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The family of adaptive resonance theory (ART) based systems concerns distinct artificial neural networks
for unsupervised and supervised clustering analysis. Among them, the ART 2-A paradigm presents numerous
strengths for data analysis. After a rapid presentation of the ART 2-A theory and algorithmic information,
the usefulness of this neural network for the selection of optimal test series is estimated. The results are
compared with those obtained from hierarchical cluster analysis and visual mapping methods. The advantages
and drawbacks of each method are discussed. We show that ART 2-A represents a new useful nonlinear
statistical tool for QSAR and drug design.

1. INTRODUCTION

The design of valuable structure-activity or structure-
property relationships requires the use of training and testing
sets with compounds presenting a maximal “meaningful
variety”. Even if many techniques for selecting sets of
compounds presenting a high information content with
respect to the activity or property studied are available, these
approaches are not completely satisfactory since they present
various drawbacks. Indeed, for example, some can be
considered as black boxes since they only provide optimal
sets without any information on the similarities with the other
compounds available.1 In the same way, the research for
new biologically active chemicals in agrochemistry and
medicinal chemistry or decision making in the management
of toxic substances requires inspection of several thousands
of chemicals for which only limited information is available.
Since it is practically impossible to test all the possible
candidates, a decision must be taken as where to start from.
This implies the adoption of strategies for a rational selection
of the most relevant compounds for preliminary biological
testing and for the derivation of (quantitative) structure-
activity relationships ((Q)SAR) and quantitative structure-
property relationships (QSPR). This kind of strategy is
known as optimal test series design. A plethora of publica-
tions dealing with this crucial problem can be found in the
literature (see for example the review paper of Pleiss and
Unger2). Significant advances in the field dealt with the use
of clustering and display linear multivariate methods allowing
selection of test series by simple visual inspection of 2-D
plots summarizing the information content of a matrix of
physicochemical properties.3-9 More recently, nonlinear
approaches such as nonlinear mapping (NLM),1,10,11nonlinear
neural mapping (N2M),12 and genetic algorithms13 have been
proposed opening new perspectives in the field.
The usefulness of adaptive resonance theory (ART) based

neural networks in chemometrics has recently been
stressed.14-22 Among them, ART 2-A, an algorithmic

version of ART 2, has been shown to present some
advantages over classical clustering tools such as rapid
training speed, self-organization behavior, and interpretability
of the network weights. Under these conditions, the aim of
this paper is to explore the interest of ART 2-A as a new
alternative for solving the complex problem of optimal test
series selection not only due to its ability to perform
clustering but also due to the fact that it provides useful
information on the clusters formed and their relationships.

