScore/SE achieved significant improvement in identifying native binding modes and
yielded success rates of 80%, 86%, 91%, 95% and 95% for the rmsd criteria ranging from
1.0 to 3.0 Å, respectively, compared to 72%, 79%, 82%, 85% and 88% for ITScore which
consists of the pair potentials only. Overall, ITScore/SE, DrugScoreCSD, and ITScore
performed better than the other 13 scoring functions listed in the table, yielding success rates
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of 91%, 87% and 82%, respectively, when the commonly-used criterion of rmsd ≤ 2.0 Å
was adopted (see Table 3 and Figure 2). The other three knowledge-based scoring functions,
DrugScorePDB, DFIRE, and Cerius2/PMF, yielded success rates of 72%, 58%, and 52%,
ranking at the 7-th, 11-th, and 13-th places, respectively.

To show the important role of solvation effect in determining ligand binding modes, an
example (PDB code: 1TNL) is displayed in Figure 3. In this case, ITScore/SE was able to
predict the correct native binding mode, but ITScore failed with an rmsd of 15.5 Å for the
top-ranked mode. 1TNL is a trypsin bound with a hydrophobic inhibitor, tranylcypromine.74

Because of the effect of solvation, the hydrophobic ligand tends to be buried in the protein
rather than exposed to water.51 As predicted by ITScore/SE, which accounts for the
desolvation effect, the ligand is embedded in a well-defined pocket (Figure 3). In contrast,
lack of desolvation in a scoring function is expected to lead to a wrong prediction with this
hydrophobic ligand. Indeed, as shown in Figure 3, the original ITScore without explicit
desolvation predicted a wrong mode which is exposed on a cleft of the protein surface.

To investigate the relative contributions of ITScore, solvation, and entropy, we also
calculated the success rates of ITScore with the solvation term alone (ITScore/Solvation)
and ITScore with the entropy term alone (ITScore/Entropy). The results are listed in Table 4
for comparison. It can be seen from the table that the improvement of the success rate due to
including solvation is less than the improvement due to including entropy. Compared to
ITScore (82%), ITScore/solvation improves the success rate by 4% (from 82% to 86%),
whereas ITScore/entropy improves the success rate by 7% (from 82% to 89%). The reason
may be explained as follows: The entropic effect is a global property of the ligand and the
binding pocket (size and shape), and is therefore much less accounted for by atom type-
dependent pairwise potentials in ITScore than the solvation effect. The solvation effect of
each atom depends on the local environment of the atom and therefore can be better
accounted for by atom type-dependent pairwise potentials. Thus, the explicit inclusion of
entropy is expected to have more impact on the accuracy than the explicit inclusion of
solvation for ITScore. Table 4 also shows that the inclusion of both solvation and entropy
yielded the highest success rate of 91%.

ITScore/SE was further examined for its ability of predicting binding affinities with the
same benchmark, which was measured by the correlation coefficient between the calculated
energy scores and the experimentally measured binding affinities as75

(13)

where N is the number of tested complexes, xk and yk are the experimental binding data and
calculated energy scores for the k-th complex, and 〈 〉 is an arithmetic average over all the
complexes.

Table 5 and Figure 4 show the calculated correlation coefficients for ITScore/SE and 15
other scoring functions with Wang et al’s test set of 100 protein-ligand complexes. It can be
seen that ITScore/SE and ITScore both yielded a good correlation coefficient of R = 0.65
and performed better than the other 14 scoring functions.

3.2.2 Test on the benchmark constructed by Muegge and Martin—ITScore/SE
was next evaluated on its ability of binding affinity prediction using the PMF validation sets
prepared by Muegge and Martin, which consists of 77 diverse protein-ligand complexes
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from five protein classes.24 The test sets have been commonly used to evaluate knowledge-
based scoring functions.24,29,39,76,77

Table 6 and Figure 5 show the correlations of affinity prediction for ITScore/SE, ITScore,
and four other well-known knowledge-based scoring functions: PMF by Muegge and
Martin,24 DrugScorePDB by Gohkle et al.,76 BLEEP by Mitchell et al.,28 and SMoG2001 by
Ishchenko and Shakhnovich.29 Table 6 and Figure 5 show a significant improvement in the
performance of ITScore/SE (R2 = 0.76) over ITScore (R2 = 0.65).

