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ABSTRACT

Free energy calculations have seenincreased usage in structure-based drug design. Despite the
rising interest, automation ofthe complexcalculations andsubsequent analysis of their results
are still hampered by the restricted choice of available tools. In this work, an application for
automated setup and processing of free energy calculations is presented. Several sanity checks
for assessing the reliability of the calculations were implemented, constituting a distinct
advantage over existing open-source tools. The underlying workflow is built on top of the

software Sire, SOMD, BioSimSpace and OpenMM and uses the AMBER14SB and GAFF2.1



force fields. It was validated on two datasets originally composed by Schrodinger, consisting of
14 protein structures and 220 ligands. Predicted binding affinities were in good agreement with
experimental values. For the larger dataset the average correlation coefficient R, was 0.70 £ 0.05

and average Kendall’s 7 was 0.53 + 0.05 which is broadly comparable to or better than

previously reported results using other methods.

1. INTRODUCTION

Reliable prediction ofligand binding affinities is highly desirable in the early stages of drug
discovery projects. During thelast few years alchemical free energy calculations have emerged
as a prominent tool forthis task.' Such calculations have been applied to predict ligand binding
affinities oflarge datasets, yielding on average predictions accurate to within 0.8 kcal/mol, thus
adding significant value to drug discovery projects.*’ However, lack of automation is still a
major obstacle to a more routine application ofthese methods, despite several tools to address

1! Furthermore, carrying out alchemical free energy calculations

this being in development.
requires expert knowledge, since assessingthe quality and validity of these simulations can be
non-trivial.">" Different approaches in free energy prediction methods have been assessed
through community challenges such as D3R' or SAMPL" using various datasets.
Alchemical free energy calculations for computing the binding energy of a compound A
relative to a reference compound B generally involve a thermodynamic cycle in which A is
transformed into B in the protein environment and in simple solvent (Figure 1). The
corresponding states of A and B need to have significant overlap in their potential energy
distributions, as otherwise the configurations sampled for A may be of low probability for B,

which leads to slow convergenceofthe free energy change and computation of the result may

not be possible.'® This limitation is typically overcome by introducing a coupling parameter 4



which takes on values between 0 and 1 to interpolate the potential energy functions of the end -
states. The transformation from A to B is then achieved through a varying number of artificial
(“alchemical”) states characterized by intermediate A values (theso-called A-windows) providing
an improved overlap of potential energy distributions between neighboring states.

There are multiple different approaches available for computing binding free energies fromthe
potential function distributions. These include Free Energy Perturbation (FEP)",
Thermodynamic Integration (TI)'®'” and the Multistate Bennett Acceptance Ratio (MBAR)

estimator.””*' Fora full review of the advantages and disadvantages of each method see '>"**.

AGbound
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Figure 1. Schematic representation of free energy calculations. The binding free energy of a
compound is calculated according to the thermodynamic cycle which consists of four different
states: the protein-ligand complexes ofmolecules A and B, as well as A and B in a water box. A

is transformed into B through a number ofalchemical intermediates. As the molecular dynamics



simulations are carried out in a isothermal-isobaric ensemble, Gibb’s free energy AG is used

instead of Helmholtz’ free energy AF.

There are several commercial and open-source options available for carrying out free energy
perturbation (FEP) calculations, the most well-known being the package provided by
Schrédinger (referred to as FEP+). FEP+ was originally validated on a large dataset of eight
proteins and 199 ligands using the OPLS2.1 forcefield and replica exchange with solute
tempering (REST).! More recently, two other approaches utilizing AMBER> and GROMACS*
have also been used to study this dataset. Comparative analysis of the performance of different
FEP implementations is importantto identify areas where further methodological efforts can be
concentrated to improve FEP methodologies. Recent efforts fromthe field hav e highlighted that
the results ofan FEP calculation depend on several parameters other than the potential energy
function, for instance input preparation, simulation conditions and choice of the free energy
analysis method.”?°