2. THEORY OF ART 2-A

By means of his adaptive resonance theory, Grossberg23,24

started to model selected aspects of real-time pattern recogni-
tion in the brain. This theory rather provided neural models
that were not explicitly designed for multivariate data
analysis. ART can explain how a pattern is classified by a
trained biological neural network, when this pattern does not
fit into any existing learned category. ART states for this
typical extrapolation case that a brain extends its knowledge
by an initialization of up to here unused regions of “fresh”
neurons. The new region is dynamically linked to the active
region of the brain. In the brain, this ability avoids collapses
when confronted, for example, with an unexpected visual
novelty. This novelty is rather dynamically detected as
deviating from all recorded categories of knowledge, and it
is immediately (in real-time) stored by the brain as a new
knowledge. The research group of Grossberg and Carpenter
then developed several ART based classifiers. The methods
mainly differ in approaching pattern similarity by either
Euclidean angle based or fuzzy theory based distance
concepts. Some ART classifiers such as ART 123-25 and
ARTMAP26 are restricted to binary input vectors while ART
2,27 ART 2-A,28 ART 3,29 and FuzzyART30 can stably learn
to categorize either binary or analog input patterns. ART 3
can additionally carry out parallel search, or hypothesis
testing, of distributed recognition codes in a multilevel
network hierarchy. FuzzyARTMAP31 can rapidly learn
stable categorical mappings between analog or binary input
and output vectors. Historically, the group of unsupervised
ART methods ART 1,23-25 ART 2,27 ART 3,29 and Fuzzy-
ART30was developed before the supervised ART techniques
ARTMAP26 and FuzzyARTMAP.31 Many of the basic
papers on the topic have been compiled in a seminal book
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by Carpenter and Grossberg32 dedicated to self-organizing
neural networks. In the present case study, we used ART
2-A, a simplified ART 2 algorithm, due to its ability to deal
with analog input patterns, its ease for computation, and also
its learning speed.28 Like all ART paradigms, the math-
ematical principles behind ART 2-A are rather complicated
but the fundamental ideas are not. Under these conditions,
we only outline below the main concepts of this paradigm
and provide algorithmic information. Readers that are more
mathematically inclined will find an abundance of theory
and mathematical demonstrations in the original articles of
Carpenter and co-workers.23-32 The unsupervised clustering
performed by ART 2-A can be briefly summarized as
follows. ART 2-A is divided into two subsystems: an
attentional subsystem, which processes familiar stimuli, and
an orienting subsystem that detects unfamiliar input patterns
and resets the attentional subsystem when it detects such a
pattern. It compares input patterns with the existing network
structure to check whether they fit into (“resonate with”) it.
In case of resonance, an “adaptation” of the existing weights
is performed, otherwise the structure is adapted by creation
of new weight vector(s). Hence, the network learns by
modification or creation of a set of coefficients (weights).
Thus, ART 2-A like the other ART networks is designed to
resolve the stability-plasticity dilemma. It is stable enough
to preserve past learning, but nevertheless remains adaptable
enough to incorporate new information whenever it might
appear.

In practice, an input pattern presented to the network is
first preprocessed and then compared to each of the existing
cluster prototypes. Among them, the winner is the prototype
that is the most similar to the input pattern. If this similarity
exceeds a predefined limit termed vigilance parameter, then
the network learns the input by modifying the winner’s
weights to more closely reflect the input. If the similarity
is less than required by the vigilance parameter, the network
adapts its structure by adding a new neuron whose weights
become identical to the input pattern presented. At the end
of the learning process, the network has classified the input
patterns into a variable number of clusters depending on the
value of the vigilance parameter and on the structure of the
data set at hand.

The algorithm used to perform the above clustering and
the structure of an ART 2-A network are depicted in Figures
1 and 2, respectively. The different steps of the algorithm
are detailed below. Applied in a QSAR context, ART 2-A
allows one to derive clusters from a data matrixX of n
individuals described bym variables. Each individualxi is
therefore considered as a vector in them-dimensional space
of variables. Some of the individuals can be closer to each
other in this space forming groups if the values of theirm
variables are similar. The goal is to find such groups
(clusters) of similar individuals, whereby the numberc of
groups in the data setX is not knowna priori. The ART
2-A algorithm incorporates the basic features of all ART
systems, notably, pattern matching between bottom-up input
and top-down learned prototype vectors. There are bot-
tom-up and top-down connections between each input and
output neurons (layers F1 and F2, respectively) which
comprise the “adaptive filters”. In addition, a preprocessing
layer (F0) is added. It performs a normalization and allows
contrast enhancement between the input patterns (Figure 2).

An initialization of the so-called long-term memory (LTM)
which is the matrix of weight coefficients is performed. The
bottom-up weights are assigned a same value 1/xm, while
top-down weights are initially set to 0. The number of
potential categories is arbitrary, and initially each category
is said to be “uncommitted”. The different learning param-
eters discussed below (i.e.,R, θ, Fmax, η) are also set during
this initialization phase. Then, a single individualxi from
the data matrixX is randomly selected and preprocessed to
yield r i. This consists in a normalization of the individual
to unit length (i.e., the norm of each individualxi equals
one) and a contrast enhancement. Normalization and contrast
enhancement are performed by means of eqs 1 and 2,
respectively.

