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ABSTRACT 

Free energy calculations have seen increased usage in structure-based drug design. Despite the 

rising interest, automation of the complex calculations and subsequent analysis of their results 

are still hampered by the restricted choice of available tools. In this work, an application for 

automated setup and processing of free energy calculations is presented. Several sanity checks 

for assessing the reliability of the calculations were implemented , constituting a distinct 

advantage over existing open-source tools. The underlying workflow is built on top of the 

software Sire, SOMD, BioSimSpace and OpenMM and uses the AMBER14SB and GAFF2.1 
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force fields. It was validated on two datasets originally composed by Schrödinger, consisting of 

14 protein structures and 220 ligands. Predicted binding affinities were in good agreement with 

experimental values. For the larger dataset the average correlation coefficient Rp was 0.70 ± 0.05 

and average Kendall’s τ  was 0.53 ± 0.05 which is broadly comparable to or better than 

previously reported results using other methods. 

1. INTRODUCTION 

Reliable prediction of ligand binding affinities is highly desirable in the early stages of drug 

discovery projects. During the last few years alchemical free energy calculations have emerged 

as a prominent tool for this task.
1–3

 Such calculations have been applied to predict ligand binding 

affinities of large datasets, yielding on average predictions accurate to within 0.8 kcal/mol, thus 

adding significant value to drug discovery projects .
4–7

 However, lack of automation is still a 

major obstacle to a more routine application of these methods, despite several tools to address 

this being in development.
8–11

 Furthermore, carrying out alchemical free energy calculations 

requires expert knowledge, since assessing the quality and validity of these simulations can be 

non-trivial.
12,13

 Different approaches in free energy prediction methods have been assessed 

through community challenges such as D3R
14

 or SAMPL
15

 using various datasets . 

Alchemical free energy calculations for computing the binding energy of a compound A 

relative to a reference compound B generally involve a thermodynamic cycle in which A is 

transformed into B in the protein environment and in simple solvent (Figure 1). The 

corresponding states of A and B need to have significant overlap in their potential energy 

distributions, as otherwise the configurations sampled for A may be of low probability for B, 

which leads to slow convergence of the free energy change and computation of the result may 

not be possible.
16

 This limitation is typically overcome by introducing a coupling parameter λ 
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which takes on values between 0 and 1 to interpolate the potential energy functions of the end -

states. The transformation from A to B is then achieved through a varying number of artificial 

(“alchemical”) states characterized by intermediate λ values (the so-called λ-windows) providing 

an improved overlap of potential energy distributions between neighboring  states. 

There are multiple different approaches available for computing binding free energies from the 

potential function distributions. These include Free Energy Perturbation (FEP)
17

, 

Thermodynamic Integration (TI)
18,19

 and the Multistate Bennett Acceptance Ratio (MBAR) 

estimator.
20,21

 For a full review of the advantages and disadvantages of each method see 
12,13,22

. 

 

 

Figure 1. Schematic representation of free energy calculations. The binding free energy of a 

compound is calculated according to the thermodynamic cycle which consists of four different 

states: the protein-ligand complexes of molecules A and B, as well as A and B in a water box. A 

is transformed into B through a number of alchemical intermediates. As the molecular dynamics 
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simulations are carried out in a isothermal-isobaric ensemble, Gibb’s free energy ΔG is used 

instead of Helmholtz’ free energy ΔF. 

 

There are several commercial and open-source options available for carrying out free energy 

perturbation (FEP) calculations, the most well-known being the package provided by 

Schrödinger (referred to as FEP+). FEP+ was originally validated on a large dataset of eight 

proteins and 199 ligands using the OPLS2.1 forcefield and replica exchange with solute 

tempering (REST).
1
 More recently, two other approaches utilizing AMBER

23
 and GROMACS

24
 

have also been used to study this dataset. Comparative analysis of the performance of different 