Detailed examinations of the performance on each of Muegge and Martin’s test sets showed
that ITScore/SE yielded significantly higher correlation than ITScore (R2 = 0.80 vs. 0.70)
for set 5, which consists of 15 different protein-ligand complexes. This set is diverse,
showing the robustness of the affinity predictions of ITScore/SE compared to ITScore.
ITScore/SE did slightly better than ITScore on the 16 serine protease complexes (set 1, R2 =
0.89 vs. 0.87), 15 metalloprotease complexes (set 2, R2 = 0.71 vs. 0.70), and 11
endothiapepsin complexes (set 4, R2 = 0.36 vs. 0.35), and slightly less satisfactory on the 18
L-arabinose binding protein complexes (set 3, R2 = 0.48 vs. 0.49) (Table 6 and Figure 5).

To further investigate how including solvation and entropy improved the affinity prediction,
Figures 6 and 7 plot the calculated ITScore/SE scores vs the measured binding data for the
77 protein-ligand complexes. The results for ITScore are also displayed for comparison. It
can be seen from Figure 6 that the better performance of ITScore/SE may benefit from the
elimination of some outliers due to the inclusion of solvation and entropy. For example,
ITScore/SE decreases the binding scores of some complexes such as 1MNC, 1PNG and
2TMN compared to the ITScore, whereas increases the binding scores of complexes like
1EED, 2IFB and 5ER2. Examining the five individual sets of the benchmark in more detail
reveals that the set 4 of 11 endothiapepsin complexes benefit from the newly introduced
energy penalty for ligand conformational entropy, which increases the ITScore/SE scores of
the flexible ligands with many rotatable bonds in those complexes [Figure 7, (d)]. The lower
ITScore/SE scores for set 2 (15 metalloprotease complexes) and set 3 (18 L-arabinose
binding protein complexes) are largely due to the newly introduced desolvation energies
[Figure 7, (b) and (c)]. Set 1 (16 serine protease complexes) and set 5 (17 other protein-
ligand complexes) may attribute their higher correlation to the overall contributions of both
desolvation and entropy [Figure 7, (a) and (e)].

3.2.3 Test on the PDBbind database—In addition, we also test the ability of ITScore/
SE in binding affinity prediction on the large and challenging PDBbind database of 1299
protein-ligand complexes.67,68 Figure 8 shows the correlation between the calculated energy
scores and the measured binding affinities for ITScore and ITScore/SE. It can be seen from
the figure that compared to ITScore (R = 0.430), ITScore/SE shows a tighter distribution of
points with a higher correlation coefficient of 0.474.

4 Discussion
It is well-known that the solvation and entropic effects play a critical role in determining the
binding free energy between protein and ligand. Failure to include the contributions of
solvation and entropy may result in a wrong prediction in the ligand binding mode and a
poor ranking of different protein-ligand complexes in binding affinity prediction. These
effects are not explicitly accounted for in current knowledge-based scoring functions
because of the difficulties in deriving the corresponding potentials for solvents and entropy.
In the present study we have presented a computational model to include the solvation and
entropic effects in ITScore—an iterative knowledge-based scoring function recently
developed by our group.38,39 In the newly developed scoring function ITScore/SE, the
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solvation effect was included by using an atom-based solvent accessible surface area
(SASA) term, and the entropic contribution was estimated by two empirical energy terms.
Despite the simple forms of the solvation and entropic energy terms, ITScore/SE achieved
significant improvement over ITScore in binding mode and affinity predictions on two
widely-used benchmarks of diverse protein-ligand complexes.

The physics basis for adding the solvation and entropy terms to ITScore is as follows.
Indeed, ITScore implicitly accounts for part of the solvation and entropy effects, because
they are converted from the structural information of native protein-ligand complexes which
result from the sum effect of all natural interactions including the solvation and entropy
effects. However, desolvation depends on the local environment, and cannot be fully
accounted by pair potentials. For example, an embedded salt bridge formed between the
protein and the ligand would be much stronger than the salt bridge with the same separation
distance that is exposed to the solvent. A second SASA-based energy term (referred to as a
singlet potential term in ref 26) is needed to better characterize the solvation and
hydrophobicity/hydrophilicity effects. The entropy effect is not a pairwise effect, and cannot
be fully accounted for by the protein-ligand pairwise potentials. For example, the ligand
conformational entropy depends on the ligand rotatable bonds and vibrational entropy
depends on the size and shape of the binding pocket.