Figure 1. Algorithm flow diagram of ART 2-A.

Figure 2. Architecture of an ART 2-A network.

oi ) xi/||xi|| (1)

Fθ(oi) ≡ {rij ) oij if oij > θ
rij ) 0 otherwise

(2)
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whereθ is a threshold that smoothes out low values and
satisfies the following inequality 0< θ e 1/xm.
The F1 layer then takes the F0 output and gates it to the

F2 layer through the bottom-up connections (zk). During
this step, the input (short-term memory (STM)) is compared
with all the already existingk ) 1 to c clusters (i.e.,
committed nodes) and the uncommitted nodes of the F2
layer. Indeed, each cluster on the F2 layer is represented
by a weight vectorz*k having the same dimension as the
input vectors. The similarity between the input vectors and
the F2 nodes is expressed as shown in eq 3.

The constantR satisfiesR e 1/xm. Becauser i andz*k
have unit length, eq 3 comes down to the cosine of the angle
between both vectors.
A winning neuron is selected among the F2 nodes. It

corresponds to this presenting the maximal similarity (Fkcalc).
In the original algorithm, if more than one node is maximum,
then one chooses one at random. In our study, we chose
this having the lowest indexk. The selected node is said to
be committed. In the neural network terminology, the search
for the winning neuron followed by its training is called
competitive learning. This notion is also known, for
example, in Kohonen networks.33,34 However, unlike Ko-
honen networks, in ART 2-A only the weights of the winning
node can be updated. In addition, the winning neuron is
not updated if itsFkcalc value (notedFcalc,winner) is inferior to
the vigilance parameter notedFmax (graphically expressed,
Fmax forms the spatial limit of each cluster). Indeed, the next
step is the resonance check. During this step,Fcalc,winner is
compared withFmax whereFmax is constrained so that 0e
Fmax e 1. If k is committed andFcalc,winner< Fmax, thenk is
reset to the index of an uncommitted node. A largeFmax
will thus provide many new clusters having a small diameter.
In the reverse case whereFmax is chosen close to 0, only a
few but large clusters are generated. If the selected neuron
is an uncommitted node as it is necessarily the case at the
very beginning of an ART 2-A run, when the first individual
is randomly selected and presented to the network, thenr i
is simply copied toz*k. Otherwise, the network weights are
updated as shown below:

where

with

and

θ is a threshold that smoothes out low values providing in
this way a nonlinear transfer of the weight vector. The aim
of this update is to make the spatial position of the winning

cluster closer to the presentedr i. In practice,η is chosen
between 0 and 1. Anη value close to 0 provides small
stepwise changes in the weights. Thus, via “weight adapta-
tion”, an ART network stores a weighted part of the present
input individual in the LTM. If the resonance condition (i.e.,
Fkcalc > Fmax) is not satisfied, the network adapts in place of
its weights first its structure toward the discovered novelty.
“Structure adaptation” means adding a new cluster (additional
weight vector or neuronz*c+1) to the existing ones. The
significantly deviating novel individualr i is stored im-
mediately in this additional neuron by direct copy. This is
another original idea of Grossberg: ART neural networks
use not only their weights but also their structure for
information storage.
After this step of adaptation, another input vector is

randomly selected from the training set, and the entire process
of “resonance” and “adaptation” is repeated, whereby the
content of the STM is continuously overwritten by the new
input vectors. When the random sampling of the training
data matrixX has been performedn times, one has performed
one epoch. Simultaneously, the contrast between clusters
in the LTM increases. The process converges within a few
epochs with formation ofc clusters. The chosen constant
of vigilance parameterFmax determines how many clustersc
are formed. In other words, by a suitable choice ofFmax,
the numberc of clusters to derive from the multivariate data
cloudX can be monitored. In this way, a variation ofFmax
can serve for active exploration of a data setX by resolving
it into distinct numbers of clusters presenting various sizes.
With ART, the more compact and well separated the

