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Abstract 

Molecular dynamics (MD) simulations are increasingly used to elucidate relationships 

between protein structure, dynamics and their biological function. Currently it is 

extremely challenging to perform MD simulations of large-scale structural 

rearrangements in proteins that occur on millisecond timescales or beyond, as this 

requires very significant computational resources, or the use of cumbersome ‘collective 

variable’ enhanced sampling protocols. Here we describe a framework that combines 

ensemble MD simulations and virtual-reality visualization (eMD-VR) to enable users to 

interactively generate realistic descriptions of large amplitude, millisecond timescale 

protein conformational changes in proteins. Detailed tests demonstrate that eMD-VR 

substantially decreases the computational cost of folding simulations of a WW domain, 

without the need to define collective variables a priori. We further show that eMD-VR 

generated pathways can be combined with Markov State Models to describe the 

thermodynamics and kinetics of large-scale loop motions in the enzyme cyclophilin A. 

Our results suggest eMD-VR is a powerful tool for exploring protein energy landscapes 

in bioengineering efforts.  
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Introduction 

There is much interest in the use of molecular dynamics (MD) simulations to both guide 

the design and interpretation of experiments and elucidate relationships between the 

sequence, structure, dynamics and function of biological molecules.1-13 A current 

frontier for the field is the realistic simulation of large scale motions that occur on 

millisecond timescales or beyond in proteins.14,15 Such processes currently require either 

an enormous amount of computing power that exceeds the capabilities of most 

supercomputers,16,17 or the use of enhanced sampling methodologies that accelerate 

motions along predefined sets of collective variables (CV). CV-based methodologies 

are particularly useful when the endpoints of the conformational change have been 

previously structurally characterized, and a realistic interconversion pathway between 

the endpoints can be expressed with low-dimensionality descriptors suitable for biasing 

MD simulations via methodologies such as umbrella sampling18 or metadynamics19 for 

instance. These requirements limit applicability to well-chosen problems.20-37 

Interactive MD simulations (iMD) tackle the problem differently by allowing 

users to manipulate in real time an MD simulation to achieve the desired conformational 

change.38-41 A growing body of literature suggests that iMD simulations enable humans 

to generate complex conformational changes that may overcome the limitations of CV-

based methods. Alongside these developments, the availability of commodity virtual 

reality (VR) equipment has also led to a surge in the development of VR-based 

molecular visualization approaches that facilitate an intuitive understanding of the 

nature of molecular interactions for chemical education and for research purposes.42-58 

Recently, these technologies were combined to enable interactive MD simulations in 

virtual reality (iMD-VR) for a range of chemical systems.38,59 Notably, iMD-VR has 

been shown to be useful in generating plausible binding modes of protein-ligand 
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complexes, along with the corresponding conformational changes (e.g., loop motions) 

required to undertake the binding and unbinding processes.60 

 To maintain an effective user experience, current iMD-VR approaches tend to 

add biasing forces to the MD simulations which cause the system to respond in (near) 

real time. Current highly optimized MD engines such as OpenMM61 or AMBER62 

achieve performances of ca. 200-500 ps of MD sampling per minute of real time for a 

modestly sized protein solvated in a box (ca. 25k atoms). Such sampling time is several 

orders of magnitude below the timescale of protein folding or large-scale 

conformational changes, which typically occur on microseconds or slower. Thus it may 

be necessary to add strong biasing forces in an iMD-VR simulation to force a 

conformational change to happen over a timescale of a few seconds to minutes of real 

time. An open question is whether the work done on the system by a strong bias results 

in the generation of pathways that deviate significantly from the minimum free energy 

path.63 The issue is likely to be more problematic for investigations of large scale 

biomolecular assemblies that may include millions of particles.64-69 Additionally, the 

interactive exploration of conformational changes that involve concerted motions of a 

large number of atoms may require significant trial and error. ‘Undoing’ the effect of a 

poorly chosen bias in an iMD-VR simulation often requires restarting the simulation 

and making another attempt.  

 Here we address these issues with a framework that combines interactive 

manipulation of ensembles of MD simulations in virtual reality (eMD-VR) with 

iterative batch jobs processing. We show successful sampling of a key intermediate 

along the folding pathway of a small protein in virtual reality by starting from an 

extended structure.  We then show that eMD-VR generates plausible description of 

large scale loop motions in the enzyme cyclophilin A, and that the eMD-VR generated 
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pathways are suitable input to Markov State model workflows that allow rigorous 

calculation of thermodynamics and kinetics associated with a conformational change. 