The next question that should be addressed about ITScore/SE is the possibility of double
counting. It is expected that conventional knowledge-based pair potentials implicitly include
part of the solvation and entropy effects, because they are converted from the structural
information of native protein-ligand complexes which result from the sum effect of all
natural interactions including the solvation and entropy effects.24 Therefore, explicit
consideration of solvation or entropy in a knowledge-based scoring function could result in a
double counting problem. However, a detailed analysis of individual energy terms in
ITScore/SE suggests that double counting may be much less significant in this scoring
function than in conventional knowledge-based scoring functions because of the following
reasons. First, there is no double counting between the pair potentials and the solvation term
because they were simultaneously adjusted/extracted from the native protein-ligand
structures through our novel iterative procedure. Second, the conformational entropy loss is
particularly important for large, highly flexible ligands, which are unlikely to form
complexes with proteins in most cases and therefore are rare in the training database. Thus,
the corresponding entropic energy information is missing in the training set and cannot be
extracted when deriving the pair potentials, resulting in insignificant double counting effect
between the pair potential terms and the ligand conformational entropy term. In addition, the
conformational entropy defined in eq 8 does not affect ligand binding modes, and is
therefore expected to be excluded from the pair potentials, which are derived from
discerning ligand binding modes. Third, the vibrational entropic effect depends mainly on
binding pocket dimensions and ligand geometric properties. Its little dependance on atom
types suggests that the vibrational entropic effect may be largely excluded from the atom
type-dependent pair potentials.

Another important issue is whether or not the potentials in ITScore/SE were overtrained due
to some homologous proteins between the training database of 786 complexes and the test
sets. To answer this question, we excluded 76 homologous protein-ligand complexes in the
original training set that have λ 60% protein sequence identities with the 100 complexes in
Wang et al’s benchmark or the 77 complexes in the PMF test set, and re-derived the
potential parameters of ITScore/SE. The results for two ITScore/SE versions for Wang et
al’s test set and the pmf sets are listed in Table 7. It can be seen from the table that there is
no significant difference between the correlations of two ITScore/SE versions. The ITScore/
SE from the training set of 786 complexes obtained sightly higher correlations for sets 1, 3,
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6 and 7, while the ITScore/SE from the training set of 710 complexes yielded better
performances for sets 2 and 4. The two ITScore/SE versions tied on set 5. The overall
slightly lower correlation for the ITScore/SE from 710 complexes might be due to fewer
protein-complexes in the training database, which may provide less statistics in structural
information for potential extraction. Future training set would include additional non-
homologous protein-ligand complexes in the abundant Protein Data Bank. The results
suggest that our ITScore/SE potentials are not overtrained by the database of 786 protein-
ligand complexes.

Although the conformational entropic term defined in eq 8 does not affect the ligand binding
mode prediction, the inclusion of the conformational entropy in a scoring function is
important for binding affinity prediction, which is especially crucial in virtual database
screening that ranks hundreds of thousands of different ligands against a protein target.
Without considering the conformational entropy, docking programs have a bias toward large
ligands, which can easily have favorable VDW energies. Introducing ligand conformational
entropy term results in an energy penalty for large flexible ligands that have many rotatable
bonds, thereby reducing false positives. Indeed, as shown in Figure 5, ITScore/SE
significantly improves the correlation between predicted binding scores and measured
affinities with the benchmark of 77 diverse complexes compared to ITScore.

Despite the present success, there exist limitations in ITScore/SE that need further
investigation. In the present study, we used the number of the neighbors for a ligand mode
defined in eq 10 to estimate ligand vibrational entropy. This fast empirical method can be
regarded as a simplified version of a much more computationally expensive integral
approach52,63,64,78–81 by taking advantage of the multiple ligand binding modes generated
from docking programs, which are assumed to fully sample the binding site. From the
physics implied in the configurational integral,52,78–81 the generated ligand modes would
follow a Boltzmann distribution according to their binding scores. Therefore, a reliable
estimation of eq 10 requires the use of a set of well-sampled ligand modes with Boltzmann
distribution, which means that the accuracy of eq 10 may be docking program-dependent,
even though the present study was validated by using AutoDock to generate appropriate
ligand poses61. For docking programs that generate Boltzmann distribution-like ligand
sampling, there will be no significant difference for the contribution of the ligand vibrational
entropy of eq 10 to the success rate in binding mode prediction. Otherwise, the difference
would be significant and could make the success rate worse. In this case, it would be better
to remove the ligand vibrational entropy of eq 10 from eq 12 when implementing ITScore/
SE, which can still yield a high success rate, e.g. 86% as in Table 4. To overcome this
limitation, future studies would require a general method that does not depend on a specific
docking program for the calculation of the ligand vibrational entropy.