clusters are, the less subjective the user’s choice ofη andF
is and the more stable the results are. In this situation, ART
will always find the “true” numberc of hidden clusters. At
the opposite, the more the data scatter or the more they form
a continuous hypersurface of equidistant points, the higher
the influence ofη andF on the clustering result is.
Only a few papers dealing with applications of ART 2-A

can be found in the literature, but they can provide
complementary information on the ART 2-A paradigm and
can represent a source of ideas for the development of ART
2-A applications.16,18-22,35-39

3. EXPERIMENTAL SECTION

ART 2-A was applied on a data matrix of 103 aliphatic
substituents (Table 1) described by the hydrophobic constant
for aliphatic substituents Fr, H-bonding acceptor (HBA) and
donor (HBD) abilities, the molar refractivity (MR), and the
inductive parameter F, respectively.40 The selection of this
data set was directed by the fact that the results could be
compared with a series of methods so that the advantages
and drawbacks of ART 2-A could be more easily evidenced.
Indeed, this matrix was first analyzed by means of hierarchi-
cal cluster analysis (HCA).40 In addition, we recently
proposed the use of NLM for obtaining a single easily
interpretable map summarizing the information contained in
the original data table.10 More recently the use of a hybrid
system combining clustering and display techniques was also
experienced.12 The data were scaled by normalization in the
range [0, 1] (i.e., using a min/max equation) per column. A
quantitative analysis of the network training was performed
by running the network with different values of the vigilance
parameter and by monitoring the number of clusters formed

Fk
calc) {R∑jrij if k is an uncommitted node

r iz*k if k is a committed node
(3)

z*k
new,winner) tk/||tk|| (4)

tk ) uk + (1- η) z*k
old,winner (5)

uk ) η(vk/||vk||) (6)

Vkj ) rij if z* kj
old,winner> θ (7)

Vk ) 0 otherwise
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during learning in order to select an appropriateFmax value.
A full analysis of the ART 2-A results and comparison with
previously published results using different techniques was
performed by inspecting the numerical outputs and using
graphical display techniques such as nonlinear mapping.41

4. RESULTS AND DISCUSSION

4.1. Setting the Cluster Size.Figure 3 illustrates for
five different values of the vigilance parameter (Fmax) the
number of clusters formed versus the number of cycles
required for convergence with ART 2-A. It is noteworthy
that in all cases convergence was obtained after ap-
proximately 10 epochs. This underlines the ability of ART
networks to perform clustering very rapidly. This presents
two main advantages. Indeed, the rapid convergence in
training allows us to quickly optimize the network param-
eters, and, therefore, many configurations can be tested for
exploratory data analysis. From Figure 3, it can also be
deduced that the dominant clusters are always formed at the
very beginning of the training. Indeed, the slope of the
curves shown in Figure 3 are very high at the beginning,
and the number of clusters formed then tends to a maximum
very rapidly. Last, the low sensitivity betweenFmax ) 0.1
andFmax) 0.6 indicates that there are basically three strong
clusters in the structure of the data set. To compare our
results with those previously published,10,12,40theFmax value
was fixed so that 10 clusters could be obtained. This
underlines again the advantage of this kind of network which
allows a gradual inspection of a data set and also a
monitoring of the precision required in the clustering. The
appropriateFmax value for the above constraint was found to

be 0.92. The network was run for 30 epochs so as to ensure
the stability of the results. It has to be noted that some
substituents located at the borderline between two clusters
have been found to fall in a neighbor cluster during separate
runs, but this does not influence the conclusions that are
drawn below from one of these runs. Indeed, for the sake
of brevity the other runs are not detailed. They would simply
provide complementary information.
4.2. Clustering Results. Membership of the 103 sub-