Most recently, relative binding free energy (RBFE) calculations were implemented in Cresset's
structure-based drug design suite, Flare.””*® This approachis based on the Sire* framework, and
leverages several opensource tools, namely Biosimspace,'' SOMD,” OpenMM,’' AmberTools™
and a customized version of LOMAP.® Automated setup, deployment on remote computing
instances, and analysis of free energy calculations canbe accomplished through a graphical user
interface (GUI) and a Python application programming interface (API). Automation and
accessibility, though highly desirable, critically depend on a robust sanity check and error
analysis of simulation results. Common sanity indicators for alchemical calculations are

monitored to detect potential issues; among these indicators are hysteresis of forward and



backward transformations, cycle closure errors, and poor overlap between neighboring 4
windows.'>***

The SOMD package available within the Sire framework has been successfully applied to
relative and absolute binding free energy studies of a range of fragments, drug-like small
molecules, carbohydrates, host-guest systems.” ">
However, a systematic comparison on standard datasets has not been published to date. Here

we report a large-scale validation of Flare’s FEP implementation on the Wang et al.' dataset, as

well as on a smaller dataset of more challenging scaffold hopping modifications .””

2. METHODS

> '] ) . E
e N & B &S O . & B R
Add  Change Genente Add Setlambia Delee Ao Atom  Delte | Fun | Show
Uginds  Proten Unks Lk Windows ok Mapping Project | FEP | Log
e

Modiy
Overlap Matrix 8

o0 213 53 e 008

099 566 214 015

o8 24 s 20 o 2
o5 20 3 28 0w s
o4 e s 24 a3

ou e swe am||Ou

2 24 T3

85 8
Experimental 4G (keal/mol)

Figure 2. Screenshot froma finished FEP project in Flare. The perturbation network and the
calculated relative free energies can be found in the central panel. Arrows are color-coded
accordingto the hysteresis ofthe perturbations in both directions. The other four panels contain

the overlap matrices (upper left), a plot comparing computed and experimental free energies



(lower left), a 3D window containing screenshots from the molecular dynamics simulations

(upper right) and a color-coded table listing the cycle closure errors (lower right).

2.1 Topology and perturbation networks. Free energy calculations may be carried out using
a single ora dualtopology approach.'>* The software packages used in this work use single
topology, i.e. the parameters of the perturbed atoms from the starting molecule are changed to
represent thosein the targetmolecule. Additional atoms are treated as dummies, i.e. their charge
and Lennard Jones potential are set to zero in the corresponding states. Perturbations in which
the size ofa ring is altered are best performed via an intermediate ringless state (e.g. -cyclopentyl
to -cyclobutyl may be attempted via a common -H intermediate). If the ring systems differ
substantially in their nature and substitution pattern, adding further intermediates can be
beneficial. Hence, it was not considered optimal to usethe perturbation networks provided in the
Wang etal.' study and new networks were created using a customized version of LOMAP®, in
which candidate perturbations which are hard to performin a single-topology approach such as
ring size changes are assigned a zero score, and hence are not allowed in the final perturbation

network.

2.2 System preparation. Protein and ligand structures were obtained fromthe supporting
information (SI) ofthe publications by Wanget al. While protonationstates of the ligands were

maintained as in the original publication, proteins were re-prepared in Flare*”**

and protonation
states assigned usingthe TSAR algorithm.*' For thrombin, only the A chain was used and the
missing loop was built from entry SLPD in the Protein Data Bank™ using Modeller 9.20.”