To summarize, due to the importance of desolvation and entropy in ligand binding and the
nature that the pairwise potentials cannot fully account for their effects, explicit inclusion of
desolvation and entropy into the knowledge-based scoring function is needed. Predictions
are improved especially for Muegge and Martin’s sets (affinity prediction) and Wang et al’s
set (mode prediction). The much larger PDBbind set is a challenging set, and future studies
would include how to achieve a high correlation coefficient in affinity prediction for this set.

5 Conclusion
We have presented a new iterative knowledge-based scoring function to explicitly include
the contributions of solvation and entropy. The scoring function, referred to as ITScore/SE,
was evaluated using three well-known benchmarks of diverse protein-ligand complexes.
Despite the simplicity of the forms for desolvation and entropic energies, ITScore/SE
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achieved significant improvement in its performance over ITScore — an iterative
knowledge-based scoring function that consists of the pair potentials only. For binding mode
prediction, ITScore/SE yielded a success rate of 91% compared to ITScore (82%) for Wang
et al.’s test set of 100 protein-ligand complexes, if the criterion of rmsd ≤ 2.0 Å was used.
For binding affinity prediction, ITScore/SE yielded a correlation of R2 = 0.76 between the
calculated binding scores and measured binding energies for Muegge and Martin’s test sets
of 77 protein-ligand complexes, compared to R2 = 0.65 for ITScore and R2 = 0.28 ~ 0.61 for
four other well-known knowledge-based scoring functions. In addition, ITScore/SE yielded
an improved correlation coefficient of R = 0.474 with the large PDBbind database of 1299
protein-ligand complexes, compared to ITScore (R = 0.430). The improvement of ITScore/
SE over ITScore suggests the necessity of including desolvation and entropy in the
knowledge-based scoring functions. The present method is applicable to other knowledge-
based scoring functions to account for solvation and entropy effects.
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Figure 1.
Comparison of six selected pair potentials for ITScore/SE (red lines) and ITScore (black
lines). The first atom-type label refers to the protein atom, and the second to the ligand atom.
The dashed line (y = 0) is plotted for reference.
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Figure 2.
Success rates of ITScore/SE, ITScore, and 14 other well-known scoring functions for Wang
et al’s test set of 100 protein-ligand complexes under the criterion of rmsd ≤ 2.0 Å when the
best-scored conformation was considered (see Table 3).
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Figure 3.
The ligand binding modes predicted by ITScore/SE and ITScore for the complex 1TNL,
respectively. The protein is represented by molecular surface and colored by atom types (i.e.
C: gray, O: red, N: blue, S: yellow). The ligand is represented in stick mode. The ligand
binding mode predicted by ITScore/SE (i.e., the native binding mode) is colored by atom
type. The binding mode predicted by ITScore is colored in magenta. The figure was
prepared by UCSF Chimera.82
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Figure 4.
Correlation coefficients (R) of binding affinity prediction for ITScore/SE, ITScore, and 14
other well-known scoring functions with Wang et al’s test set of 100 protein-ligand
complexes (see Table 5).
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Figure 5.
Correlations of binding affinity predictions for ITScore/SE, ITScore, and four other well-
known knowledge-based scoring functions (PMF99, DrugScorePDB, BLEEP, and
SMoG2001) with the PMF test sets listed in Table 6.
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Figure 6.
ITScore/SE (filled symbols) and ITScore (open symbols) scores vs the measured binding
energies with the PMF validation sets of 77 diverse protein-ligand complexes constructed by
Muegge and Martin. The arrows indicate several particularly beneficial changes in scoring
between ITScore/SE and ITScore. Five different symbols stand for five different sets of
protein-ligand complexes that are defined in Table 6.
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Figure 7.
ITScore/SE and ITScore scores vs the measured binding energies for the five individual sets
of the PMF benchmark (see Table 6). The legend applies to all the panels in this figure.
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Figure 8.
ITScore/SE and ITScore energy scores vs the measured binding energies for the PDB-bind
database of 1299 protein-ligand complexes.
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Table 1