FEP implementations is important to identify areas where further methodological efforts can be 

concentrated to improve FEP methodologies. Recent efforts from the field have highlighted that 

the results of an FEP calculation depend on several parameters other than the potential energy 

function, for instance input preparation, simulation conditions  and choice of the free energy 

analysis method.
25,26

 

Most recently, relative binding free energy (RBFE) calculations were implemented in Cresset's 

structure-based drug design suite, Flare.
27,28

 This approach is based on the Sire
29

 framework, and 

leverages several open source tools, namely Biosimspace,
11

 SOMD,
30

 OpenMM,
31

 AmberTools
32

 

and a customized version of LOMAP.
8
 Automated setup, deployment on remote computing 

instances, and analysis of free energy calculations can be accomplished through a graphical user 

interface (GUI) and a Python application programming interface (API). Automation and 

accessibility, though highly desirable, critically depend on a robust sanity check and error 

analysis of simulation results. Common sanity indicators for alchemical calculations are 

monitored to detect potential issues; among these indicators are hysteresis of forward and 
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backward transformations, cycle closure errors, and poor overlap between neighboring λ 

windows.
12,33,34

 

 The SOMD package available within the Sire framework has been successfully applied to 

relative and absolute binding free energy studies of a range of fragments, drug-like small 

molecules, carbohydrates, host-guest systems.
5–7,30,35–38 

  

However, a systematic comparison on standard datasets has not been published to date. Here 

we report a large-scale validation of Flare’s FEP implementation on the Wang et al.
1
 dataset, as 

well as on a smaller dataset of more challenging scaffold hopping modifications .
39

 

 

2. METHODS 

 

Figure 2. Screenshot from a finished FEP project in Flare. The perturbation network and the 

calculated relative free energies can be found in the central panel. Arrows are color-coded 

according to the hysteresis of the perturbations in both directions. The other four panels contain 

the overlap matrices (upper left), a plot comparing computed and experimental free energies 
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(lower left), a 3D window containing screenshots from the molecular dynamics simulations 

(upper right) and a color-coded table listing the cycle closure errors (lower right). 

 

2.1 Topology and perturbation networks . Free energy calculations may be carried out using 

a single or a dual topology approach.
13,40

 The software packages used in this work use single 

topology, i.e. the parameters of the perturbed atoms from the starting molecule are changed to 

represent those in the target molecule. Additional atoms are treated as dummies, i.e. their charge 

and Lennard Jones potential are set to zero in the corresponding states. Perturbations in which 

the size of a ring is altered are best performed via an intermediate ringless state (e.g. -cyclopentyl 

to -cyclobutyl may be attempted via a common -H intermediate). If the ring systems differ 

substantially in their nature and substitution pattern, adding further intermediates can be 

beneficial. Hence, it was not considered optimal to use the perturbation networks provided in the 

Wang et al.
1
 study and new networks were created using a customized version of LOMAP

8
, in 

which candidate perturbations which are hard to perform in a single-topology approach such as 

ring size changes are assigned a zero score, and hence are not allowed in the final perturbation 

network. 

 

2.2 System preparation. Protein and ligand structures were obtained from the supporting 

information (SI) of the publications by Wang et al. While protonation states of the ligands were 

maintained as in the original publication, proteins were re-prepared in Flare
27,28

 and protonation 

states assigned using the TSAR algorithm.
41

 For thrombin, only the A chain was used and the 

missing loop was built from entry 5LPD in the Protein Data Bank
42

 using Modeller 9.20.
43

 

Furthermore, the tartaric acid molecule present in the BACE structure was discarded. The 



 7 

AMBER 14FFSB force field
44

 was used to describe the proteins and GAFF2.1
45

 for the ligand, 

with AM1-BCC charges.
46

 Missing force field parameters for the ligands were generated using 

the parmchk module.
47

 The systems were solvated using the TIP3P water model
48

 and a cuboid 

solvation box with a solvation buffer size of 10 Å. Systems were neutralized by adding Na
+
 or 

Cl
-
 ions as required. Bonds involving hydrogen atoms were constrained using the SHAKE

49
 

algorithm and a time step of 2 fs was used throughout all simulations. Long-range electrostatic 

interactions were treated using the reaction-field method.
50

 Non-bonded interactions were treated 

using a 10 Å cut-off. Systems were equilibrated using OpenMM 7.3.0
31

 at λ=0 following a four-

step protocol. Details of the equilibration protocol can be found in the SI (Table S2). 