Furthermore, the tartaric acid molecule present in the BACE structure was discarded. The



AMBER 14FFSB force field* was used to describe the proteins and GAFF2.1* for the ligand,
with AM1-BCC charges.* Missing force field parameters for the ligands were generated using
the parmchk module.*” The systems were solvated using the TIP3P water model® and a cuboid
solvationboxwith a solvation buffer size of 10 A. Systems were neutralized by adding Na" or
CI ions as required. Bonds involving hydrogen atoms were constrained using the SHAKE"
algorithmand a time step of?2 fs was used throughout all simulations. Long-range electrostatic
interactions were treated using thereaction-field method.>” Non-bonded interactions were treated
usinga 10 A cut-off. Systems were equilibrated using OpenMM 7.3.0°' at 1=0 following a four-
step protocol. Details of the equilibration protocol can be found in the SI (Table S2).

1,23,24,39
e each

2.3 FEP calculations. In contrast to other work reported on these datasets,
perturbation was carried out in two independent simulations, onein each direction. Though this
increases theoverall computational costs, it provides an opportunity to assess the reliability of
the calculations as the hysteresis should ideally be zero. The perturbationnetworks were drafted
using an extended version of LOMAP® as implemented in Flare and were then optimized through
the userinterface by manually adding orremoving links from the perturbation map. For several
datasets, a few additional compounds were necessary in order to connectall the prepared ligands
into one perturbationmap. The relative binding free energy change for each perturbation was
calculated using a varying number of linearly spaced 4 windows (5, 9, 14, 19 or 24), each
window being subjected toa 4-ns MD simulation. Larger numbers of 4 windows were used for
more challenging perturbations, such as those involving ring additions, or non-polar-to-polar
group mutations. Electrostatic and van der Waals interactions were described using soft-core

potentials (cf. the SI of Loeffler et al.* for details). The input files describing the perturbation



were generated using BioSimSpace.'' Prior to starting the simulations, an energy minimization
was carried out running 1,000 steps of the steepest descent algorithm. Simulations were
performed using SOMD.*** The first 400 ps ofthe trajectories of each 2 window were discarded
prior to free energy estimation to allow for equilibration. Free energies were calculated using
MBAR.* The final changein the free energy of binding for each ligand pair was calculated by
averagingresults obtained for the perturbation carried out in both directions ; AG values were

computed from the network according to the method of Xu et al.”

2.4 Analysis of the results. This work focuses on the overall correlation for each of the
subsets and the mean unsigned error of each compound (MUE,). Previous publications "****
primarily aimed at the comparisonofthe mean unsigned error of each perturbation (MUE,), i.e.
the mean prediction error for each ligand pair. However, strictly speaking comparing MUE,
between different approaches requires the underlying perturbation networks to be identical,
which is not the case for the approach presented here (cf. above). To address this situation, the
unsigned error UE, 4 for transformations where compounds A and B are connected via an

additional intermediate molecule I with unknown experimental affinity was estimated as:

UEp,A-B = | AA(;calc,A-I + AA(;calc,I-B - AA(;exp,A-B | (1)

Here, AAG. . o1 and AAG,,. ;g are the calculated free energies between A and I and [ and B,
respectively, while AAG,, 4.5 15 the difference in experimentally measured binding affinity
between A and B.

As the workof Gapsys et al. did not contain computed AG values, these values were obtained

from the reported AAG values using Flare’s internal protocol (data can be found in the SI).



2.5 2 Schedule. A critical factor for the success of free energy calculations is to ensure
sufficient overlap ofthe phasespaceprobability distributions integrals between all neighboring
states.””* Typically, this is guaranteed only whenthe two states are very similar to each other,
which is usually notthe case for molecules characterized by significant structural differences.
Hence, a sufficiently highnumber ofalchemical intermediate states must be chosen to connect
the end states and ensure that the calculated free energy converges in a reasonable amount of
time. Whether a perturbation obeys to these criteria can be checked through a so-called phase
space overlap matrix'> The overlap matrix 0 € R™™ (where 7 is the number of 1 windows)
contains the probability that a sample fromany state canbe found in any other state; hence, the
matrix is symmetric (with respect to its main diagonal) and all rows and columns sumto 1. The
first offset diagonals ofthe matrixcontain the information about neighboring states. It has been
reported that a value as low as 0.03 in these diagonals may be sufficient to obtain reliable
results.'” In this study, the overlap matrices were usedto guide the selection of the number of 1

windows (cf. Figure 3).
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Figure 3. Two example overlap matrices. Good overlap (green cells) can be observed for all
neighboring windows in the matrix on the left whereas there is poor overlap (red cells) between

the first and the second window ofthe second perturbationin the matrix on the right. Overlap in

the empty cells is smaller than 0.001.

