Version: v2.1 Last Modified: June 3, 2020

Samudrala Group

Department of Biomedical Informatics Jacobs School of Medicine and Biomedical Sciences University at Buffalo 77 Goodell St., Suite 540 Buffalo, NY 14203

1 CANDO	1
2 Install	1
3 Test	2
4 Authors	2
5 LICENSE	2
6 Namespace Index	3
6.1 Packages	3
7 Hierarchical Index	3
7.1 Class Hierarchy	3
8 Class Index	3
8.1 Class List	3
9 File Index	4
9.1 File List	4
10 Namespace Documentation	4
10.1 cando Namespace Reference	4
10.1.1 Function Documentation	
11 Class Documentation	10
11.1 cando.ADR Class Reference	10
11.1.1 Detailed Description	11
11.1.2 Constructor & Destructor Documentation	
11.1.3 Member Data Documentation	11
11.2 cando.CANDO Class Reference	11
11.2.1 Detailed Description	14
11.2.2 Constructor & Destructor Documentation	14
11.2.3 Member Function Documentation	14
11.2.4 Member Data Documentation	26
11.3 cando.Compound Class Reference	29
11.3.1 Detailed Description	30
11.3.2 Constructor & Destructor Documentation	30
11.3.3 Member Function Documentation	30
11.3.4 Member Data Documentation	31
11.4 cando.Indication Class Reference	32
11.4.1 Detailed Description	32
11.4.2 Constructor & Destructor Documentation	32
11.4.3 Member Data Documentation	33
11.5 cando.Matrix Class Reference	33

1 CANDO 1

11.5.1 Detailed Description	34
11.5.2 Constructor & Destructor Documentation	34
11.5.3 Member Function Documentation	34
11.5.4 Member Data Documentation	35
11.6 cando.Pathway Class Reference	36
11.6.1 Detailed Description	36
11.6.2 Constructor & Destructor Documentation	36
11.6.3 Member Data Documentation	36
11.7 cando.Protein Class Reference	37
11.7.1 Detailed Description	37
11.7.2 Constructor & Destructor Documentation	37
11.7.3 Member Data Documentation	38
12 File Documentation	38
12.1 AUTHORS.md File Reference	38
12.2 cando.py File Reference	38
12.3 LICENSE.md File Reference	39
Index	41

1 CANDO

Computational Analysis of Novel Drug Opportunities

CANDO is a unique computational drug discovery, design, and repurposing platform.

2 Install

You may download the source code via the releases or cloning the git repository. However, we suggest using anaconda to install the CANDO package, as this is the easiest and quickest way to start using our platform!

The CANDO package relies on multiple "conda-forge" dependencies. Therefore, we require that you add "conda-forge" to your anaconda channels:

conda config --add channels conda-forge

Then you can install CANDO using the following command:

conda install -c ram-compbio cando

3 Test

You can test your install by running our script:

test.py

4 Authors

- · William Mangione
- · Zackary Falls
- · James Schuler
- · Matt Hudson
- · Liana Bruggemann
- · Ram Samudrala

For general questions, please contact Ram Samudrala (ram@compbio.org). For direct questions about source code for cando.py, please contact William Mangione (wmangion@buffalo.edu) or Zackary Falls (zmfalls@buffalo.edu).

5 LICENSE

Copyright 2019 William Mangione

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SP ECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6 Namespace Index

6 Namespace Index

6.1 Packages

Here are the packages with brief descriptions (if available):

cando 4

7 Hierarchical Index

7.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

object

cando.ADR	10
cando.CANDO	11
cando.Compound	29
cando.Indication	32
cando.Matrix	33
cando.Pathway	36
cando.Protein	37

8 Class Index

8.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

cando.ADR
An object to represent an adverse reaction

10

cando.CANDO
An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)

11

cando.Compound
An object to represent a compound/drug

29

cando.Indication
An object to represent an indication (disease)

32

cando.Matrix
An object to represent a matrix

33

cando.Pathway

An object to represent a pathway

36

cando.Protein

An object to represent a protein

37

9 File Index

9.1 File List

Here is a list of all files with brief descriptions:

cando.py 38

10 Namespace Documentation

10.1 cando Namespace Reference

Classes

class ADR

An object to represent an adverse reaction.

class CANDO

An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)

class Compound

An object to represent a compound/drug.

class Indication

An object to represent an indication (disease)

· class Matrix

An object to represent a matrix.

· class Pathway

An object to represent a pathway.

· class Protein

An object to represent a protein.

Functions

def generate_matrix (cmpd_scores, prot_scores, c_cutoff=0.0, p_cutoff=0.0, percentile_cutoff=None, interaction_score='P', matrix_file='cando_interaction_matrix.tsv', ncpus=1)

Generate a CANDO Matrix.

• def generate scores (fp="rd ecfp4", cmpd pdb=", out path='.')

Generate the fingerprint for a new compound and calculate the Tanimoto similarities against all binding site ligands.

• def generate_signature (cmpd_scores=", prot_scores=", c_cutoff=0.0, p_cutoff=0.0, percentile_cutoff=None, interaction_score='P', matrix_file=")

Generate signature.

• def get_scores (c, p_scores, c_score, c_cutoff, p_cutoff, percentile_cutoff, i_score)

Get best score for each Compound-Protein interaction.

• def score_fp (fp, cmpd_file, cmpd_id, bs)

Generate the scores for a given Compound against all Protein ligands.

- def cosine_dist (A)
- def tanimoto_sparse (str1, str2)

Calculate the tanimoto coefficient for a pair of sparse vectors.

• def tanimoto_dense (list1, list2)

Calculate the tanimoto coefficient for a pair of dense vectors.

def get_fp_lig (fp)

Download precompiled binding site ligand fingerprints using the given fingerprint method.

• def get_v2 (matrix='nrpdb')

Download CANDO v2.0 data.

• def get_tutorial ()

Download data for tutorial.

• def get test ()

Download data for test script.

def dl_dir (url, out, l)

Function to recursively download a directory.

def dl_file (url, out_file)

Function to download a file.

10.1.1 Function Documentation

```
10.1.1.1 cosine_dist() def cando.cosine_dist (

A )
```

Function to recursively download a directory.

Prints the name of the directory and a progress bar.