 

2.3 FEP calculations. In contrast to other work reported on these datasets,
1,23,24,39

 each 

perturbation was carried out in two independent simulations, one in each direction. Though this 

increases the overall computational costs, it provides an opportunity to assess the reliability of 

the calculations as the hysteresis should ideally be zero. The perturbation networks were drafted 

using an extended version of LOMAP
8
 as implemented in Flare and were then optimized through 

the user interface by manually adding or removing links from the perturbation map. For several 

datasets, a few additional compounds were necessary in order to connect all the prepared ligands 

into one perturbation map. The relative binding free energy change for each perturbation was 

calculated using a varying number of linearly spaced λ windows (5, 9, 14, 19 or 24), each 

window being subjected to a 4-ns MD simulation. Larger numbers of λ windows were used for 

more challenging perturbations, such as those involving ring additions, or non -polar-to-polar 

group mutations. Electrostatic and van der Waals interactions were described using soft-core 

potentials (cf. the SI of Loeffler et al.
26

 for details). The input files describing the perturbation 
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were generated using BioSimSpace.
11

 Prior to starting the simulations, an energy minimization 

was carried out running 1,000 steps of the steepest descent algorithm. Simulations were 

performed using SOMD.
29,30

 The first 400 ps of the trajectories of each λ window were discarded 

prior to free energy estimation to allow for equilibration. Free energies were calculated using 

MBAR.
20

 The final change in the free energy of binding for each ligand pair was calculated by 

averaging results obtained for the perturbation carried out in both directions ; ΔG values were 

computed from the network according to the method of Xu et al.
51

 

 

2.4 Analysis of the results . This work focuses on the overall correlation for each of the 

subsets and the mean unsigned error of each compound (MUEc). Previous publications
1,23,24

 

primarily aimed at the comparison of the mean unsigned error of each perturbation (MUEp), i.e. 

the mean prediction error for each ligand pair. However, strictly speaking comparing MUEp 

between different approaches requires the underlying perturbation networks to be identical, 

which is not the case for the approach presented here (cf. above). To address this situation, the 

unsigned error UEp,A-B for transformations where compounds A and B are connected via an 

additional intermediate molecule I with unknown experimental affinity was estimated as: 

UEp,A-B = | ΔΔGcalc,A-I + ΔΔGcalc,I-B – ΔΔGexp,A-B |               (1) 

Here, ΔΔGcalc,A-I and ΔΔGcalc,I-B are the calculated free energies between A and I and I and B, 

respectively, while ΔΔGexp,A-B is the difference in experimentally measured binding affinity 

between A and B.  

As the work of Gapsys et al. did not contain computed ΔG values, these values were obtained 

from the reported ΔΔG values using Flare’s internal protocol (data can be found in the SI). 
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2.5 λ Schedule. A critical factor for the success of free energy calculations is to ensure 

sufficient overlap of the phase space probability distributions integrals between all neighboring 

states.
33,34

 Typically, this is guaranteed only when the two states are very similar to each other, 

which is usually not the case for molecules  characterized by significant structural differences . 