In the previously published benchmark papers discussed above > the 12 A-windows were s paced
non-linearly (0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366,
0.88495, 0.95206, 0.99078). In contrast, results in this paper were obtained using linear spacing
(e.g. 0.000, 0.125, 0.250, 0.375, 0.500, 0.626, 0.750, 0.875, 1.000 for 9 windows). Neither
approachis perfect, and as the matrix can only be calculated oncethe calculations ofall windows
have finished, a significant amountoftime can be spent on simulations which are then deemed
unreliable due to poor phase space overlap. We haveattempted to derive heuristics to determine
how many A windows should be used for certain types of perturbations to ensure sufficient
overlap using the approach presented here. However, as the windows are spaced linearly, adding
more windows also affects already well-sampled areas of the matrix, which increases
computation time while only marginally improving the overall quality of the free energy
estimate. We are currently investigating other approaches, such as the Conveyor Belt
Thermodynamic Integration scheme,” adaptive sampling or non-linear 4 functions derived

from heuristics.

2.6 Protonation state of Cys215 in PTP1B. In arecently published paper’ the authors argue
that the ionization state of Cys215 in the binding pocket of PTP1B, which was set to
deprotonated in the previous work by Wanget al.,' may be incorrect; in fact, there is only a short

distance between thesulfuratom of Cys215 and the closest ligand carboxyl oxygen atom (3.5-

10



3.9 A). Furthermore, two different predictors suggest that the pK, of cysteine in the complexes
ranges from 9.8 to 10.5. The authors report a better agreement with experiment for the free
energy calculations using their consensus approach when Cys215 is modelled as protonated.** In

this study, Cys215 was treated as being protonated.

3. RESULTS AND DISCUSSION

3.1 Overall comparison of the FEP+ dataset. The summary of the results of the eight
datasets from Wang et al.' is reported in Table 1. Details can be found in the SI (Table S4;
results may be recalculated usingthesupplied Jupyter Notebook and input files). The data for

Pearson’s correlation coefficient R for the experimental and calculated AG values, the mean
unsigned errors per ligand (MUE;,) and perturbation (MUE,) as well as Kendall’s T are also

shown in Figure 4. The number of perturbations used for each dataset in this study are roughly
similar to those in Wang et al., though for PTP1B only 35 instead of 49 perturbations were
performed.

In terms of R, results obtained with Flare showed higher correlation (AR > 0.10) than those
reported by Songet al.” for five of the eight datasets, and comparable for the three remaining
datasets (MCLIL,”* PTP1B* and BACE™). Interestingly, Flare’s MUE, is lower, particularly for
the BACE dataset (0.76 £ 0.10 vs. 1.03 + 0.14 kcal/mol; see Table S4)). As bothapproaches use
the same force field (AMBER 14FFSB), this highlights that accuracy of an FEP implementation
depends on several other aspects beyond the choice of a potential energy function.

Our results are overall more predictive than thosereportedby Wang et al.' for thrombin®” and
CDK2”® (AR > 0.10), comparable for MCLI and p38,” and less predictive for TYK2,°*°' PTPIB

and INK1% (AR < -0.10). The most striking difference was observed for the BACE dataset, for

11



which the overall correlation R* was poor (0.19, 95%-CI: [0.08-0.32] vs 0.61, 95%-CI: [0.50-
0.71]) but the MUE, and MUE, are only slightly worse (0.76 =0.10 vs 0.67 + 0.09 and 0.95 +
0.10 vs 0.85 £ 0.08 kcal/mol).