Parameters

url	str: URL of the dir to be downloaded
out	str: Path to where the dir will be downloaded
1	list: List of files in dir to be downloaded

Function to download a file.

Prints the name of the file and a progress bar.

Parameters

url	str: URL of the file to be downloaded
out_file	str: File path to where the file will be downloaded

Generate a CANDO Matrix.

Parameters

cmpd_scores	str: File path to tab-separated scores for all Compounds
prot_scores	str: File path to tab-separated scores for all Proteins
c_cutoff	Any Cscores below this value will not be considered for the interaction score. (0.0-1.0).
	Default = 0.0
p_cutoff	Any Pscores below this value will not be considered for the interaction score. $(0.0-1.0)$. Default = 0.0
percentile_cutoff	Percentile of all Compound-ligand Cscores for each Compound by which the Cscore cutoff will be defined (0.0-100.0 or None). This makes the hard c_cutoff variable for each Compound to avoid molecular size bias due to fingerprinting. This overwrites the use of c_cutoff. Default = None
interaction_score	The scoring function for the interaction between each Compound-Protein pair. ('C', 'dC', 'P', 'CxP', 'dCxP').
matrix_file	str: File path to where the generated Matrix will be written Default = 'cando_interaction_matrix.tsv'
ncpus	int: Number of cpus to use for parallelization. Default = 1

Generate the fingerprint for a new compound and calculate the Tanimoto similarities against all binding site ligands.

Parameters

fp	str: The fingerprinting software and method used, e.g. 'rd_ecfp4', 'ob_fp2'
cmpd_pdb	str: File path to the PDB
out_path	str: Path to where the scores file will be written

Generate signature.

Parameters

cmpd_scores	str: File path to tab-separated scores for all Compounds
prot_scores	str: File path to tab-separated scores for all Proteins
matrix_file	str: File path to where the generated Compounds signature will be written
c_cutoff	Any Cscores below this value will not be considered for the interaction score. (0.0-1.0). Default = 0.0
p_cutoff	Any Pscores below this value will not be considered for the interaction score. (0.0-1.0). Default = 0.0
percentile_cutoff	Percentile of all Compound-ligand Cscores for each Compound by which the Cscore cutoff will be defined (0.0-100.0 or None). This makes the hard c_cutoff variable for each Compound to avoid molecular size bias due to fingerprinting. This overwrites the use of c_cutoff. Default = None
interaction_score	The scoring function for the interaction between each Compound-Protein pair. ('C', 'dC', 'P', 'CxP', 'dCxP').

Download precompiled binding site ligand fingerprints using the given fingerprint method.

Parameters

fp str: Fingerprinting method used to compile each binding site ligand fingerprint

```
10.1.1.8 get_scores() def cando.get_scores (
```

```
c,
p_scores,
c_score,
c_cutoff,
p_cutoff,
percentile_cutoff,
i_score )
```

Get best score for each Compound-Protein interaction.

Parameters

С	int: Compound id
p_scores	df: DataFrame of all Protein ligands and corresponding scores
c_score	df: DataFrame of all Compound-ligand scores
c_cutoff	Any Cscores below this value will not be considered for the interaction score. (0.0-1.0).
p_cutoff	Any Pscores below this value will not be considered for the interaction score. (0.0-1.0).
percentile_cutoff	Percentile of all Compound-ligand Cscores for each Compound by which the Cscore cutoff will be defined (0.0-100.0). This makes the hard c_cutoff variable for each Compound to avoid molecular size bias due to fingerprinting. This overwrites the use of c_cutoff.
i_score	The scoring function for the interaction between each Compound-Protein pair. (C, dC, P, CxP, dCxP).

```
10.1.1.9 get_test() def cando.get_test ( )
```

Download data for test script.

This data includes:

- Test Matrix (Approved drugs (2,162) and 64 proteins)
- v2.0 Compound mapping (approved and all)
- v2.0 Indication Compound mapping
- Compound scores file for all approved compounds (fingerprint: rd_ecfp4)
- Test Protein scores file (64 proteins) for all binding site ligands for each Protein (fingerprint: rd_ecfp4)
- Test Compound in PDB format to generate a new fingerprint and vector in the Matrix
- Directory of test Compounds in PDB format to generate multiple new fingerprints and vectors in the Matrix
- Test Pathways set

```
10.1.1.10 get_tutorial() def cando.get_tutorial ( )
```

Download data for tutorial.

This data includes:

- Example Matrix (Approved drugs (2,162) and 64 proteins)
- v2.0 Compound mapping (approved and all)
- v2.0 Indication Compound mapping
- Compound scores file for all approved compounds (fingerprint: rd_ecfp4)
- Example Protein scores file (64 proteins) for all binding site ligands for each Protein (fingerprint: rd_ecfp4)
- Example Compound in PDB format to generate a new fingerprint and vector in the Matrix
- · Example Pathways set

```
10.1.1.11 get_v2() def cando.get_v2 (

matrix = 'nrpdb')
```

Download CANDO v2.0 data.

This data includes:

- Compound mapping (approved and all)
- · Indication-compound mapping
- Scores file for all approved compounds (fingerprint: rd_ecfp4)
- Matrix file for approved drugs (2,162) and all proteins (14,610) (fingerprint: rd_ecfp4)

Generate the scores for a given Compound against all Protein ligands.

Parameters

fp	str: Fingerprinting software and method used, e.g., rd_ecfp4
cmpd_file	str: File path to PDB
cmpd_id	int: Number correspodning to the new Compound id
bs	df: DataFrame of all protein ligand fingerprints for the given fingerprinting method (fp)

Calculate the tanimoto coefficient for a pair of dense vectors.

Parameters

list1	list: List of positions that have a 1 in first compound fingerprint	
list2	list: List of positions that have a 1 in second compound fingerprint]

Calculate the tanimoto coefficient for a pair of sparse vectors.

Parameters

str1	str: String of 1s and 0s representing the first compound fingerprint
str2	str: String of 1s and 0s representing the second compound fingerprint

11 Class Documentation

11.1 cando.ADR Class Reference

An object to represent an adverse reaction.

Inheritance diagram for cando.ADR:

Public Member Functions

• def __init__ (self, id_, name)

Public Attributes

- id
- name
- compounds

11.1.1 Detailed Description

An object to represent an adverse reaction.