List of 27 atom types and their corresponding van der Waals (VDW) radii used for the guess of initial pair
potentials.

atom type description VDW radii (Å)

sp/sp2 Carbon (C.1, C.2, C.ar and C.cat)

C2+ carbon bonded to a positively charged nitrogen 1.85

C2− carbon bonded to a negatively charged oxygen 1.85

C2N carbon in amide groups 1.85

C2O carbon bonded to O.2, but not belonging to C2+, C2− or C2N 1.85

C2F carbon only bonded to carbon or hydrogen 1.85

C2X other sp/sp2 carbon 1.85

sp3 Carbon (C.3)

C3F carbon only bonded to carbon or hydrogen 2.00

C3X carbon other than C3F 2.00

sp2 Nitrogen (N.2, N.ar, N.am and N.pl3)

N2N nitrogen in amide groups 1.75

N2+a/NC positively charged nitrogen 1.75

N21 nitrogen bonded to one non-hydrogen atom 1.75

N22 nitrogen bonded to two non-hydrogen atoms 1.75

N2X nitrogen except N2N, N2+, N21 and N22 1.75

sp Nitrogen (N.1)

N1 all sp nitrogen 1.75

sp3 Nitrogen (N.3 and N.4)

N3+a/NC N.4 or nitrogen bonded to one or two non-hydrogen atoms 1.75

N3X sp3 nitrogen except N3+ 1.80

sp2 Oxygen (O.2)

O2 all sp2 oxygen 1.60

sp3 Oxygen (O.3)

O31 oxygen bonded to one non-hydrogen atom 1.65

O32 oxygen bonded to two non-hydrogen atoms 1.65

negatively charged Oxygen (O.co2)

OC all negatively charged oxygen 1.60

Sulfur (S.2, S.3, S.O, S.O2, etc.)

S1 sulfur single-bonded to one non-hydrogen atom 2.00

SO sulfur bonded to sp2 oxygen 2.00

SX sulfur except S1 and SO 2.00

Phosphorus (P.3)

P all phosphorus 2.10
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atom type description VDW radii (Å)

Halogan (F, Cl, Br and I)

F all fluorine 1.55

Cl all chlorine 2.03

Brb all bromine 2.18

Ib all iodine 2.35

Metal ions

MET metal ions (MG, ZN, CA etc.) 1.20

a
The atom types ‘N2+’ and ‘N3+’ are grouped as the charged nitrogen ‘NC’ because they normally carry a positive charge.

b
The atom types ‘Br’ and ‘I’ are grouped as one atom type because of their low occurrences.
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Table 2

Solvation parameters σi of 27 atom types in the derived ITScore/SE. Some solvation parameters are not
available because of the lack of the atom types or their low statistics.

atom type σi (kcal·mol−1 · Å−2)

C2+ −0.048

C2− −0.010

C2N −0.002

C2O 0.020

C2F −0.001

C2X 0.002

C3F 0.017

C3X 0.018

N2N 0.020

NC −0.029

N21 −0.043

N22 −0.031

N2X N/A

N1 N/A

N3X N/A

O2 −0.010

O31 −0.023

O32 0.039

OC −0.027

S1 0.038

SO 0.066

SX −0.065

P −0.008

F −0.068

Cl 0.005

Br/I 0.039

MET N/A
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Table 5

Correlation coefficients between the experimentally determined binding energies and the calculated binding
scores using ITScore/SE, ITScore, and 14 other scoring functions for Wang et al.’s test set of 100 complexes.

scoring functiona function type correlation (R)

ITScore/SE iterative score 0.65

ITScore iterative score 0.65

X-Score empirical 0.64

DFIRE knowledge-based 0.63

DrugScoreCSD knowledge-based 0.62

DrugScorePDB knowledge-based 0.60

Cerius2/PLP empirical 0.56

SYBYL/G-Score force-field-based 0.56

SYBYL/D-Score force-field-based 0.48

SYBYL/ChemScore empirical 0.47

Cerius2/PMF knowledge-based 0.40

DOCK/FF force field 0.40

Cerius2/LUDI empirical 0.36

Cerius2/LigScore empirical 0.35

SYBYL/F-Score empirical 0.30

AutoDock semiempirical 0.05

a
The results of the scoring functions other than ITScore/SE were obtained from literature.27,31,39,66