Similar performance can be observed when comparing results with the study of Gapsys et al.,”*
who used a consensus approach of GAFF* and CGenFF® as implemented in pmx.* Results
obtained with Flare showed higher correlation (AR > 0.10) for thrombin and PTP1B, similar for
CDK2, TYK2 and MCL1, and poorer correlation forthe remaining three other datasets (AR < -

0.10).

Table 1. Summary for the average correlation coefficient, 7, MUE,. and MUE, for all datasets.

Parameter this study Wang et al. Song etal. Gapsys etal., Gapsys etal., Gapsys etal.,
GAFF CGenFF Consensus
Rave 0.70 £0.05 0.74 £0.05 0.56 £0.05 0.65 £0.07 0.54 £0.09 0.60 =0.09
Tavg 0.53 £0.05 0.57 £0.06 0.41 £0.05 0.46 £0.06 0.42 £0.06 0.47 £0.08
MUE 4 0.83 £0.05 0.76 £0.04 1.01 £0.06 0.74 £0.04 0.84 +0.05 0.72 £0.04
MUE, avq 1.02 £0.05 0.90 +0.04 1.17 £0.05 0.91 £0.04 1.09 +0.05 0.85 £0.05

R, 1s the average correlation coefficient and 7 ,,, the average Kendall 7 across all eight
datasets. MUE, ,,, and MUE, ,, give theaverage MUE per compound. Uncertainties denote the
standard error of the mean.

12



RZ

1.0

0.8
0.6
0.4
0.2
0.0-

| —
| ——

e——— |

b)‘IO
. ol
2 06
S
T 04-
X
0.2- I—
0.0- W
) o
a T
(9]
3 - I ’
£
© ] I
4 o
S
= o] i
= | ]
o
d)(o T
= « <]V ‘l‘ L
R l ; .
z [
g I
2 3 ,
o |
Throm CDK2 TYK2 JUNK1 PTP1B  MCLT1 P38  BACE
B this study O Gapsys et al., GAFF
[0 Wang et al., FEP+ [ Gapsys et al., CGenFF
B Song et al., AMBER-TI [0 Gapsys et al., GAFF+CGenFF

13



Figure 4. Charts reporting results for each of the eight datasets. a) Pearson’s correlation
coefficient R*. b) Kendall’s 7. ¢) Mean Unsigned Error per compound (MUE,) and d) Mean

Unsigned error per perturbation (MUE,) for each ofthe eight datasets in kcal/mol. The error bars
in a) indicate the 95% confidence interval calculated using the Fisher trans formation. > For b)-

d), they denote the standard deviation obtained by bootstrapping using 10,000 iterations.

To allow for easier comparison across all datasets, the average correlation coefficient R,,,,
Kendall’s 7 ,,, and the mean unsigned errors per compound (MUE, ,,,) and per perturbation

(MUE, ) arereported in Table 1. Overall, the results obtained are slightly worse than those
reported by Wanget al.,' but betterthan those reported by Song et al.”> Compared to Gapsys et
al.,** results are better thanthose obtained using CGenFF, and similar to those obtained using
GAFF or GAFF+CGenFF. There are several differences among the different free energy
approaches which may help to explain these findings. An important factor is the underlying
force fields applied to the proteins and ligands. While the same protein force field was used in
this work as in the work publishedby Song et al., the ligands were parameterized using different
versions of GAFF (v2.1 vs. v1.8), and different water models were used (TIP3P vs SPC/E). The
present protocol used a reaction field treatment of long-range electrostatic interactions, in
contrast to a Particle Mesh Ewald treatment in the other studies. However, the results appear
overallmore accuratethan thosereported by Song et al., thus there is no evidence that the use of
this computationally more efficient protocol degraded accuracy of the calculations on this
dataset. As there are other important differences in the perturbation network, sampling time and
in the way results are analyzed (MBAR vs. TI), it is difficult to compare the results directly.