11.1.2 Constructor & Destructor Documentation

11.1.3 Member Data Documentation

11.1.3.1 compounds cando.ADR.compounds

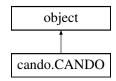
list: Compound objects associated with the given ADR

```
11.1.3.2 id_ cando.ADR.id_
```

str: Identification for the given ADR

11.1.3.3 name cando.ADR.name

str: Name of the given ADR


The documentation for this class was generated from the following file:

· cando.py

11.2 cando.CANDO Class Reference

An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)

Inheritance diagram for cando.CANDO:

Public Member Functions

- def __init__ (self, c_map, i_map, matrix=", compute_distance=False, save_rmsds=", read_rmsds=", pathways=", pathway_quantifier='max', indication_pathways=", indication_proteins=", similarity=False, dist_metric='rmsd', protein_set=", rm_zeros=False, rm_compounds=", adr_map=", protein_map=", ncpus=1)
- def search_compound (self, name, n=5)

Print closest Compound names/IDs for input search str.

def get compound (self, cmpd id)

Get Compound object from Compound id or fuzzy match to Compound name.

def get_protein (self, protein_id)

Get Protein object from Protein id.

def get_indication (self, ind_id)

Get Indication object from Indication id.

def get_pathway (self, id_)

Get Pathway object from Pathway id.

def get_adr (self, id_)

Get ADR (adverse drug reaction) from ADR id.

def search_indication (self, name, n=5)

Print closest MeSH IDs for Indication name.

def top targets (self, cmpd, n=10, negative=False)

Get the top scoring protein targets for a given compound.

• def common_targets (self, cmpds_file, n=10, negative=False, save_file=")

Get the top scoring protein targets for a given compound.

def virtual_screen (self, protein, n=10, negative=False, compound_set='all', save_file=")

Get the top scoring protein targets for a given compound.

def uniprot_set_index (self, prots)

Gather proteins from input matrix that map to UniProt IDs from 'protein_set=' param.

• def generate_similar_sigs (self, cmpd, sort=False, proteins=[], aux=False)

For a given compound, generate the similar compounds using distance of sigs.

def generate_some_similar_sigs (self, cmpds, sort=False, proteins=[], aux=False)

For a given list of compounds, generate the similar compounds based on rmsd of sigs This is pathways/genes for all intents and purposes.

· def quantify_pathways (self, indication=None)

Uses the pathway quantifier defined in the CANDO instantiation to make a pathway signature for all pathways in the input file (NOTE: does not compute distances)

def results_analysed (self, f, metrics, effect_type)

Creates the results analysed named file for the benchmarking and computes final avg indication accuracies.

 def canbenchmark (self, file_name, indications=[], continuous=False, bottom=False, ranking='standard', adrs=False)

Benchmarks the platform based on compound similarity of those approved for the same diseases.

def canbenchmark_associated (self, file_name, indications=[], continuous=False, ranking='standard')

Benchmark only the compounds in the indication mapping, aka get rid of "noisy" compounds.

def canbenchmark_bottom (self, file_name, indications=[], ranking='standard')

Benchmark the reverse ranking of similar compounds as a control.

- def canbenchmark_ndcg (self, file_name)
- def canbenchmark_cluster (self, n_clusters=5)

Benchmark using k-means clustering.

def ml (self, method='rf', effect=None, benchmark=False, adrs=False, predict=[], threshold=0.5, negative='random', seed=42, out=")

create an ML classifier for a specified indication or all inds (to benchmark) predict (used w/ 'effect=' - indication or ADR) is a list of compounds to classify with the trained ML model out=X saves benchmark SUMMARY-> SUMMARY-> Y_ml_X; raw results->raw_results/raw_results_ml_X (same for RAN) currently supports random forest ('rf'), support vector machine ('svm'), 1-class SVM ('1csvm'), and logistic regression ('log') models are trained with leave-one-out cross validation during benchmarking

- def raw_results_roc (self, rr_files, labels, save='roc-raw_results.pdf')
- def canpredict_denovo (self, method='count', threshold=0.0, topX=10, ind_id=None, proteins=None, cmpd_set='all', save=")

This function is used for predicting putative therapeutics for an indication of interest by summing/counting the number of interactions above a certain input interaction threshold for all proteins or a specified subset of proteins.

• def canpredict_compounds (self, ind_id, n=10, topX=10, keep_associated=False, cmpd_set='all', save=")

This function is used for predicting putative therapeutics for an indication of interest using a homology-based approach.

def canpredict_indications (self, cmpd, n=10, topX=10, save=")

This function is the inverse of canpredict_compounds.

def similar compounds (self, cmpd, n=10)

Computes and prints the top n most similar compounds to an input Compound object cando_cmpd or input novel signature new_sig.

def add_cmpd (self, new_sig, new_name=")

Add a new Compound object to the platform.

• def sigs (self, rm)

Return a list of all signatures, rm is a list of compound ids you do not want in the list.

• def save_rmsds_to_file (self, f)

Write calculated distances of all compounds to all compounds to file.

• def fusion (self, cando_objs, out_file=", method='sum')

This function re-ranks the compounds according to the desired comparison specified by 'method' -> currently supports 'min', 'avg', 'mult', and 'sum'.

• def normalize (self)

Normalize the distance scores to between [0,1].

def __str__ (self)

Print stats about the CANDO object.

Public Attributes

- c_map
- i map
- matrix
- protein_set
- pathways
- · accuracies
- compute_distance
- clusters
- rm_zeros
- rm_compounds
- rm_cmpds
- save_rmsds
- read_rmsds
- · similarity
- · dist metric
- ncpus
- · pathway_quantifier
- · indication_pathways
- · indication_proteins
- adr_map
- protein_map
- proteins
- protein_id_to_index
- compounds

- · indications
- · indication ids
- adrs
- · short matrix path
- short_read_rmsds
- · short_protein_set
- cmpd_set
- · data_name

11.2.1 Detailed Description

An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)

To instantiate you need the compound mapping (c_map), an indication mapping file (i_map), and typically and a compound-protein matrix (matrix=) or or precomputed compound-compound distance matrix (read_rmsds=), but those are optional.