stituents to the ten clusters is given in Table 2. For
comparison purposes, although the NLM was performed after
a different scaling transformation, we have represented in
Figure 4 the membership to the different clusters. It is
noteworthy that despite the different preprocessing of the
data,10 the results are generally in agreement. Indeed, the
ART 2-A clusters allow one to logically divide the nonlinear
map into 10 regions of physicochemically similar substitu-
ents. Some slight discrepancies with the NLM can be
observed in clusters 5 and 10. Indeed, substituent 87 which
belongs to cluster 5 is found in the middle of some
substituents of cluster 10. This atypical assignment is due
to its borderline location between the two clusters (see later).
As regards substituents 79, 81, and 85, a reason for their

Table 1. Aliphatic Substituents

no. substituent no. substituent no. substituent

1 Br 36 OCOCH3 70 COC3H7

2 Cl 37 CO2CH3 71 OCOC3H7

3 F 38 NHCOCH3 72 CO2C3H7

4 I 39 CdO(NHCH3) 73 (CH2)3CO2H
5 NO2 40 CH2CH3 74 NHCOC3H7

6 H 41 OCH2CH3 75 CONHC3H7

7 OH 42 CH2OCH3 76 C4H9

8 SH 43 SOC2H5 77 C(CH3)3
9 NH2 44 SC2H5 78 OC4H9

10 CBr3 45 CH2Si(CH3)3 79 CH2OC3H7

11 CCl3 46 NHC2H5 80 NHC4H9

12 CF3 47 N(CH3)2 81 N(C2H5)2
13 CN 48 CHdCHCN 82 CHdCHCOC2H5

14 SCN 49 cyclopropyl 83 CHdCHCO2C2H5

15 CO2- 50 COC2H5 84 C5H11

16 CO2H 51 CO2C2H5 85 CH2OC4H9

17 CH2Br 52 OCOC2H5 86 C6H5

18 CH2Cl 53 EtCO2H 87 OC6H5

19 CH2I 54 NHCO2C2H5 88 SO2C6H5

20 CONH2 55 CONHC2H5 89 NHC6H5

21 CHdNOH 56 NHCOC2H5 90 2-benzthiazolyl
22 CH3 57 CH(CH3)2 91 CHdCHCOC3H7

23 NHCONH2 58 C3H7 92 CHdCHCO2C3H7

24 OCH3 59 OCH(CH3)2 93 COC6H5

25 CH2OH 60 OC3H7 94 CO2C6H5

26 SOCH3 61 CH2OC2H5 95 OCOC6H5

27 OSO2CH3 62 SOC3H7 96 NHCOC6H5

28 SCH3 63 SC3H7 97 CH2C6H5

29 NHCH3 64 NHC3H7 98 CH2OC6H5

30 CF2CF3 65 Si(CH3)3 99 CH2Si(C2H5)3
31 CtCH 66 2-thienyl 100 CHdCHC6H5-(trans)
32 CH2CN 67 3-thienyl 101 CHdCHCOC6H5

33 CHdCHNO2- 68 CHdCHCOCH3 102 ferrocenyl
(trans) 69 CHdCHCO2CH3 103 N(C6H5)2

34 CHdCH2

35 COCH3

Figure 3. Plot of the number of clusters formed versus number of
epochs for an ART 2-A neural network trained with the aliphatic
data set at variousFmax values.