Even though Gapsys et al. report results closer to those presented here using GAFF v2.1, their

14



non-equilibrium approach cannot be directly compared to the method used in our work. The
perturbation network used in this work differs from the one used in the other studies

d,"***since the networks used by Wang et al." are not optimal for use with SOMD (cf.

reporte
section 2.1). For the BACE dataset several intermediate structures had to be introduced to
connect all subsets reliably. One subset contains a cyclopropyl group, which is replaced by a
phenyl ring in another subset. In order to connect these structural motifs, two intermediate
structures (each containing a hydrogen atomat the corresponding position) were introduced. This
makes achieving preciseresults challenging as the relative binding affinity difference between
the compounds in both subsets is mainly governed by only a few relatively challenging
perturbations.

The sampling time per perturbation is also of interest as computational resources in drug
design projects are limited. The approach by Gapsys et al. used 60 (using GAFF) or 120 ns
(when using GAFF+CGenFF) fora single perturbation with a 2 fs time step, whereas Song et al.

23,24
used 74ns**

and a 1 fs timestep. The method of Wang et al. used 60 ns with a 4 fs timestep,
but multiple replicas were run at different temperatures. The perturbation networks used in these
studies were identical and contained a total o330 perturbations. The approach described in this
work on averageused 90ns and a 2 fs timestep, with 315 perturbations in total. However, each
ligand pair was calculated twice (once in each direction) to allow for an ad ditional reliability
estimate. Using only oneofthe two possible directions for each perturbation was found to only
marginally affect the correlation coefficient and MUE, meaning that theaverage calculation time

can be halved to 45 ns without havinga major impact on the quality of the results (cf. Table S3

in the SI).

15



There are several other factors such as ion concentration, distance cut-offs, water models, etc.
which have an impact on the predicted binding affinities. However, the impact of these
parameters on the free energies cannot be assessed easily. A table summarizing the

methodological details of different methodologies can be found in the SI (Table S1).

3.2 Null model. Free energy calculations are an advanced and computationally expensive
method. Hence, it is worthwhile to consider the benefit of the calculations compared to simpler
models. Forexample, Song et al. report a null model which considers all ligands to be equally
potent.” Though this is a “true” null model, it seems oversimplified as even simple molecular
descriptors may be able to yield a weak estimate of the binding affinity. An example for such a
descriptoris the molecular weight(MW). Broadly speaking, the binding affinity can be expected
to increase as the MW increases, since a heavier (and thus probably larger) compound can form
more interactions with the binding pocket.

Interestingly, thereis indeed a weak correlation betweenthe MW and the experimental binding
affinities for most datasets (cf. Table S4 in the SI), except for BACE and TYK2. R* for MW in
PTPIB is surprisingly high (0.55), reflecting that the dataset contains various ligands of different
sizes which are incrementally grown in the additional and mainly hydrophobic parts of the
binding pocket. In summary, ourresults are clearly superiorto thoseobtained by this null model
(average R = 0.70 £+ 0.05 for the free energy calculations and 0.38 + 0.11 for the molecular

weight), apart from the PTP1B dataset.

3.3 Variability of the results. Another aspect to consider when running free energy

calculations is how much results ofa given perturbation may vary across different runs starting

16



fromidentical input molecules. In fact, the pre-FEP MD equilibration protocols uses randomly
sampled velocities fromthe Maxwell-Boltzmann distribution, and consequently yield different
starting 3D coordinates each time they are run. Likewise, different production runs started from
the same equilibrated structure will yield different trajectories because velocities are re-
initialized at each A-window. Four selected transformations (named P1-4) covering conservative
as well as more challenging structural modifications were performed in quintuplicate to assess
the variability of the results. For P1 and P2, only a few atoms are altered during the
transformation. In P3 and P4 an aliphatic ring systemis introduced (cyclopropyland cycloheptyl,
respectively) posing a more difficult challenge. The results are summarized in Figure 5 and

detailed information can be found in the SI (Table S5).