This work opens up a new direction for interactive molecular dynamics simulations in 

situations where it is difficult or impractical to sample plausible pathways for 

conformational changes in real time. The focus of this work is to demonstrate proof of 

concept with a prototype implementation. We have not sought to quantify the extent to 

which VR visualization is better suited than alternative user interfaces, or whether the 

biasing protocols used here are optimal. Neither have we systematically benchmarked 

our approach against a diverse range of established enhanced sampling molecular 

dynamics methodologies or sought to assess the impact of prior user knowledge about 

the proteins studied on on the quality of the results obtained. Answers to such questions 

can be thoroughly researched once a robust prototype has become available.  

Implementation 

User interface design 

We aimed to implement a goal-oriented sampling method where series of short (minutes 

to hours) MD simulations are carried out from starting coordinates selected by a user. 

This is a similar philosophy to families of adaptive sampling algorithms such as FAST 

where starting points for successive swarms of MD simulations are biased towards 

achieving a desired physical property (for instance minimizing radius of gyration as a 

proxy for encouraging folding of a protein structure).70 The chief difference is that we 

rely on human visualization of MD trajectories and human intuition to guide the 

exploration of conformational space. 

To this end we devised a user interface that would facilitate the management of a large 

number of MD simulations iteratively performed in an effort to discover a pathway for a 

desired conformational change. We also sought to exploit the power of VR visualization 
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to facilitate the visualization and analysis of processed MD trajectories, and the 

interactive setup and dispatch of MD simulations. We denote this approach as 

‘ensemble molecular dynamics virtual reality visualization’ (eMD-VR) as it is different 

from the real-time single simulation centric approach which has been emphasized by 

iMD-VR methods.  

To address these requirements the eMD-VR prototype was designed with a dual 

interface solution (Figure 1 and SI movie 1). In the trajectory manager layout the user 

initiates a new project by importing a structure or a previously computed MD trajectory 

(Figure 1a). In the current implementation, a tree-like structure is used to represent the 

relationship between the different MD simulations carried out over the course of the 

project. Each node (or leaf of the tree) corresponds to a single MD trajectory. Edges 

between two layers of nodes indicate that the MD trajectory of the lower layer node was 

initiated from a snapshot sampled from the upper layer MD trajectory. Therefore, this 

representation allows keeping track of the simulations hierarchy and to selectively 

collapse or expand specific branches corresponding to related simulations. A button 

menu enables the user to extend in one-click the sampling time of an individual MD 

trajectory, check the status of the submitted trajectories, or prepare the raw trajectory for 

visualization by removing periodic boundary artefacts and aligning snapshots on a 

common frame of a reference. The interface also allows deleting trajectories from the 

project.  Different icons are used to represent the status of a node which can be for 

instance ‘running’ if a MD trajectory is being processed, or ‘queued’ if the trajectory 

has been setup but sampling hasn’t yet started. To allow for transferability between the 

eMD-VR and other analysis software packages we implemented a feature to highlight 

visualized snapshots of particular relevance and export them as protein data bank (PDB) 

files.  
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Visualization of completed MD trajectories and spawning of new simulations is handled 

with a virtual reality graphical user interface (Figure 1b) that is accessed by clicking on 

one of the nodes in the trajectory manager interface. The current implementation makes 

use of an HTC vive headset and a dual controller system. The primary controller 

features a menu panel and the second controller is used as a pointer to execute different 

actions (Figure 1b). This dual controller approach provides a more intuitive way of 

rotating and positioning the MD trajectory than typical mouse-based visualizers by 

mimicking the way humans use both hands to manipulate objects. The user can scroll 

through the trajectory interactively and, by pointing and clicking with the secondary 

controller on a pictogram-based menu, can trigger different actions on the simulation. 