Hence, a sufficiently high number of alchemical intermediate states must be chosen to connect 

the end states and ensure that the calculated free energy converges in a reasonable amount of 

time. Whether a perturbation obeys to these criteria can be checked through a so-called phase 

space overlap matrix.
12

 The overlap matrix 𝒪 ∈  ℝ𝑛×𝑛 (where n is the number of λ windows) 

contains the probability that a sample from any state can be found in any other state; hence, the 

matrix is symmetric (with respect to its main diagonal) and all rows and columns sum to 1. The 

first offset diagonals of the matrix contain the information about neighboring states. It has been 

reported that a value as low as 0.03 in these diagonals may be sufficient to obtain reliable 

results.
12

 In this study, the overlap matrices were used to guide the selection of the number of λ 

windows (cf. Figure 3). 
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Figure 3. Two example overlap matrices. Good overlap (green cells) can be observed for all 

neighboring windows in the matrix on the left whereas there is poor overlap (red cells) between 

the first and the second window of the second perturbation in the matrix on the right. Overlap in 

the empty cells is smaller than 0.001. 

In the previously published benchmark papers discussed above
1,23

 the 12 λ-windows were spaced 

non-linearly (0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 

0.88495, 0.95206, 0.99078). In contrast, results in this paper were obtained using linear spacing 

(e.g. 0.000, 0.125, 0.250, 0.375, 0.500, 0.626, 0.750, 0.875, 1.000 for 9 windows). Neither 

approach is perfect, and as the matrix can only be calculated once the calculations of all windows 

have finished, a significant amount of time can be spent on simulations which are then deemed 

unreliable due to poor phase space overlap. We have attempted to derive heuristics to determine 

how many λ windows should be used for certain types of perturbations to ensure sufficient 

overlap using the approach presented here. However, as the windows are spaced linearly, adding 

more windows also affects already well-sampled areas of the matrix, which increases 

computation time while only marginally improving the overall quality of the free energy 

estimate. We are currently investigating other approaches , such as the Conveyor Belt 

Thermodynamic Integration scheme,
52

 adaptive sampling
53

 or non-linear λ functions derived 

from heuristics.  

 

2.6 Protonation state of Cys215 in PTP1B. In a recently published paper
24

 the authors argue 

that the ionization state of Cys215 in the binding pocket of PTP1B, which was set to 

deprotonated in the previous work by Wang et al.,
1
 may be incorrect; in fact, there is only a short 

distance between the sulfur atom of Cys215 and the closest ligand carboxyl oxygen atom (3.5-
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3.9 Å). Furthermore, two different predictors suggest that the pKa of cysteine in the complexes 

ranges from 9.8 to 10.5. The authors report a better agreement with experiment for the free 

energy calculations using their consensus approach when Cys215 is modelled as protonated.
24

 In 

this study, Cys215 was treated as being protonated. 

 

3. RESULTS AND DISCUSSION 

3.1 Overall comparison of the FEP+ dataset. The summary of the results of the eight 

datasets from Wang et al.
1
 is reported in Table 1. Details can be found in the SI (Table S4; 

results may be recalculated using the supplied Jupyter Notebook and input files). The data for 

Pearson’s correlation coefficient R
2
 for the experimental and calculated ΔG values, the mean 

unsigned errors per ligand (MUEc) and perturbation (MUEp) as well as Kendall’s τ  are also 

shown in Figure 4. The number of perturbations used for each dataset in this study are roughly 

similar to those in Wang et al., though for PTP1B only 35 instead of 49 perturbations were 

performed. 

In terms of R, results obtained with Flare showed higher correlation (ΔR > 0.10) than those 

reported by Song et al.
23

 for five of the eight datasets , and comparable for the three remaining 

datasets (MCL1,
54

 PTP1B
55

 and BACE
56

). Interestingly, Flare’s MUEc is lower, particularly for 

the BACE dataset (0.76 ± 0.10 vs. 1.03 ± 0.14 kcal/mol; see Table S4)). As both approaches use 

the same force field (AMBER 14FFSB), this highlights that accuracy of an FEP implementation 

depends on several other aspects beyond the choice of a potential energy function . 