11.2.2 Constructor & Destructor Documentation

```
11.2.2.1 __init__() def cando.CANDO.__init__ (
              self,
              c_{map}
              i_map,
              matrix = '',
              compute_distance = False,
              save_rmsds = '',
              read_rmsds = '',
              pathways = '',
              pathway_quantifier = 'max',
              indication_pathways = '',
              indication_proteins = '',
              similarity = False,
              dist_metric = 'rmsd',
              protein_set = '',
              rm_zeros = False,
              rm_compounds = '',
              adr_map = '',
              protein_map = '',
              ncpus = 1)
```

11.2.3 Member Function Documentation

Print stats about the CANDO object.

Add a new Compound object to the platform.

Parameters

new_sig	str: Path to the tab-separated interaction scores
new_name	str: Name for the new Compound

Returns

cmpd Compound: Compound object

Benchmarks the platform based on compound similarity of those approved for the same diseases.

Parameters

file_name	str: Name to be used for the various results files (e.g. file_name=test> summary_test.tsv)	
indications	list or str: List of Indication ids to be used for this benchmark, otherwise all will be used.	
continuous	bool: Use the percentile of distances from the similarity matrix as the cutoffs for benchmarking	
bottom	bool: Reverse the ranking (descending) for the benchmark	
ranking	str: What ranking method to use for the compounds. This really only affects ties. (standard, modified, and ordinal)	
adrs	bool: ADRs are used as the Compounds' phenotypic effects instead of Indications	

Benchmark only the compounds in the indication mapping, aka get rid of "noisy" compounds.

This function returns the filtered CANDO object in the event that you want to explore further.

Parameters

file_name	str: Name to be used for the variosu results files (e.g. file_name=test> summary_test.tsv)
indications	list: List of Indication ids to be used for this benchmark, otherwise all will be used.
continuous	bool: Use the percentile of distances from the similarity matrix as the cutoffs for benchmarking
ranking	str: What ranking method to use for the compounds. This really only affects ties. (standard, modified, and ordinal)

Benchmark the reverse ranking of similar compounds as a control.

Parameters

file_name	str: Name to be used for the variosu results files (e.g. file_name=test> summary_test.tsv)
indications	list: List of Indication ids to be used for this benchmark, otherwise all will be used.
ranking	str: What ranking method to use for the compounds. This really only affects ties. (standard, modified, and ordinal)

Benchmark using k-means clustering.

Parameters

```
n_clusters int: Number of clusters for k-means
```

```
n = 10,
topX = 10,
keep_associated = False,
cmpd_set = 'all',
save = '')
```

This function is used for predicting putative therapeutics for an indication of interest using a homology-based approach.

Input an ind_id id and for each of the associated compounds, it will generate the similar compounds (based on distance) and add them to a dictionary with a value of how many times it shows up (enrichment). If a compound not approved for the indication of interest keeps showing up, that means it is similar in signature to the drugs that are ALREADY approved for the indication, so it may be a target for repurposing. Control how many similar compounds to consider with the argument 'n'. In the output, 'score1' refers to the number of times the compound shows up in the top 'n' drugs associated with the indication and 'score2' is the average of the ranks for 'score1' (note: 'score2' <= 'n').

Parameters

ind_id	str: Indication id	
п	int: top number of similar Compounds to be used for each Compound associated with the given Indication	
topX	nt: top number of predicted Compounds to be printed	
keep_associated	bool: Print Compounds that are already approved/associated for the Indication	
cmpd_set	str: specify the compound set to use ('all', 'approved', or 'other')	
save	str: name of a file to save results	

This function is used for predicting putative therapeutics for an indication of interest by summing/counting the number of interactions above a certain input interaction threshold for all proteins or a specified subset of proteins.

An indication can be specified to mark drugs associated with that indication in the output. The threshold will vary based on the values of the input matrix. Method can either be 'count' (score1), which ranks compounds based on the number of interactions above the threshold, or 'sum' (score2), which ranks the compounds based on the highest total sum for interaction scores above the threshold (these two are highly correlated but can differ for larger sets of proteins or lower thresholds). A third option is 'targets', which inspects and outputs the top protein interactions on an individual basis without summing/counting per drug (the output format differs from the other two options). If indication_proteins flag is used for the CANDO object instantiation, the proteins associated with the input indication will automatically be used. Otherwise, the 'proteins=' input can be used. The output can be saved to a file specified by 'save='. If ind_id is used, compounds associated with the indication will be included and marked in the output for comparison.

Parameters

method	str: 'sum', 'count', or 'targets'	
threshold	float: a interaction score cutoff to use (ignores values for sum/count less than threshold)	
topX	int: top number of predicted Compounds to be printed/saved	
ind_id	str: an indication id for marking drug output/ specifying protein set	
proteins	List str: list of protein IDs from the matrix to use for the sum/count	
cmpd_set	str: specify the compound set to use ('all', 'approved', or 'other')	
save	str: name of a file to save results	

This function is the inverse of canpredict_compounds.

Input a compound of interest cando_cmpd (or a novel protein signature of interest new_sig) and the most similar compounds to it will be computed. The indications associated with the top n most similar compounds to the query compound will be examined to see if any are repeatedly enriched.

Parameters

cmpd	Compound: Compound object to be used	
n	int: top number of similar Compounds to be used for prediction	
topX	int: top number of predicted Indications to be printed	

Get the top scoring protein targets for a given compound.

Parameters

cmpds_file	str: list of Compound IDs for which to search common targets	
n	nt: number of top targets to print/return	
negative	negative int: if the interaction scores are negative (stronger) energies	
save_file	str: save results to file name	

Returns

Returns list: list of tuples (protein id_, score)

This function re-ranks the compounds according to the desired comparison specified by 'method' -> currently supports 'min', 'avg', 'mult', and 'sum'.

Parameters

cando_objs	list: List of CANDO objects
out_file	str: Path to where the result will be written
method	str: Method of fusion to be used (e.g., sum, mult, etc.)

For a given compound, generate the similar compounds using distance of sigs.

Parameters

cmpd	object: Compound object	
sort	bool: Sort the list of similar compounds	
proteins	list: Protein objects to identify a subset of the Compound signature	
aux	aux bool: Use an auxiliary signature (default: False)	

Returns

Returns list: Similar Compounds to the given Compound

```
proteins = [],
aux = False )
```

For a given list of compounds, generate the similar compounds based on rmsd of sigs This is pathways/genes for all intents and purposes.