The actions available to the user in the current version of the prototype are:  changing 

between a single atom selector and a complete residue selector, the possibility to switch 

between a ribbon representation and a combination of ribbon and lines and the ability to 

flag snapshots that are of particular interest. Importantly, the prototype allows selecting 

single structures (or snapshots) as a starting point for a new equilibrium or biased MD 

simulation (Figure 1c) and to spawn new simulations that are automatically 

incorporated as a new node in the trajectory manager layout. Steered molecular 

dynamics (SMD) is used to implement biasing potentials in eMD-VR (vide infra). To 

set up a biased simulation, the user simply selects by clicking with the controllers the 

residues that will feel the biasing potential and points and clicks to where the atoms will 

be pulled. By scrolling on the secondary controller the user can select the magnitude of 

the spring force constant required in SMD. The full capabilities of the prototype are 

detailed in SI movie 1.  
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Figure 1: User interface for eMD-VR projects. a The web-browser trajectory manager interface is used 

to monitor, manage and process collections of MD simulations of a given system. Each simulation is 

depicted as a node in the tree and pictograms can be used to represent different states (such as ready to 

visualize, running, failed). Buttons on the left hand side are used as click triggers for routine post 

processing tasks (such as PBC artifact removal, alignment to a reference structure). b In-world VR GUI 

visualization of one completed MD trajectory using a dual controller virtual reality interface. Scrolling on 

the primary controller allows visualizing the trajectory forward and backwards. An icon based menu on 

the primary controller can be used to execute different actions as explained in the main text. c In-world 

VR GUI visualization depicting the setup of a biased MD simulation by selecting residues to be biased  

(that are highlighted by the prototype in licorice representation)  to move towards a target region (orange 

circle) as explained in the main text.  

Software architecture 
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eMD-VR was devised as three connected layers, which combine to enable the 

management and setup of an ensemble of biased MD trajectories (Figure 2). The top 

layer consists of two user interfaces (the trajectory manager and the VRGUI) developed 

with Unity software. Communication between the two interfaces is managed on the 

second layer with a Web API.  In addition to handling the communication between the 

two UIs, the API connects them with a python based back-end that translates the 

commands issued on the user interfaces into GROMACS-PLUMED271,72 input files. 

The python back-end also handles remote deployment of molecular simulations on 

compute resources by using the Longbow library.73 Both the API and the python back-

end are stored in a Docker container.74 This design was adopted to grant flexibility to 

execute MD simulations via eMD-VR on local or remote computing infrastructures.  

 

Figure 2: Schematic representation of the three layers architecture of the iEBDD prototype. See the 

main text for a detailed description of each layer. 
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Implementation of eMD-VR simulations 

In eMD-VR, the implementation of biasing potentials is accomplished using SMD.75  

Specifically, the position of the center of mass (COM) of a set of atoms selected by the 

user is biased to adopt the position of a user-chosen virtual site whose coordinates are 

defined in a local frame of reference with respect to the protein. The present 

implementation uses a Harmonic Potential centered on a point which moves linearly 

with time (equation 1): 

  𝐻𝐻(𝒙𝒙, 𝑡𝑡) = 𝐻𝐻(𝒙𝒙) + 𝜅𝜅(𝑠𝑠(𝒙𝒙, 𝑡𝑡) − 𝑠𝑠0 − 𝑣𝑣𝑣𝑣)2 (1) 

Where H is the Hamiltonian of the system, x the position vector, s(x,t) the center of 

mass of the selected atoms at time t, s0 the center of mass at time zero, v the pulling 

speed. In the eMD-VR prototype the value of κ can be easily adjusted from the VR GUI 

using the scroll button on the secondary controller. The speed of pulling v is determined 

from the displacement vector between s0 and the position of the target COM, and the 

duration of the biased simulation, such that the center of mass of the biased atoms 

reaches the target position in the last 10% of the duration of the biased simulation.   

All eMD-VR biased simulations were run in the NPT ensemble with a 2 fs 

timestep, using the leap-frog integrator and LINCS76 algorithm  to constrain bonds 

involving hydrogen, truncating the constraint coupling matrix at the fourth order. The 

generation of non-bonded pair lists was achieved with the Verlet scheme using a radius 

of 10 Å.  Long range electrostatic interactions were handled using PME with a radius of 

10 Å and a grid spacing of 1.6 Å, and Van der Waals interactions were handled using 

Lennard-Jones with a cut-off of 10 Å. Temperature was maintained using stochastic 

velocity rescaling coupling with a τt of 0.1 ps, and the Parrinello-Rahman barostat with 

a τp of 2 ps was used to maintain 1.0 bar constant pressure, with a system 

compressibility of 4.5e-5 bar-1. A long range correction term was applied to correct for 
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the use of Van der Waals cutoff. Default values were used for the remaining parameters. 