Our results are overall more predictive than those reported by Wang et al.
1
 for thrombin

57
 and 

CDK2
58

 (ΔR > 0.10), comparable for MCL1 and p38,
59

 and less predictive for TYK2,
60,61

 PTP1B 

and JNK1
62

 (ΔR < -0.10). The most striking difference was observed for the BACE dataset, for 
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which the overall correlation R² was poor (0.19, 95%-CI: [0.08-0.32] vs 0.61, 95%-CI: [0.50-

0.71]) but the MUEc and MUEp are only slightly worse (0.76 ± 0.10 vs 0.67 ± 0.09 and 0.95 ± 

0.10 vs 0.85 ± 0.08 kcal/mol). 

Similar performance can be observed when comparing results with the study of Gapsys et al.,
24

 

who used a consensus approach of GAFF
45

 and CGenFF
63

 as implemented in pmx.
64

 Results 

obtained with Flare showed higher correlation (ΔR > 0.10) for thrombin and PTP1B, similar for 

CDK2, TYK2 and MCL1, and poorer correlation for the remaining three other datasets (ΔR < -

0.10). 

 

Table 1. Summary for the average correlation coefficient, τ , MUEc and MUEp for all datasets. 

Parameter this study  Wang et al. Song et al. Gapsys et al., 

GAFF 

Gapsys et al., 

CGenFF 

Gapsys et al., 

Consensus 

Ravg 0.70 ± 0.05 0.74 ± 0.05 0.56 ± 0.05 0.65 ± 0.07 0.54 ± 0.09 0.60 ± 0.09 

τ avg 0.53 ± 0.05 0.57 ± 0.06 0.41 ± 0.05 0.46 ± 0.06 0.42 ± 0.06 0.47 ± 0.08 

MUEc,avg 0.83 ± 0.05 0.76 ± 0.04 1.01 ± 0.06 0.74 ± 0.04 0.84 ± 0.05 0.72 ± 0.04 

MUEp,avg 1.02 ± 0.05 0.90 ± 0.04 1.17 ± 0.05 0.91 ± 0.04 1.09 ± 0.05 0.85 ± 0.05 

Ravg is the average correlation coefficient and τ avg the average Kendall τ  across all eight 
datasets. MUEc,avg and MUEp,avg give the average MUE per compound. Uncertainties denote the 

standard error of the mean.  

 

  



 13 

 



 14 

Figure 4. Charts reporting results for each of the eight datasets . a) Pearson’s correlation 

coefficient R
2
. b) Kendall’s τ . c) Mean Unsigned Error per compound (MUEc) and d) Mean 

Unsigned error per perturbation (MUEp) for each of the eight datasets in kcal/mol. The error bars 

in a) indicate the 95% confidence interval calculated using the Fisher transformation.
65,66

 For b)-

d), they denote the standard deviation obtained by bootstrapping using 10,000 iterations. 

 

To allow for easier comparison across all datasets, the average correlation coefficient Ravg, 

Kendall’s τ avg and the mean unsigned errors per compound (MUEc,avg) and per perturbation 

(MUEp,avg) are reported in Table 1. Overall, the results obtained are slightly worse than those 

reported by Wang et al.,
1
 but better than those reported by Song et al.

23
 Compared to Gapsys et 

al.,
24

 results are better than those obtained using CGenFF, and similar to those obtained using 

GAFF or GAFF+CGenFF. There are several differences among the different free energy 

approaches which may help to explain these findings. An important factor is  the underlying 

force fields applied to the proteins and ligands. While the same protein force field was used in 

this work as in the work published by Song et al., the ligands were parameterized using different 

versions of GAFF (v2.1 vs. v1.8), and different water models were used (TIP3P vs SPC/E). The 

present protocol used a reaction field treatment of long-range electrostatic interactions, in 

contrast to a Particle Mesh Ewald treatment in the other studies . However, the results appear 

overall more accurate than those reported by Song et al., thus there is no evidence that the use of 

this computationally more efficient protocol degraded accuracy of the calculations on this 

dataset. As there are other important differences in the perturbation network, sampling time and 

in the way results are analyzed (MBAR vs. TI), it is difficult to compare the results directly. 