Table 2. Contents of the Ten ART 2-A Clustersa

cluster
no. substituents

1 7, 9, 16, 20, 21, 23, 25, 38, 39, 54, 55, 56, 74, 75
2 29, 46, 53, 64, 73, 80, 89, 96
3 5, 13, 14, 24, 26, 27, 35, 36, 37, 43, 52, 62, 88
4 6, 10, 11, 17, 18, 19, 22, 28, 34, 40, 44, 49, 57, 58, 63, 66,
5 32, 33, 41, 42, 47, 48, 50, 51, 59, 60, 61, 68, 69, 70, 71,

72, 78, 82, 87
6 15
7 45, 65, 67, 76, 77, 84, 86, 97, 99, 100, 102
8 1, 2, 3, 4, 12, 30, 31
9 8
10 79, 81, 83, 85, 90, 91, 92, 93, 94, 95, 98, 101, 103

a The underlined substituents are those proposed in a previous study.10
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atypical position might be the different scaling procedures
used in the two methods. Compared with NLM and HCA,
the atypical character of substituents 8 and 15 is also stressed
by the ART 2-A results since they are isolated. In the same
way, comparison with the N2M (Figure 5) shows that the
two methods provide comparable results. Indeed, in Figure
5, the presence in the N2M neurons (i.e., clusters) of the
substituents contained in the clusters derived by ART 2-A
are indicated in black. Thus, even if, the ART 2-A clusters
can overlap two or more N2M neurons or if a same N2M
neuron can contain substituents belonging to different ART
2-A clusters, the results of the two techniques are generally
in accordance. Thus, for example, the substituents of the
first ART 2-A cluster are all contained in neurons P and Q
of the N2M display (Figure 5). Some discrepancies with
the minimum spanning tree (MST) can, however, be
observed for some ART 2-A clusters. Thus, for example,
inspection of the map corresponding to cluster 3 shows that
its substituents can be found in the neurons A and B which
are directly linked by the MST but also in neuron E.
However, it must be noted that in neuron E there is only
substituent 88 from cluster 3 of ART 2-A. The inspection
of its Fcalc values (see next section for significance ofFcalc
values) shows that it is due to its borderline location between
clusters 3, 5, and 10. This is confirmed on the nonlinear
map (Figure 4). In the same way, for cluster 4, the
substituents can be found in neurons I and J and also in
neurons O and S. Figure 4 indicates that cluster 4 is between
clusters 7 and 8 on the nonlinear map, and Figure 5 shows
that substituents of cluster 7 are found in neurons M, O, and,
S and that those of cluster 8 are in neuron I. Therefore, the
fact that cluster 4 covers neurons common to both clusters
7 and 8 and neuron J is not surprising.
4.3. Interpretation of Numerical Results. To go further

in the comparison, the key individuals of each cluster derived

by ART 2-A were determined using theFcalc values which
depict the closeness of each individual to the cluster
considered. They can also depict the similarity between any
substituent and any cluster. For a given cluster, the sub-
stituent presenting the maximumFcalc value is the most
representative of the cluster. The key individuals were
compared to the selection proposed from HCA and NLM.10

Figure 4. Representation on the nonlinear map of the 103
substituents10 of their cluster memberships derived by ART 2-A.
See Table 1 for correspondence between the “small” numbers and
the substituents. The large numbers inside a square correspond to
the cluster indices given in Table 2. Cluster 10 is splitted into two
groups linked by a line. The arrows indicate the substituents selected
in a previous study.10

Figure 5. Representation on the N2M display12 of the ART 2-A
clusters. Each map corresponds to an ART 2-A cluster. For each
map, the neurons in black are those containing the substituents
included in the considered ART 2-A cluster. The cluster numbers
correspond to those of Table 2.