MD simulations were set up and conducted using the appropriate modules of the 

GROMACS5.071 software package and PLUMED272 was used to incorporate the 

biasing potentials according to the parameters set up in the VR GUI. 

General procedure for generating conformational changes using eMD-VR 

 Simulations in eMD-VR are typically started during VR visualization of a 

protein structure or a MD trajectory loaded in the software. If a PDB structure was 

provided as input, the software will automatically set up a basic simulation protocol 

consisting of minimisation, heating and density equilibration and a short simulation of 

10ns. Once this simulation is finished, it can be loaded in the VR environment and 

visually inspected. From this simulation, the user can spawn as many simulations as 

needed from different points along the trajectory (both biased and non-biased 

simulations). Longbow will deploy these simulations to a remote computing node 

equipped with a SLURM workload manager. The software monitors automatically the 

progress of the remotely deployed simulations; hence the number of nodes that can be 

spawned simultaneously is only limited by the computational resources available to the 

user. Once the simulations are finished the output is retrieved by the software, processed 

to remove PBC artefacts and to align the snapshots to a reference structure, allowing the 

user to focus on visual analyses. The user can identify molecular structures of interest 

and highlight them using the flagging mechanic implemented with the controllers. 

These flagged structures can be exported and used in subsequent studies. For example, 

in the second test case of the current manuscript this feature was used to seed a swarm 

of MD trajectories (vide infra). The simulations files are accessible to the user and kept 

in their original GROMACS format, and can be readily analysed outside the prototype 
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using other software. Hence, the prototype considerably facilitates the procedure of 

setting up and performing MD simulations.  

Other Simulation Methodologies  

For the GTT protein we also carried out control non interactive equilibrium MD 

simulations using the same conditions as the default eMD-VR protocol, but with a 

sampling time of 1.5 µs. For studies of cyclophilin A (CypA) we carried out extensive 

follow-up MD simulations on eMD-VR generated pathways for motions of the 70s and 

100s loops. Following visual inspection, 726 structures flagged along different paths 

generated with the VRGUI were used as initial structures to seed sets of MD 

trajectories. We attempted to evenly sample along trajectories were significant 

movements (i.e visually obvious) of either the 100s or the 70s loops were observed. The 

AMBER FF14SB forcefield was used and each protein structure was then solvated in a 

12 Å of radius dodecahedral water box and 1 Cl- anion was added to neutralize the 

system, yielding 726 input conformations of approximately 30000 atoms. We followed 

the same minimization and equilibration protocols previously reported.77 In brief, each 

system was energy minimized combining steepest descent and conjugate gradient (4500 

and 500 iterations respectively) minimisation. Systems were then heated from 0 K to 

250 K in 150 ps in the NVT ensemble using a time step of 0.5 fs, and from 250 to 298 

K in 300 ps using a timestep of 1 fs. Before starting the production runs, each system 

was equilibrated for 300 ps at 298 K and 1 bar of pressure using a 2 fs timestep. Each 

system was then used for production runs consisting of 150 ns long trajectories in the 

NTP ensemble. All the MD simulations were set up and conducted using the 

appropriate the CUDA enabled version of PMEMD78 and SHAKE79 was applied to all 

bonds involving hydrogen. The AMBER hydrogen mass repartition scheme was applied 

to allow for a time step of 4 fs during the production MD simulations.80  
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The resulting pool of trajectories was used to construct a Markov State Model 

(MSM) using the pyEMMA 2.3.0 software package,81 following our previously 

described protocol to build MSMs for this system.77 In brief, the RMSD of the 70s loop 

with respect to the X-ray structure 1AK482 (residues Gly65 to Gly77) was used to 

monitor the movement of this loop. The movement of the 100s loop (residues Met100 

to Ser110) was described monitoring simultaneously the RMSD of the loop, and the 

distance between the COM of the loop and the COM of the α-helix defined by residues 

Pro30 to Thr41. The 100s loop undergoes a flapping movement that maps upward and 

downward movements of the loop onto similar RMSD values. Following previous 

work,77 we multiply RSMD values by -1 when the distance described above is shorter 

than that observed in the X-ray structure (14.0 Å) to separate both loop motions along 

this collective variable.  