J Chem Inf Model. Author manuscript; available in PMC 2011 October 23.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Huang and Zou Page 31

Ta
bl

e 
6

C
or

re
la

tio
ns

 o
f b

in
di

ng
 a

ff
in

ity
 p

re
di

ct
io

n 
fo

r I
TS

co
re

/S
E,

 IT
Sc

or
e,

 a
nd

 fo
ur

 w
el

l-k
no

w
n 

kn
ow

le
dg

e-
ba

se
d 

sc
or

in
g 

fu
nc

tio
ns

 w
ith

 th
e 

PM
F 

va
lid

at
io

n
se

ts
 o

f 7
7 

di
ve

rs
e 

pr
ot

ei
n-

lig
an

d 
co

m
pl

ex
es

 c
on

st
ru

ct
ed

 b
y 

M
ue

gg
e 

an
d 

M
ar

tin
a .

no
.

se
t

no
. o

f
co

m
pl

ex
es

co
rr

el
at

io
nb

 (R
2 )

IT
Sc

or
e/

SE
IT

Sc
or

e
PM

F9
9

D
ru

gS
co

re
PD

B
B

L
E

E
P

SM
oG

20
01

1
se

rin
e 

pr
ot

ea
se

16
0.

89
0.

87
0.

87
0.

86
0.

79
0.

81

2
m

et
al

lo
pr

ot
ea

se
15

0.
71

0.
70

0.
58

0.
70

0.
59

0.
64

3
L-

ar
ab

in
os

e 
bi

nd
in

g 
pr

ot
.

18
(9

)c
0.

48
0.

49
0.

48
0.

22
0.

14
0.

06

4
en

do
th

ia
pe

ps
in

11
0.

36
0.

35
0.

22
0.

30
0.

04
0.

03

5
ot

he
rs

17
0.

80
0.

70
0.

69
0.

43
0.

49
0.

50

6
se

ts
 1

–5
77

0.
76

0.
65

0.
61

n/
a

0.
28

0.
46

a Th
e 

re
su

lts
 fo

r t
he

 sc
or

in
g 

fu
nc

tio
ns

 o
th

er
 th

an
 IT

Sc
or

e/
SE

 w
er

e 
ex

tra
ct

ed
 fr

om
 th

ei
r o

rig
in

al
 p

ap
er

s.2
4,

29
,3

9,
76

,7
7

b N
ot

e 
th

at
 th

e 
co

rr
el

at
io

n 
pa

ra
m

et
er

 in
 th

is
 ta

bl
e 

is
 th

e 
sq

ua
re

 o
f c

or
re

la
tio

n 
co

ef
fic

ie
nt

 (R
2 )

 ra
th

er
 th

an
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

 it
se

lf 
(R

) t
o 

ke
ep

 c
on

si
st

en
cy

 w
ith

 th
e 

or
ig

in
al

 d
at

a.

c Th
e 

cr
ys

ta
l s

tru
ct

ur
es

 o
f t

he
 n

in
e 

L-
ar

ab
in

os
e 

co
m

pl
ex

es
 th

at
 c

on
ta

in
 tw

o 
lig

an
d 

co
nf

or
m

at
io

ns
 w

er
e 

tre
at

ed
 se

pa
ra

te
ly

.

J Chem Inf Model. Author manuscript; available in PMC 2011 October 23.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Huang and Zou Page 32

Table 7

Correlation coefficients of binding affinity prediction for ITScore/SE derived from the training databases with
and without the highly homologous proteins, using the pmf sets (Sets 1–6) and Wang, et al’s set (Set 7).

No. Set
No. of

complexes

Correlation coefficient (R)

ITScore/SEa ITScore/SEb

1 serine protease 16 0.94 0.93

2 metalloprotease 15 0.84 0.85

3 L-arabinose binding prot. 18(9)c 0.69 0.66

4 endothiapepsin 11 0.60 0.61

5 others 17 0.89 0.89

6 sets 1–5 (Muegge and Martin’s set) 77 0.87 0.85

7 Wang et al’s set 100 0.65 0.61

a
The results for ITScore/SE derived from the training database of 786 protein-ligand complexes.

b
The results for ITScore/SE derived from the training database of 710 protein-ligand complexes after excluding 76 homologous protein-ligand

complexes.
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