14 J. Chem. Inf. Comput. Sci., Vol. 37, No. 1, 1997 DOMINE ET AL.



The results are summarized in Tables 2 and 3. Inspection
of Table 3 shows that the numerical values provided by ART
2-A and which guide the selection of the key individuals
among the ten clusters allow one to find results similar to
those obtained from HCA and NLM. Indeed, in Table 3, it
is noteworthy that in all the clusters derived except the sixth
one, we find at least one of the previously selected substit-
uents. As regards cluster 6 which contains substituent 15
(i.e., CO2-), it has to be considered that HCA also isolated
this substituent in a cluster and that it was decided not to
select it due to its atypical character.10 Besides this agree-
ment between the different methods, one advantage of ART
2-A is that the preliminary selection of key substituents
among each cluster is directed by an easily interpretable
statistical parameter calledFcalc (Table 3). Indeed, the largest
values ofFcalc correspond to the substituents that are the most
characteristic of the cluster considered. If ever for any
reason, such as difficulty for synthesis, a substituent was
found not to be adequate, then theFcalc values can suggest
the selection of another closest substituent since each cluster
includes substituents with similar physicochemical profiles.
Thus, for example, if in cluster 5, OCH(CH3)2 (substituent
59) was not satisfying, ART 2-A suggests to try with OC3H7

(substituent 60) which has the sameFcalc value and possesses
relatively similar physicochemical properties. Thus, the
system is open, and freedom is left to the chemist to use
any criterion for the selection of an optimal test series. The
Fcalc values can also be used to determine substituents that
are located at the borderline between two clusters and,
therefore, determine the relative position of each substituent.
Thus, for example, it is noteworthy in Figure 4, that
substituent 87 is placed in cluster 5, while it is among
substituents belonging to cluster 10. Inspection of theFcalc
(data not given) values shows that substituent 87 is actually

at the borderline between clusters 5 and 10 since itsFcalc
values for these two clusters are high and close to each other
(i.e.,Fcalc ) 0.992 for cluster 5 andFcalc ) 0.989 for cluster
10). With regards to substituents 79, 81, and 85, theFcalc
values also suggest a location at the borderline between
clusters 5 and 10.
Other useful parameters for the interpretation of ART 2-A

results, and the exploration of a data matrix are the interclass
angles (Table 4). They provide information on the relation-
ships between the clusters. Thus, the larger the cosine of
the angles, the more similar the clusters. From a practical
point of view, this allows us to select a substituent in another
cluster if ever no appropriate substituents could be found in
a given cluster. From Table 4, for example, if one wants to
replace a substituent of cluster 1 by a substituent in another
cluster, the interclass angles suggest cluster 2. This is
verified on the nonlinear map (Figure 4).
4.4. Graphical Interpretation of Neural Weights. If

the derivation of clusters and the selection of key substituents
is very useful, it is also always necessary to have information
on the clusters formed. This is achieved by inspection of
the weights of each cluster providing an insight into the
composition of the clusters in terms of physicochemical
properties. They give physicochemical profiles of the
substituents constituting the clusters. To summarize the
information contained in the weight values and also to
compare each cluster with all the others, an NLM of the
ART 2-A clusters was performed from the weight values
(Figure 6.1). Figure 6.1 visualizes the similarities between
the different clusters with respect to their weights and,
therefore, their physicochemical characteristics. Thus, for
example, it clearly shows that clusters 3, 5, and 10 are close
to each other compared with the other clusters. If graphical
tools are used, one can in addition plot the weight data and,

Table 3. Comparison of Test Series Selected by HCA, NLM, and ART 2-Aa

cluster
no. HCA, NLM10 ART 2-A

1 7: OH 7: OH (0.998)
2 96: NHCOC6H5 80: NHC4H9 (0.998), 96: NHCOC6H5 (0.960)
3 13: CN, 24: OCH3 36: OCOCH3 (0.999), 14: SCN (0.998), 35: COCH3 (0.998), 37: CO2CH3(0.998), 13:

CN (0.992), 24: OCH3 (0.992)
4 6: H 17: CH2Br (0.999), 34: CHdCH2 (0.996), 6: H (0.952)
5 87: OC6H5 59: OCH(CH3)2 (0.999), 60: OC3H7 (0.999), 87: OC6H5 (0.992)
6 15: CO2- (1.000)
7 76: C4H9, 100: CHdCHC6H5-(trans) 65: Si(CH3)3 (0.997), 84: C5H11 (0.997), 76: C4H9 (0.990), 100: CH)CHC6H5-(trans) (0.992)
8 1: Br 1: Br (0.998), 2: Cl (0.998), 12: CF3 (0.998), 30: CF2CF3 (0.998)
9 8: SH 8: SH (1.00)
10 81: N(C2H5)2 95: OCOC6H5 (0.999), 81: N(C2H5)2 (0.992)

a TheFcalc values of the substituents which are closest to the neural weight vector are given between brackets. TheFcalc values of the substituents
selected by HCA and NLM are also provided.