To allow the most direct comparison with our previously reported model, we 

also used the same clustering algorithm (K-means) and the same number of microstates 

(100) from our previous work77 for the MSM construction. Different lagtimes were used 

to compute implied timescales of the dominant eigenvectors, and the resulting implied 

timescale plots are shown in Figure S1. A Bayesian MSM was built at each lagtime in 

order to obtain an error estimate for the obtained timescales. In agreement with our 

previous study a lagtime of 40 ns was chosen for the MSM construction, with default 

parameters provided by PyEMMA. Coarse-graining of the resulting MSM was also 

made using the same approach as reported in our previous work: the 100 k-means 

derived model was coarse grained into 5 metastable states according to the following 

structural criteria: microstates with a value of the 70s-loop CV below 1.5 Å and with a 

value of the 100s-loop CV below 4.5 Å were assigned to the ground state (closed/open, 

orange). Microstates within the same cutoff of the 70s-loop CV but with values of the 
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100s-loop above 4.5 Å were assigned to the closed/closed metastable state (red). 

Microstates with values of the 70s-loop CV between 1.5 Å and below 4.0 Å were 

assigned to the intermediate macro-state (teal). Microstates with a 70s-loop CV value 

above 4.0 Å and a 100s-loop CV value < 4.5 Å were assigned to the open/open state 

(magenta) while microstates with similar values of the 70s-loop CV but extreme values 

of the 100s-loop CV (>4.5 Å) were assigned to the open/closed (blue) macro-state.  

Computational resources. 

The VR-environment was hosted on a Dell Alienware 15R3 laptop equipped with a 2.8 

GHz Intel i7 core16 Gb of RAM and an Nvidia GeForce GTX 1070 graphics processing 

unit. The remote computing node was an Armari Magnetar workstation equipped with 

20 Intel Xeon processors, 32 Gb of RAM and 4 Nvidia GeForce GTX 980 Ti graphic 

processing units. Production runs for the swarm of trajectories were performed 

combining a local cluster and the Archer and Cirrus UKs National HPC facilities. 

Results and Discussion 

eMD-VR accelerates protein folding simulations 

The GTT protein is an engineered variant of the WW domain FiP35 (sequence: 

GSKLPPGWEKRMSRDGRVYYFNHITGTTQFERPSG). MD simulations have 

demonstrated folding times in good agreement with estimates of 4 µs derived from T-

jump experiments carried out at a temperature of 353 K, close to the melting point of 

GTT.83 At a room temperature of 298 K the folding time is anticipated to be closer to 

the millisecond timescale.84 Indeed Nguyen et. al.85 could only fold this sequence 

starting from a fully extended structure at 325 K by using an implicit solvent model to 

reduce friction.  
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To test the potential applicability of eMD-VR to quickly explore protein folding 

pathways, we aimed to explore the folding of GTT in explicit solvent at room 

temperature starting from a fully extended structure (Figure 3). With typical settings, 

each iteration of the workflow had a wallclock time of approximately 20 minutes 

(details of the settings used at each iteration are summarised in Table S1). We focused 

on the formation of hairpin 1 (residues 8 to 23) as formation of this hairpin has been 

suggested to be the dominant intermediate in the folding pathway.86 According to the 

crystal structure of this WW domain (PDB ID 2F21),87 the hairpin 1 β-sheet structure is 

characterized by a series of close contacts pairs between the alpha carbons of the 

antiparallel strands. Specifically, the following Cα-Cα distances were measured in the 

crystallographic structure for residue pairs 8-22 (4.2 Å), 9-21 (5.4 Å), 10-20 (4.7 Å), 

11-19 (5.4 Å), 12-18 (4.5 Å), 13-17 (5.3 Å) and 14-16 (5.7 Å). To reproduce this pattern 

of contacts, we first attempted to bring the N and C terminal regions of the hairpin 

closer to each other. However, after just one iteration (amounting to 10 ns of sampling 

time), the extended structure underwent hydrophobic collapse and the RMSD rapidly 

decreased from initial values of ca. 9.8 Å down to ca 4.8 Å. However, the root mean 

square deviation for the reference contact pairs (RMSDCα-Cα) was 6.0 Å, consistent with 

a misfolded structure of the hairpin 1 strands. Therefore, a bias was applied to unwind 

the structure, and the structure was refolded whilst keeping the correct alignment of the 

antiparallel strands. Following this protocol we reached intermediate II, which 

displayed a partially folded structure (RMSD 4.0 Å, RMSDCα-Cα 3.3 Å). From this 

structure, three different pathways were attempted to form hairpin 1, by forming the 

pairs 13-17, 12-18, and 10-20, leading to structures III, IV and V with RMSD values of 

4.2 / 5.3 / 3.5 Å and RMSDCα-Cα  values of 3.1 Å, 6.1 Å, and 2.0 Å, respectively. 