Even though Gapsys et al. report results closer to those presented here using GAFF v2.1, their 
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non-equilibrium approach cannot be directly compared to the method used in our work. The 

perturbation network used in this work differs from the one used in the other studies  

reported,
1,23,24

 since the networks used by Wang et al.
1
 are not optimal for use with SOMD (cf. 

section 2.1).  For the BACE dataset several intermediate structures had to be introduced to 

connect all subsets reliably. One subset contains a cyclopropyl group, which is replaced by a 

phenyl ring in another subset. In order to connect these structural motifs, two intermediate 

structures (each containing a hydrogen atom at the corresponding position) were introduced. This 

makes achieving precise results challenging as the relative binding affinity difference between 

the compounds in both subsets is mainly governed by only a few relatively challenging 

perturbations. 

The sampling time per perturbation is also of interest as computational resources in drug 

design projects are limited. The approach by Gapsys et al. used 60 (using GAFF) or 120 ns 

(when using GAFF+CGenFF) for a single perturbation with a 2 fs time step, whereas Song et al. 

used 74 ns
23,24

 and a 1 fs timestep. The method of Wang et al. used 60 ns with  a 4 fs timestep, 

but multiple replicas were run at different temperatures. The perturbation networks used in these 

studies were identical and contained a total of 330 perturbations. The approach described in this 

work on average used 90 ns and a 2 fs timestep, with 315 perturbations in total. However, each 

ligand pair was calculated twice (once in each direction) to allow for an ad ditional reliability 

estimate. Using only one of the two possible directions for each perturbation was found to only 

marginally affect the correlation coefficient and MUE, meaning that the average calculation time 

can be halved to 45 ns without having a major impact on the quality of the results (cf. Table S3 

in the SI). 
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There are several other factors such as ion concentration, distance cut-offs, water models, etc. 

which have an impact on the predicted binding affinities. However, the impact of these 

parameters on the free energies cannot be assessed  easily. A table summarizing the 

methodological details of different methodologies can be found in the SI (Table S1). 

 

3.2 Null model. Free energy calculations are an advanced and computationally expensive 

method. Hence, it is worthwhile to consider the benefit of the calculations compared to simpler 

models. For example, Song et al. report a null model which considers all ligands to be equally 

potent.
23

 Though this is a “true” null model, it seems oversimplified as even simple molecular 

descriptors may be able to yield a weak estimate of the binding affinity. An example for such a 

descriptor is the molecular weight (MW). Broadly speaking, the binding affinity can be expected 

to increase as the MW increases, since a heavier (and thus probably larger) compound can form 

more interactions with the binding pocket.  

Interestingly, there is indeed a weak correlation between the MW and the experimental binding 

affinities for most datasets (cf. Table S4 in the SI), except for BACE and TYK2. R
2
 for MW in 

PTP1B is surprisingly high (0.55), reflecting that the dataset contains various ligands of different 

sizes which are incrementally grown in the additional and mainly hydrophobic parts of the 

binding pocket. In summary, our results are clearly superior to those obtained by this null model 

(average R = 0.70 ± 0.05 for the free energy calculations and 0.38 ± 0.11 for the molecular 

weight), apart from the PTP1B dataset. 

 

3.3 Variability of the results . Another aspect to consider when running free energy 

calculations is how much results of a given perturbation may vary across different runs starting 
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from identical input molecules. In fact, the pre-FEP MD equilibration protocols uses randomly 

sampled velocities from the Maxwell-Boltzmann distribution, and consequently yield different 

starting 3D coordinates each time they are run. Likewise, different production runs started from 

the same equilibrated structure will yield different trajectories because velocities are re-

initialized at each λ-window. Four selected transformations (named P1-4) covering conservative 

as well as more challenging structural modifications were performed in quintuplicate  to assess 

the variability of the results. For P1 and P2, only a few atoms are altered during the 

transformation. In P3 and P4 an aliphatic ring system is introduced (cyclopropyl and cycloheptyl, 

respectively) posing a more difficult challenge. The results are summarized in Figure 5 and 