Parameters

cmpds	list: Compound objects	
sort	bool: Sort similar compounds for each Compound	
proteins	list: Protein objects to identify a subset of the Compound signature	
aux	bool: Use an auxiliary signature (default: False)	

Returns

Returns list: Similar Compounds to the given Compound

Get ADR (adverse drug reaction) from ADR id.

Parameters

id⊷	str: ADR id
_←	

Returns

Returns object: ADR object

Get Compound object from Compound id or fuzzy match to Compound name.

Parameters

cmpd←	int or str: Compound id or Compound name
_id	

Returns

Returns object: Compound object or None if no exact match is found

Get Indication object from Indication id.

Parameters

ind←	str: Indication id
_id	

Returns

Returns object: Indication object

Get Pathway object from Pathway id.

Parameters

```
id↔ str: Pathway id
```

Returns

Returns object: Pathway object

Get Protein object from Protein id.

Parameters

protein⊷	str: Protein name
_id	

Returns

Returns object: Protein object

```
11.2.3.20 ml() def cando.CANDO.ml (

self,

method = 'rf',

effect = None,

benchmark = False,

adrs = False,

predict = [],

threshold = 0.5,

negative = 'random',

seed = 42,

out = '')
```

create an ML classifier for a specified indication or all inds (to benchmark) predict (used w/ 'effect=' - indication or ADR) is a list of compounds to classify with the trained ML model out=X saves benchmark SUMMARY->SUM MARY_ml_X; raw results->raw_results/raw_results_ml_X (same for RAN) currently supports random forest ('rf'), support vector machine ('svm'), 1-class SVM ('1csvm'), and logistic regression ('log') models are trained with leave-one-out cross validation during benchmarking

Parameters

method	str: type of machine learning algorithm to use ('rf', 'svm', '1csvm', and 'log')
effect	Indication or ADR: provide a specific Indication or ADR object to train a classifer
benchmark	bool: benchmark the ML pipeline by training a classifier with LOOCV for each Indication or ADR
adrs	bool: if the models are trained with ADRs instead of Indications
predict	list: provide a list of Compound objects to classify with the model (only used in combination with effect=Indication/ADR object)
threshold	float: decision threshold for positive vs negative classification
negative	str: choose random negative samples (default) or 'inverse' for most opposite signatures
seed	int: choose a seed for reproducibility
out	str: file name extension for the output of benchmark (note: must have benchmark=True)

```
11.2.3.21 normalize() def cando.CANDO.normalize ( self )
```

Normalize the distance scores to between [0,1].

Simply divides all scores by the largest distance between any two compounds.

Uses the pathway quantifier defined in the CANDO instantiation to make a pathway signature for all pathways in the input file (NOTE: does not compute distances)

Parameters

indication object: Indication object

Creates the results analysed named file for the benchmarking and computes final avg indication accuracies.

Parameters

f	str: File path for results analysed named
metrics	list: Cutoffs used for the benchmarking protocol
effect_type	str: Defines the effect as either an Indication (disease) or ADR (adverse reaction)

Write calculated distances of all compounds to all compounds to file.

Parameters

```
f File name to save distances
```

```
11.2.3.26 search_compound() def cando.CANDO.search_compound ( self, name, n = 5 )
```

Print closest Compound names/IDs for input search str.

Parameters

name	str: Compound name
n	int: Number of outputted compounds

Returns

Returns None

```
11.2.3.27 search_indication() def cando.CANDO.search_indication ( self, name, n = 5 )
```

Print closest MeSH IDs for Indication name.

Parameters

name	str: Indication name
n	int: Number of outputted indications

Returns

Returns None

Return a list of all signatures, rm is a list of compound ids you do not want in the list.

Parameters

rm list: List of compound ids to remove from list of signatures

Returns

list: List of all signatures

```
11.2.3.29 similar\_compounds() def cando.CANDO.similar\_compounds ( self,
```

```
cmpd, n = 10)
```

Computes and prints the top n most similar compounds to an input Compound object cando_cmpd or input novel signature new_sig.

Parameters

cmpd	Compound: Compound object
n	int: top number of similar Compounds to be used for prediction

Get the top scoring protein targets for a given compound.

Parameters

cmpd	Compound or int: Compound object or int id_ for which to print targets
n	int: number of top targets to print/return
negative	int: if the interaction scores are negative (stronger) energies

Returns

Returns list: list of tuples (protein id_, score)

Gather proteins from input matrix that map to UniProt IDs from 'protein_set=' param.

Parameters

prots list: UniProt IDs (str)

Returns

Returns list: Protein chains (str) matching input UniProt IDs

Get the top scoring protein targets for a given compound.

Parameters

protein	Protein int or str: Protein (object, int index, or str id_) of which to screen for top scores
n	int: number of top compounds to print/return
negative	int: if the interaction scores are negative (stronger) energies
compound_set	str: use all Compounds ('all') or only approved Compounds ('approved')
save_file	str: save results to file name

Returns

Returns list: list of tuples (compound id_, score)

11.2.4 Member Data Documentation

11.2.4.1 accuracies cando.CANDO.accuracies

```
11.2.4.2 adr_map cando.CANDO.adr_map
```

str: File path to ADR mapping file

11.2.4.3 adrs cando.CANDO.adrs

```
11.2.4.4 c_map cando.CANDO.c_map
```

str: File path to the compound mapping file (relative or absolute)

11.2.4.5 clusters cando.CANDO.clusters

11.2.4.6 cmpd_set cando.CANDO.cmpd_set

11.2.4.7 compounds cando.CANDO.compounds

11.2.4.8 compute_distance cando.CANDO.compute_distance

bool: Calculate the distance for each Compound against all other Compounds using chosen distance metric

11.2.4.9 data_name cando.CANDO.data_name

 $\textbf{11.2.4.10} \quad \textbf{dist_metric} \quad \texttt{cando.CANDO.dist_metric}$

str: Distance metric to be used for computing Compound-Compound distances

11.2.4.11 i_map cando.CANDO.i_map

str: File path to the indication mapping file (relative or absolute)