Table 4. Cosine of the Interclass Anglesa

cluster no. 1 2 3 4 5 6 7 8 9 10

1 1.000 0.918 0.743 0.354 0.735 0.685 0.281 0.402 0.755 0.686
2 0.918 1.000 0.636 0.336 0.683 0.663 0.382 0.226 0.664 0.708
3 0.743 0.636 1.000 0.574 0.989 0.838 0.488 0.639 0.396 0.943
4 0.354 0.336 0.574 1.000 0.611 0.092 0.954 0.915 0.577 0.661
5 0.735 0.683 0.989 0.611 1.000 0.839 0.563 0.616 0.387 0.980
6 0.685 0.663 0.838 0.092 0.839 1.000 0.078 0.118 0.077 0.790
7 0.281 0.382 0.488 0.954 0.563 0.078 1.000 0.764 0.495 0.666
8 0.402 0.226 0.639 0.915 0.616 0.118 0.764 1.000 0.616 0.592
9 0.755 0.664 0.396 0.577 0.387 0.077 0.495 0.616 1.000 0.380
10 0.686 0.708 0.943 0.661 0.980 0.790 0.666 0.592 0.380 1.000

a 1 means identity and 0 means maximum dissimilarity.
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therefore, visualize on a sole series of maps all the informa-
tion contained in the original weight data table. Thus, in
Figures 6.2-6.6, the weight data were plotted (after subtrac-
tion of the overall mean to improve the visualization) by
means of squares (positive values) and circles (negative
values) proportional in size to the transformed weights. In
these figures, the larger the square, the larger the weight
value, and the larger the circle, the lower the weight value.
Although the complete analysis of these figures is beyond
the scope of this paper, it can be noted, for example, that in
Figure 6.2 substituents of the top clusters generally present
high Fr values. In Figure 6.3,6.4 obvious separations of the
clusters, linked to HBA and HBD abilities, can be observed.
In addition, the nonlinear mapping of the clusters is an

open approach, and any other useful information (e.g.,
biological or chemical information on the substituents
contained in the clusters) for the interpretation or exploitation
of the clusters in terms of structure-activity or structure-
property relationships can be plotted.

5. CONCLUSIONS

The present study evidences the heuristic potency of ART
2-A for optimal test series design in QSAR. This technique
which performs a nonlinear cluster analysis of data sets
converges within a few epochs. In addition, ART 2-A offers
the possibility of interpretation of the clusters derived in
terms of the original variables by means of their weights
which provide the characteristic profiles of the individuals
constituting the clusters. Graphical tools are useful for
visualizing the information condensed in a trained ART
neural network. An interesting feature of these networks is
also that by setting the vigilance parameterFmax at different
levels, it is possible to gradually inspect the structure of the
data sets at hand. This is also made possible by the fact

that convergence is rapidly obtained. From a practical point
of view, by simply selecting one or more substituents in each
cluster, one obtains a highly informative test series. The
Fcalc values guide and facilitate the preliminary selection of
substituents and also any deviation from this selection. ART
2-A results are consistent with those obtained from other
techniques such as HCA, NLM, or N2M. All these methods
have shown the ability to provide complementary and
supplementary information. Last, although it was not shown
in this study, ART 2-A can be used for predictive purposes.
Thus, an unknown pattern can be presented to the network
and its membership to a cluster determined. If its similarity
with the existing clusters was not sufficient, another cluster
would be formed and its relations with the others given by
the different numerical data provided by the network.
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