detailed information can be found in the SI (Table S5). 
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Figure 5. Calculated relative binding affinities for four perturbations from quintuplicate 

simulations: a) P1: -Cl  -Br (Thrombin), b) P2: -CH2-  -O- (PTP1B), c) P3: -H  -

cyclopropyl (BACE), d) P4: -H  -cycloheptyl (PTP1B). Results are shown for growing (g) and 
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shrinking (s) the atoms in the bound (b) and the free (f) state. The absolute values are shown to 

allow for easier comparison (negative values are marked with an asterisk (*)). e) Comparison of 

the experimental and computed binding affinity for the molecule pairs  (experimental data not 

available for P3).  

The hysteresis between corresponding “growing” and “shrinking” perturbations was found to 

be small (< 0.20 kcal/mol) after five repeats for the perturbations  P1-3, emphasizing the 

reliability of the presented approach. By contrast, the calculations for the insertion of cycloheptyl 

in PTP1B (P4) shows a hysteresis of 1.4 kcal/mol. Nevertheless, the calculated free energy over 

all five replicas in both directions closely matches the experimental value. The standard 

deviation of the binding free energy estimate for the larger perturbations P3 and P4 is larger (ca. 

0.5 kcal/mol) than for the smaller perturbations  P1 and P2. Thus, it is advisable to carry out 

multiple repeat runs for perturbations involving growth of entire rings. 

 

3.4 Scaffold hopping. Apart from “conventional” perturbations as contained in the datasets 

above, more advanced structural changes may also be of interest during the lead optimization 

stage of the drug design cycle. Those include macrocyclization and core replacement. In terms of 

free energy calculations , modification of the overall ligand formal charge is also challenging. 

Scaffold hopping experiments in principle are amenable to FEP simulations. As the underlying 

method uses the single topology approach, such perturbations can be computationally more 

demanding compared to dual topology approaches if the structural motif to be replaced is located 

in the middle of the molecule. To assess the feasibility of this type of perturbations, six series of 

protein-ligand complexes for which input structures have been made available
39

 were 

investigated. For some of the datasets one or several intermediate structures had to be introduced 
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in order to ensure a reasonable perturbation network. These are labelled as “mcs” (maximum 

common substructure of all ligands) and “sub” (substructure) in the perturbation networks , 

respectively. The networks can be found in the SI (Figure S2). The results are shown in Figure 6 

and details are specified in the SI (Table S5). The MUEc was 0.59 ± 0.50 kcal/mol for the results 

obtained in this study compared to 0.28 ± 0.31 kcal/mol reported by Wang et al.
39

 

 

Figure 6. Experimental (dark grey) and computed (colored for this study and light grey for the 

report by Wang et al.
39

) relative binding affinities for the 21 ligands in the scaffold hoping 

dataset. Compound-wise errors were not specified in the work of Wang et al. Note that the 

experimental binding affinity of 3a (ERa) may be lower than shown.
67
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In the following the checkpoint kinase 1 (CHK1)
68

 dataset is described in more detail (cf. 

Figure 7). Both scaffold hopping and conventional R-group modifications can be found in this 

dataset consisting of 5 ligands. The computed free energies of compounds 1, 17 and 20 are in 

excellent agreement with experiment. Though increasing the ring size is correctly predicted to be 

unfavorable (21), the predicted free energy is off by 0.9 ± 0.7 kcal/mol. The least active 

compound in the dataset (19) was not ranked last by predicted potency: The predicted change in 

relative affinity compared to 17 is only +0.2 ± 0.4 kcal/mol, whereas the experimental affinity 

changes by +1.2 kcal/mol. Interestingly, also Wang et al.
39

 report a predicted change in affinity 

of just +0.3 ± 0.1 kcal/mol for this perturbation, which indicates that neither approach reproduces 

well experimental data for this pair of compounds. 