17
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Figure 5. Calculated relative binding affinities for four perturbations from quintuplicate
simulations: a) P1: -Cl & -Br (Thrombin), b) P2: -CH,- < -O- (PTP1B), c¢) P3: -H & -

cyclopropyl (BACE), d) P4: -H < -cycloheptyl (PTP1B). Results are shown for growing (g) and
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shrinking (s) the atoms in the bound (b) and the free (f) state. The absolute values are shown to
allow for easier comparison (negative values are marked with an asterisk (*)). €) Comparison of

the experimental and computed binding affinity for the molecule pairs (experimental data not

available for P3).

The hysteresis between corresponding “growing” and “shrinking” perturbations was found to
be small (< 0.20 kcal/mol) after five repeats for the perturbations P1-3, emphasizing the
reliability ofthe presented approach. By contrast, the calculations for the insertion of cycloheptyl
in PTP1B (P4) shows a hysteresis of 1.4 kcal/mol. Nevertheless, thecalculated free energy over
all five replicas in both directions closely matches the experimental value. The standard
deviation ofthe binding free energy estimate forthe larger perturbations P3 and P4 is larger (ca.
0.5 kcal/mol) than for the smaller perturbations P1 and P2. Thus, it is advisable to carry out

multiple repeat runs for perturbations involving growth of entire rings.

3.4 Scaffold hopping. Apart from“conventional” perturbations as contained in the datasets
above, more advanced structural changes may also be of interest during the lead optimization
stage ofthe drug designcycle. Those include macrocyclization and core replacement. In terms of
free energy calculations, modification of the overall ligand formal charge is also challenging.
Scaffold hopping experiments in principle are amenable to FEP simulations. As the underlying
method uses the single topology approach, such perturbations can be computationally more
demanding compared to dual topology approaches ifthe structural motif'to be replaced is located
in the middle of the molecule. To assess the feasibility ofthis type of perturbations, sixseries of
protein-ligand complexes for which input structures have been made available® were

investigated. For some ofthe datasets oneorseveral intermediate structures had to beintroduced
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in order to ensure a reasonable perturbation network. These are labelled as “mcs” (maximum
common substructure of all ligands) and “sub” (substructure) in the perturbation networks,
respectively. The networks can be found in the SI(Figure S2). The results are shown in Figure 6
and details are specified in the SI(Table S5). The MUE, was 0.59 + 0.50 kcal/mol for the results
obtained in this study compared to 0.28 + 0.31 kcal/mol reported by Wang et al.”
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Figure 6. Experimental (dark grey) and computed (colored for this study and light grey for the
report by Wang et al.*’) relative binding affinities for the 21 ligands in the scaffold hoping
dataset. Compound-wise errors were not specified in the work of Wang et al. Note that the

experimental binding affinity of 3a (ERa) may be lower than shown.®”’
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In the following the checkpoint kinase 1 (CHK1)*® dataset is described in more detail (cf.

Figure 7). Both scaffold hoppingand conventional R-group modifications can be found in this

dataset consisting of 5 ligands. The computed free energies of compounds 1,17 and 20 are in

excellent agreement with experiment. Thoughincreasing the ring size is correctly predictedto be

unfavorable (21), the predicted free energy is off by 0.9 + 0.7 kcal/mol. The least active

compound in the dataset (19) was notranked last by predicted potency: The predicted change in

relative affinity compared to 17 is only +0.2 £+ 0.4 kcal/mol, whereas the experimental affinity

changes by +1.2 kcal/mol. Interestingly, also Wanget al.”’

report a predicted change in affinity

of just+0.3+ 0.1 kcal/mol for this perturbation, which indicates that neither approach reproduces

well experimental data for this pair of compounds.
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Figure 7. Depictions ofthe scaffold hopping perturbation network of CHK1 and the obtained

results. Numbers along the arrows give therelative free energies for each perturbation. P and A

give the predicted and experimental affinity relative to the reference compound, 20. A dashed
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arrow indicates that the perturbation was not considered for the final calculationofthe AG values

due to hysteresis.