Refinement of these structures was sought using eMD-VR steps of unbiased MD 
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simulations, leading to structure VI with RMSD of 2.0 Å and RMSDCα-Cα of 0.7 Å. This 

level of agreement for structure VI is comparable to results previously reported in the 

literature for both multi μs85 and enhanced sampling simulations.88 However the overall 

sampling time for the successful pathway was only 64.8 ns. By contrast a control 

equilibrium MD simulation of 1.5 μs could only achieve values of RMSD 6.8 Å and 

RMSDCα-Cα 9.9 Å (Table S2).  

 

 

Figure 3: Folding pathway of the GTT protein with eMD-VR. a Schematic view of the different 

pathways explored with the eMD-VR interface. Numbers in bold represent the number of eMD-VR 

iterations. b Root Mean Squared Deviation with respect to the fully folded hairpin 1 of the WW domain 

in PDB 2F21 (residues 8 to 23) along multiple iterations of eMD-VR. c Representative structures of 

conformational states sampled along the eMD-VR trajectories.   

eMD-VR generates realistic pathways for millisecond timescale loop motions 

We have recently reported an all-atom computational model of the conformational 

change that occurs between the native state and a transient state of the protein 

Cyclophilin A (CypA), a key enzyme for the life cycle of the HIV virus.77 This motion 
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involves large scale rearrangements of a so called 70s loop region from a closed to an 

open state, and a so called 100s loop region from an open to a closed state (Figure 4a). 

The loop motions occur on micro to millisecond timescale and are critically dependent 

on interactions that Asp66 establishes with the 70s loop residues, as was demonstrated 

by NMR experiments on wild-type and mutant forms of CypA. The computational 

model was generated by combining the accelerated MD method (aMD) to sample 

plausible loop motion pathways, with Markov State Modelling (MSM) to obtain 

information about the thermodynamics and kinetics of the process for a more 

quantitative comparison with experimental data.  

A limitation of the aMD methodology is that the acceleration of rare events depends on 

the selection of a so called ‘’boost’’ parameter that can be cumbersome to optimise. Too 

little boost fails to significantly enhance sampling of conformations over the timescale 

of a ~few hundred ns long MD simulation; whereas too much boost causes the protein 

to unfold. In previous work we carefully optimised the boost level via trial and errors 

over a period of a few weeks to observe enhanced motions of the 70s and 100s loop 

regions, requiring microseconds of aggregate aMD sampling time, whilst adding 

positional restraints to key regions of CypA to prevent global unfolding.  

We sought to explore whether eMD-VR could be a more efficient alternative to aMD to 

generate large scale movements of the flexible loops of CypA. Starting from the crystal 

structure of CypA (PDB ID 1AK4) we followed a stepwise approach to trigger the 

conformational changes in both loops. A total of 26 and 17 iterations respectively were 

required to observe a movement of the 70s loop from a closed to an open state, and 

movements of the 100s loop from an open to a closed state, representing a total MD 

sampling time of less than100 ns. 
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Encouragingly inspection of the eMD-VR generated pathways indicates that the 

opening of the 70s loop occurs via a similar pathway to that observed in the aMD 

simulations (Figure 4b). In particular both pathways progress via a partially unwound 

70s loop structure where approximately half of the hydrogen bonding interactions 

between Asp66 and neighbouring 70s loop residues are broken, before progressing to a 

fully open loop conformation that no longer interacts with Asp66. Moreover, with both 

aMD and eMD-VR protocols the changes in number of hydrogen bonds between open 

and closed states in the vicinity of the 70s loop region indicate the important role of 

Asp66 (Figure 4c).  This suggests that eMD-VR generated pathways are suitable to 

generate molecular design hypotheses. However, comparison of hydrogen bonding 

patterns along aMD and eMD-VR pathways revealed the breaking of the interactions of 

Asp66 with the 70s loop residues is more abrupt following the eMD-VR protocol 

(Figure S3). 
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Figure 4: Exploring large amplitude loop movements in CypA a. Location and conformation of the 

70s (blue) and 100s (orange) loops in the crystallographic structure of CypA (PDB: 1AK4). b. 