11.2.4.12 indication_ids cando.CANDO.indication_ids

11.2.4.13 indication_pathways cando.CANDO.indication_pathways

str: File path to Indication-Pathway association file

11.2.4.14 indication_proteins cando.CANDO.indication_proteins

str: File path to Indication-Protein association file

11.2.4.15 indications cando.CANDO.indications

11.2.4.16 matrix cando.CANDO.matrix

str: File path to the cando matrix file (relative or absolute)

```
11.2.4.17 ncpus cando.CANDO.ncpus
```

int: Number of CPUs used for parallelization

11.2.4.18 pathway_quantifier cando.CANDO.pathway_quantifier

str: Method used to quantify a all Pathways

11.2.4.19 pathways cando.CANDO.pathways

str: File path to pathway file

11.2.4.20 protein_id_to_index cando.CANDO.protein_id_to_index

11.2.4.21 protein_map cando.CANDO.protein_map

str: File path to Protein metadata mapping file

11.2.4.22 protein_set cando.CANDO.protein_set

str: File path to protein subset file (relative or absolute)

11.2.4.23 proteins cando.CANDO.proteins

11.2.4.24 read_rmsds cando.CANDO.read_rmsds

str: File path to pre-computed distance matrix

11.2.4.25 rm_cmpds cando.CANDO.rm_cmpds

11.2.4.26 rm_compounds cando.CANDO.rm_compounds

list: Compounds to remove from the CANDO object

11.2.4.27 rm_zeros cando.CANDO.rm_zeros

bool: Remove Compounds with all-zero signatures from CANDO object

11.2.4.28 save_rmsds cando.CANDO.save_rmsds

bool: Write the calculated distances to file after computation (set compute_distances=True)

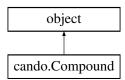
11.2.4.29 short_matrix_path cando.CANDO.short_matrix_path

11.2.4.30 short_protein_set cando.CANDO.short_protein_set

11.2.4.31 short_read_rmsds cando.CANDO.short_read_rmsds

11.2.4.32 similarity cando.CANDO.similarity

bool: Use similarity instead of distance


The documentation for this class was generated from the following file:

• cando.py

11.3 cando.Compound Class Reference

An object to represent a compound/drug.

Inheritance diagram for cando. Compound:

Public Member Functions

- def __init__ (self, name, id_, index, status='N/A')
- def add indication (self, ind)

Add an Indication to the list of Indications associated to this Compound.

Public Attributes

- name
- id_
- index
- status
- sig
- aux_sig
- indications
- similar
- similar_computed
- similar_sorted
- cluster_id
- adrs
- · alt_ids

11.3.1 Detailed Description

An object to represent a compound/drug.

11.3.2 Constructor & Destructor Documentation

11.3.3 Member Function Documentation

Add an Indication to the list of Indications associated to this Compound.

Parameters

ind object: Indication object to add

11.3.4 Member Data Documentation

11.3.4.1 adrs cando.Compound.adrs

list: List of ADRs associated with this Compound

11.3.4.2 alt_ids cando.Compound.alt_ids

dict: dict of other ids inputted with compound mapping

11.3.4.3 aux_sig cando.Compound.aux_sig

list: Potentially temporary signature for things like pathways, where "c.sig" needs to be preserved

11.3.4.4 cluster_id cando.Compound.cluster_id

int: The cluster id this Compound was assigned from clustering method

11.3.4.5 id_ cando.Compound.id_

int: CANDO id from mapping file (e.g., 1, 10, 100, ...)

11.3.4.6 index cando.Compound.index

int: The order in which the Compound appears in the mapping file (e.g, 1, 2, 3, ...)

11.3.4.7 indications cando.Compound.indications

list: This is every indication the Compound is associated with from the mapping file

11.3.4.8 name cando.Compound.name

str: Name of the Compound (e.g., 'caffeine')

11.3.4.9 sig cando.Compound.sig

list: Signature is essentially a column of the Matrix

11.3.4.10 similar cando.Compound.similar

list: This is the ranked list of compounds with the most similar interaction signatures

11.3.4.11 similar_computed cando.Compound.similar_computed

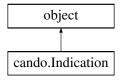
bool: Have the distances of all Compounds to the given Compound been computed?

11.3.4.12 similar_sorted cando.Compound.similar_sorted

bool: Have the most similar Compounds to the given Compound been sorted?

11.3.4.13 status cando.Compound.status

str: The clinical trial status of the compound from DrugBank ('approved' or 'other')


The documentation for this class was generated from the following file:

· cando.py

11.4 cando.Indication Class Reference

An object to represent an indication (disease)

Inheritance diagram for cando. Indication:

Public Member Functions

• def __init__ (self, ind_id, name)

Public Attributes

- id_
- name
- compounds
- pathways
- proteins
- pathogen

11.4.1 Detailed Description

An object to represent an indication (disease)

11.4.2 Constructor & Destructor Documentation

11.4.3 Member Data Documentation

11.4.3.1 compounds cando.Indication.compounds

list: Every associated compound object from the mapping file

11.4.3.2 id_ cando.Indication.id_

str: MeSH or OMIM ID for the indication from the mapping file

11.4.3.3 name cando.Indication.name

str: Name for the indication from the mapping file

11.4.3.4 pathogen cando.Indication.pathogen

bool: Whether or not this indication is caused by a pathogen

11.4.3.5 pathways cando.Indication.pathways

list: Every pathway associated to the indication from the mapping file

11.4.3.6 proteins cando.Indication.proteins

list: Every protein associated to the indication form the mapping file

The documentation for this class was generated from the following file:

· cando.py

11.5 cando.Matrix Class Reference

An object to represent a matrix.

Inheritance diagram for cando.Matrix:

Public Member Functions

- def __init__ (self, matrix_file, rmsd=False, convert_to_tsv=False)
- def convert (self, out_file)

Convert similarity matrix to distance matrix or vice versa.

• def normalize (self, outfile, dimension='drugs', method='avg')

Normalize the interaction scores across drugs (default) or proteins (not implemented yet).

Public Attributes

- matrix_file
- rmsd
- · convert to tsv
- proteins
- · values

11.5.1 Detailed Description

An object to represent a matrix.

Intended for easier handling of matrices. Convert between fpt and tsv, as well as distance to similarity (and vice versa)

11.5.2 Constructor & Destructor Documentation

11.5.3 Member Function Documentation

Convert similarity matrix to distance matrix or vice versa.

The first value in the matrix will determine the type of conversion (0.0 means distance to similarity, 1.0 means similarity to distance).