In summary, the scaffold hopping experiments correctly captured the effects of the ring
extension transformations (TPSB2 and BACEI), though the predicted change in affinity is
higherthan the experimental value. The ring opening/closing trans formations in EZH2 and FXa
are more challenging. This is mainly due to the large number of necessary additional
intermediates which are linearly connected in the perturbation network and thus increase the
overalluncertainty (cf. Figure S2). On the other hand, for a similar transformation in which the
ring size was modified (ERa), results were in excellent agreement with experimental values.
Lastly, results for the CHK1 dataset containing different modifications were in good agreement
with measured affinities except forcompound 19. Overall, even though the calculations tend to
exaggerate the impact ofthe modification onthe free energy, they capture thetrends in changes

of binding affinity.

3.5 Computational cost. An important aspect of running FEP calculations is the overall
calculation time of the whole dataset, especially when it is constituted by hundreds of
compounds. To estimate the computational cost, we have performed benchmarks on two of the
proteins contained in this study, TYK2 and CHKI, containing 288 and 252 amino acids
respectively. Foreach system, three independent 4-ns windows were run for the protein ligand
complex and the solvated ligand on a NVIDIA GTX2070. For TYK2, the runs took 84 and 17
minutes on average, corresponding to ~21 min/ns and ~4 min/ns. Similarly, times were 76 and
19 minutes for CHK1, i.e. ~19 min/ns and ~5 min/ns, respectively. These results were obtained

using OpenMM’s”' mixed precision mode. For comparison, it has been reported that FEP+ takes
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86 minutes to sample a 1-ns perturbation for 12 windows on 4 NVIDIA Tesla K80 for BACE1”
complexes (containing 401 amino acids) and 34 minutes for the corresponding simulations ofthe
solvated ligands.” This corresponds to ~29 min/ns for the complex and ~11 min/ns for the
ligand-only simulations, respectively. The Gromacs -FEP implementation was reported to be 3 to
6 times slower than FEP+." In a benchmark for AMBER-TI, a perturbation in factor Xa (total
system size: 41,563 atoms) can be calculated at about 120 ns/day on a NVIDIA GTX1080,
corresponding to 12 min/ns.”’

Obviously, the data for the different FEP approaches cannotbe directly compared, as the GPUs
as well as the proteins used deviate. However, these figures show that the perturbations can be
carried out reasonably quickly. In Flare, calculating the binding free energy for a ligand pair in
TYK2 using 94 windows and a 4-ns calculation time can be carried outin ~15 hours on a single
modern GPU. Accounting for equilibration time and with sufficient GPUs available this can be
parallelized over 18 windows (free and bound legs) to yield a minimum time to answer of about
1.7 hours.

Productionruns in the work presented here were 4-ns long foreach A window. However, there
is evidence that shorter calculations times (usually 1 ns) may be sufficient to obtain a reasonable
free energy estimate for certain classes of perturbations.”*” Thus, there may be scope to further

decrease time to answer in a scenario where it is important to maximize throughput.

4. CONCLUSION
It has been demonstrated that the FEP method for calculating binding free energies
implemented in Flare yields results which are on-par with various other published workflows.

The method can also readily be applied to more challenging scaffold hopping experiments. The
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software allows automatic setup of perturbation networks and implements several sanity checks
of the reliability ofthe calculations, such as analysis of cycle closure errors and assessment of
overlap matrices. Future work will be focused on enhancing the overlap between the sampled
states ofa perturbation by non-linearly spaced windows and by adaptive sampling. Furthermore,
validation ofthe method willbe extended considering another recently published large dataset

for free energy calculations.”
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