 

Figure 7. Depictions of the scaffold hopping perturbation network of CHK1 and the obtained 

results. Numbers along the arrows give the relative free energies for each perturbation. P and A 

give the predicted and experimental affinity relative to the reference compound, 20. A dashed 
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arrow indicates that the perturbation was not considered for the final calculation of the ΔG values 

due to hysteresis. 

In summary, the scaffold hopping experiments correctly captured the effects of the ring 

extension transformations (TPSB2 and BACE1), though the predicted change in affinity is 

higher than the experimental value. The ring opening/closing transformations in EZH2 and FXa 

are more challenging. This is mainly due to the large number of necessary additional 

intermediates which are linearly connected in the perturbation network and thus increase the 

overall uncertainty (cf. Figure S2). On the other hand, for a similar transformation in which the 

ring size was modified (ERa), results were in excellent agreement with experimental values. 

Lastly, results for the CHK1 dataset containing different modifications were in good agreement 

with measured affinities except for compound 19. Overall, even though the calculations tend to 

exaggerate the impact of the modification on the free energy, they capture the trends in changes 

of binding affinity. 

 

3.5 Computational cost. An important aspect of running FEP calculations is the overall 

calculation time of the whole dataset, especially when it is constituted by hundreds of 

compounds. To estimate the computational cost, we have performed benchmarks on two of the 

proteins contained in this study, TYK2 and CHK1, containing 288 and 252 amino acids 

respectively. For each system, three independent 4-ns windows were run for the protein ligand 

complex and the solvated ligand on a NVIDIA GTX2070. For TYK2, the runs took 84 and 17 

minutes on average, corresponding to ~21 min/ns and ~4 min/ns. Similarly, times were 76 and 

19 minutes for CHK1, i.e. ~19 min/ns and ~5 min/ns, respectively. These results were obtained 

using OpenMM’s
31

 mixed precision mode. For comparison, it has been reported that FEP+ takes 



 23 

86 minutes to sample a 1-ns perturbation for 12 windows on 4 NVIDIA Tesla K80 for BACE1
69

 

complexes (containing 401 amino acids) and 34 minutes for the corresponding simulations of the 

solvated ligands.
70

 This corresponds to ~29 min/ns for the complex and ~11 min/ns for the 

ligand-only simulations, respectively. The Gromacs-FEP implementation was reported to be 3 to 

6 times slower than FEP+.
70

 In a benchmark for AMBER-TI, a perturbation in factor Xa (total 

system size: 41,563 atoms) can be calculated at about 120 ns/day on a NVIDIA GTX1080, 

corresponding to 12 min/ns .
71

  

Obviously, the data for the different FEP approaches cannot be directly compared, as the GPUs 

as well as the proteins used deviate. However, these figures show that the perturbations can be 

carried out reasonably quickly. In Flare, calculating the binding free energy for a ligand pair in 

TYK2 using 9 λ windows and a 4-ns calculation time can be carried out in ~15 hours on a single 

modern GPU. Accounting for equilibration time and with sufficient GPUs available this can be 

parallelized over 18 windows (free and bound legs) to yield a minimum time to answer of about 

1.7 hours. 

Production runs in the work presented here were 4-ns long for each λ window. However, there 

is evidence that shorter calculations times (usually 1 ns) may be sufficient to obtain a reasonable 

free energy estimate for certain classes of perturbations.
24,70

 Thus, there may be scope to further 

decrease time to answer in a scenario where it is important to maximize throughput.
 

 

4. CONCLUSION 

It has been demonstrated that the FEP method for calculating binding free energies 

implemented in Flare yields results which are on-par with various other published workflows . 

The method can also readily be applied to more challenging scaffold hopping experiments. The 
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software allows automatic set up of perturbation networks and implements several sanity checks 

of the reliability of the calculations, such as analysis of cycle closure errors and assessment of 

overlap matrices. Future work will be focused on enhancing the overlap between the sampled 

states of a perturbation by non-linearly spaced windows and by adaptive sampling. Furthermore, 

validation of the method will be extended considering another recently published large dataset 

for free energy calculations .
72
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