Parameters

out_file str: File path to which write the converted matri
--

Normalize the interaction scores across drugs (default) or proteins (not implemented yet).

Parameters

outfile	str: File path to which is written the converted matrix.
dimension	str: which vector to normalize - either 'drugs' to normalize all scores within the proteomic vector or 'proteins' to normalize for a protein against all drug scores.
method	str: normalize by the average or max within the vectors

11.5.4 Member Data Documentation

11.5.4.1 convert_to_tsv cando.Matrix.convert_to_tsv

bool: Convert old matrix format (.fpt) to .tsv

11.5.4.2 matrix_file cando.Matrix.matrix_file

str: Path to file with interaction scores

11.5.4.3 proteins cando.Matrix.proteins

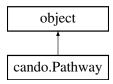
list: Proteins in the Matrix

11.5.4.4 rmsd cando.Matrix.rmsd

bool: if the matrix_file is an rmsd file

11.5.4.5 values cando.Matrix.values

list: Values in the Matrix


The documentation for this class was generated from the following file:

cando.py

11.6 cando.Pathway Class Reference

An object to represent a pathway.

Inheritance diagram for cando. Pathway:

Public Member Functions

def __init__ (self, id_)

Public Attributes

- proteins
- id_
- · indications

11.6.1 Detailed Description

An object to represent a pathway.

11.6.2 Constructor & Destructor Documentation

11.6.3 Member Data Documentation

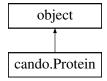
str: Identification for the given Pathway

11.6.3.2 indications cando.Pathway.indications

list: Indication objects associated with the given Pathway

11.6.3.3 proteins cando.Pathway.proteins

list: Protein objects associated with the given Pathway


The documentation for this class was generated from the following file:

· cando.py

11.7 cando.Protein Class Reference

An object to represent a protein.

Inheritance diagram for cando. Protein:

Public Member Functions

def __init__ (self, id_, sig)

Public Attributes

- id_
- alt_id
- sig
- pathways
- name
- gene

11.7.1 Detailed Description

An object to represent a protein.

11.7.2 Constructor & Destructor Documentation

11.7.3 Member Data Documentation

11.7.3.1 alt_id cando.Protein.alt_id

Used when a second identifier mapping is available (such as SIFTs project)

11.7.3.2 gene cando.Protein.gene

11.7.3.3 id_ cando.Protein.id_

PDB or UniProt ID for the given protein

11.7.3.4 name cando.Protein.name

11.7.3.5 pathways cando.Protein.pathways

List of Pathway objects in which the given protein is involved.

11.7.3.6 sig cando.Protein.sig

List of scores representing each drug interaction with the given protein

The documentation for this class was generated from the following file:

· cando.py

12 File Documentation

12.1 AUTHORS.md File Reference

12.2 cando.py File Reference

Classes

· class cando.Protein

An object to represent a protein.

class cando.Compound

An object to represent a compound/drug.

· class cando.Indication

An object to represent an indication (disease)

· class cando.Pathway

An object to represent a pathway.

· class cando.ADR

An object to represent an adverse reaction.

· class cando.CANDO

An object to represent all aspects of CANDO (compounds, indications, matrix, etc.)

· class cando.Matrix

An object to represent a matrix.

Namespaces

· cando

Functions

def cando.generate_matrix (cmpd_scores, prot_scores, c_cutoff=0.0, p_cutoff=0.0, percentile_cutoff=None, interaction_score='P', matrix_file='cando_interaction_matrix.tsv', ncpus=1)

Generate a CANDO Matrix.

def cando.generate scores (fp="rd ecfp4", cmpd pdb=", out path='.')

Generate the fingerprint for a new compound and calculate the Tanimoto similarities against all binding site ligands.

def cando.generate_signature (cmpd_scores=", prot_scores=", c_cutoff=0.0, p_cutoff=0.0, percentile_
 cutoff=None, interaction_score='P', matrix_file=")

Generate signature.

def cando.get_scores (c, p_scores, c_score, c_cutoff, p_cutoff, percentile_cutoff, i_score)

Get best score for each Compound-Protein interaction.

def cando.score_fp (fp, cmpd_file, cmpd_id, bs)

Generate the scores for a given Compound against all Protein ligands.

- def cando.cosine dist (A)
- def cando.tanimoto_sparse (str1, str2)

Calculate the tanimoto coefficient for a pair of sparse vectors.

def cando.tanimoto_dense (list1, list2)

Calculate the tanimoto coefficient for a pair of dense vectors.

def cando.get_fp_lig (fp)

Download precompiled binding site ligand fingerprints using the given fingerprint method.

def cando.get_v2 (matrix='nrpdb')

Download CANDO v2.0 data.

• def cando.get_tutorial ()

Download data for tutorial.

def cando.get_test ()

Download data for test script.

• def cando.dl_dir (url, out, I)

Function to recursively download a directory.

• def cando.dl_file (url, out_file)

Function to download a file.

12.3 LICENSE.md File Reference

Index

init	tanimoto_sparse, 10
cando.ADR, 11	cando.ADR, 10
cando.CANDO, 14	init, 11
cando.Compound, 30	compounds, 11
cando.Indication, 32	id_, 11
cando.Matrix, 34	name, 11
cando.Pathway, 36	cando.CANDO, 11
cando.Protein, 37	init, 14
str	str, 14
cando.CANDO, 14	accuracies, 26
accuracion	add_cmpd, 14
accuracies	adr_map, 26
cando.CANDO, 26	adrs, 26
add_cmpd cando.CANDO, 14	c_map, <mark>26</mark>
	canbenchmark, 15
add_indication	canbenchmark_associated, 15
cando.Compound, 30	canbenchmark_bottom, 16
adr_map	canbenchmark_cluster, 16
cando.CANDO, 26 adrs	canbenchmark_ndcg, 16
	canpredict_compounds, 16
cando.CANDO, 26	canpredict_denovo, 17
cando.Compound, 31	canpredict_indications, 18
alt_id cando.Protein, 38	clusters, 26
alt ids	cmpd_set, 26
_	common_targets, 18
cando.Compound, 31 AUTHORS.md, 38	compounds, 27
	compute_distance, 27
aux_sig	data_name, 27
cando.Compound, 31	dist_metric, 27
c map	fusion, 19
cando.CANDO, 26	generate_similar_sigs, 19
canbenchmark	generate_some_similar_sigs, 19
cando.CANDO, 15	get_adr, 20
canbenchmark associated	get_compound, 20
cando.CANDO, 15	get_indication, 21
canbenchmark bottom	get_pathway, 21
cando.CANDO, 16	get_protein, 21
canbenchmark cluster	i_map, 27
cando.CANDO, 16	indication_ids, 27
canbenchmark_ndcg	indication_pathways, 27
cando.CANDO, 16	indication_proteins, 27
cando, 4	indications, 27
cosine dist, 5	matrix, 27
dl dir, 5	ml, 22
dl_file, 5	ncpus, 27
generate_matrix, 6	normalize, 22
generate scores, 6	pathway_quantifier, 28
generate_signature, 7	pathways, 28
get_fp_lig, 7	protein_id_to_index, 28
get_scores, 7	protein_map, 28
get_test, 8	protein_set, 28
get_tutorial, 8	proteins, 28
get_v2, 9	quantify_pathways, 22
score_fp, 9	raw_results_roc, 23
tanimoto_dense, 10	read_rmsds, 28
- ·	- ·

42 INDEX

results_analysed, 23	gene, 38
rm_cmpds, 28	id_, 38
rm_compounds, 28	name, 38
rm_zeros, 28	pathways, 38
save_rmsds, 28	sig, 38
save_rmsds_to_file, 23	cando.py, 38
search_compound, 23	canpredict_compounds
search_indication, 24	cando.CANDO, 16
short_matrix_path, 29	canpredict_denovo
short_protein_set, 29	cando.CANDO, 17
short_read_rmsds, 29	canpredict_indications
sigs, 24	cando.CANDO, 18 cluster id
similar_compounds, 24	cando.Compound, 31
similarity, 29	clusters
top_targets, 25	cando.CANDO, 26
uniprot_set_index, 25	cmpd_set
virtual_screen, 25	cando.CANDO, 26
cando.Compound, 29 init , 30	common targets
add_indication, 30	cando.CANDO, 18
add_indication, 30	compounds
alt ids, 31	cando.ADR, 11
aux_sig, 31	cando.CANDO, 27
cluster_id, 31	cando.Indication, 33
id_, 31	compute_distance
index, 31	cando.CANDO, 27
indications, 31	convert
name, 31	cando.Matrix, 34
sig, 31	convert_to_tsv
similar, 31	cando.Matrix, 35
similar_computed, 31	cosine_dist
similar_sorted, 32	cando, 5
status, 32	
cando.Indication, 32	data_name
init, 32	cando.CANDO, 27
compounds, 33	dist_metric
id_, <mark>33</mark>	cando.CANDO, 27
name, 33	dl_dir
pathogen, 33	cando, 5
pathways, 33	dl_file
proteins, 33	cando, 5
cando.Matrix, 33	fusion
init, 34	cando.CANDO, 19
convert, 34	cando.o/mvbc, ro
convert_to_tsv, 35	gene
matrix_file, 35	cando.Protein, 38
normalize, 35	generate_matrix
proteins, 35	cando, 6
rmsd, 35	generate_scores
values, 35	cando, 6
cando.Pathway, 36	generate_signature
init, 36	cando, 7
id_, 36	generate_similar_sigs
indications, 36	cando.CANDO, 19
proteins, 36	generate_some_similar_sigs
cando.Protein, 37	cando.CANDO, 19
init, 37	get_adr
alt_id, 38	cando.CANDO, 20

INDEX 43

get_compound	pathogen
cando.CANDO, 20	cando.Indication, 33
get_fp_lig	pathway_quantifier
cando, 7	cando.CANDO, 28
get_indication	pathways
cando.CANDO, 21	cando.CANDO, 28
get_pathway	cando.Indication, 33
cando.CANDO, 21	cando.Protein, 38
get_protein	protein_id_to_index
cando.CANDO, 21	cando.CANDO, 28
get_scores	protein_map
cando, 7	cando.CANDO, 28
get_test	protein_set
cando, 8	cando.CANDO, 28
get_tutorial	proteins
cando, 8	cando.CANDO, 28
get_v2	cando.Indication, 33
cando, 9	cando.Matrix, 35
	cando.Pathway, 36
i_map	
cando.CANDO, 27	quantify_pathways
id_	cando.CANDO, 22
cando.ADR, 11	
cando.Compound, 31	raw_results_roc
cando.Indication, 33	cando.CANDO, 23
cando.Pathway, 36	read_rmsds
cando.Protein, 38	cando.CANDO, 28
index	results_analysed
cando.Compound, 31	cando.CANDO, 23
indication_ids	rm_cmpds
cando.CANDO, 27	cando.CANDO, 28
indication_pathways	rm_compounds
cando.CANDO, 27	cando.CANDO, 28
indication_proteins	rm_zeros
cando.CANDO, 27	cando.CANDO, 28
indications	rmsd
cando.CANDO, 27	cando.Matrix, 35
cando.Compound, 31	
cando.Pathway, 36	save_rmsds
	cando.CANDO, 28
LICENSE.md, 39	save_rmsds_to_file
	cando.CANDO, 23
matrix	score_fp
cando.CANDO, 27	cando, 9
matrix_file	search_compound
cando.Matrix, 35	cando.CANDO, 23
ml	search_indication
cando.CANDO, 22	cando.CANDO, 24
nama	short_matrix_path cando.CANDO, 29
name	
cando.ADR, 11	short_protein_set
cando.Compound, 31	cando.CANDO, 29
cando Indication, 33	short_read_rmsds
cando.Protein, 38	cando.CANDO, 29
ncpus	sig
cando.CANDO, 27	cando.Compound, 31
normalize	cando.Protein, 38
cando.CANDO, 22	sigs
cando.Matrix, 35	cando.CANDO, 24

44 INDEX

similar cando.Compound, 31 similar_compounds cando.CANDO, 24 similar_computed cando.Compound, 31 similar_sorted cando.Compound, 32 similarity cando.CANDO, 29 status cando.Compound, 32 tanimoto_dense cando, 10 tanimoto_sparse cando, 10 top_targets cando.CANDO, 25 uniprot_set_index cando.CANDO, 25 values cando.Matrix, 35 virtual_screen cando.CANDO, 25