Metastables states of the 70s loop identified using the aMD (top) and eMD-VR (bottom) protocols. c. The 

difference in the average number of intra-molecular H-bonds in the 70s closed and 70s open states as 

previously identified using aMD (grey) and as identified using the eMD-VR protocol (orange). In both 

cases residue D66 stands out as it has substantially more H-bonds stabilising the closed state than the 

open state of the 70s loop. 
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Thus to further assess the validity of the eMD-VR generated pathways we used the 

structures sampled along the pathways describing opening of the 70s or the 100s loop to 

seed a swarm of equilibrium MD simulations. Additionally, three simulations started 

from the initial structure and each of the two end-points of the sampled pathways, were 

simulated for 2 μs each.  The resulting sets of simulations were then processed using 

our Markov state model (MSM) analysis workflow described elsewhere.77 Briefly, the 

set of MD trajectories was coarse-grained on a conformational ensemble using five 

representative macrostates. These five macrostates were in good agreement with the 

conformational ensemble we had previously described. The superimposition of the 

average structures obtained for these macrostates and the Cα RMSD values with respect 

to the average structure of the corresponding state obtained using the aMD based 

protocol are displayed in Figure 5a. Furthermore, the distributions of RMSD values of 

the 70s and 100s loops with respect to the CypA crystal structure was also very similar 

among the different macrostates, even though the amplitude of the 100s loop 

distribution was slightly narrower in the results from the eMD-VR protocol  (Figure 5b 

and 5c). These similarities suggest that the conformational plasticity within these 

macrostates is qualitatively the same independently of whether the initial seeding was 

conducted with aMD or eMD-VR. Finally, we compared the populations of macrostates 

and estimated mean first passage time values (MFPT) for the transitions between 

macrostates (Figure 6) in the two models. Both models indicate that the 70s loop adopts 

a predominantly closed state, but with a slightly greater preponderance of 70s open 

states in the eMD-VR/MSM model with respect to the original model (ca. 70%/25% vs 

60%/35%). These differences in macrostates population are however within the 

uncertainties of the respective MSMs. Both MSMs identify the key low-population 

intermediate structure (cyan) for rearrangements of the 70s loop. In both cases the 
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conformational rearrangements of the 100s loop were predicted to occur within a 1 to 

10 µs timescale. The opening of the 70s loop was predicted to occur between 3 and 6 

times faster using the eMD-VR seeded pathways. This level of agreement between the 

two MSMs was deemed satisfactory given the overall uncertainties on the computed 

mean first passage times. The eMD-VR/MSM protocol used approximately half the 

aggregated sampling time of the aMD/MSM protocol, but it is apparent that this was 

sufficient to reach the same qualitative conclusions about the relative importance of the 

distinct conformational states of the 70s and 100s loops, and the nature of the slowest 

process. Further agreement could be sought via extending the simulation time. 

 

Figure 5: a. Superposition of the average structure of each macrostate with the corresponding state 

described elsewhere.77 b. Per macrostate distribution of RMSD values of the 70s loop with respect the 

crystallographic structure with PDB ID 1AK4 for structures sampled with the VR, or aMD protocols. c. 

Per macrostate distribution of RMSD values of the 100s loop with respect the crystallographic structure 

with PDB ID 1AK4 for structures sampled with the VR, or aMD protocols.  



 22 

 

Figure 6. Models of CypA loop dynamics. a. Obtained with the aMD/MSM protocol.  b. Obtained with 

the eMD-VR/MSM protocol. Error bars on reported populations and mean first passage times (MFPT) 

were obtained by bootstrapping of the MD trajectories assigned to the individual microstates. 

 
Conclusion 

We have described a new VR-based method to conduct MD simulations, incorporating 

interactive biases to explore large amplitude conformational changes in protein 

structures. Recent results have shown the potential of iMD-VR simulations to study a 

range of different molecular systems.38,59 In this work, we have extended those ideas to 

explore ensemble-based VR-enabled visualization strategies as a strategy for launching 

steered molecular dynamics simulations. By introducing the trajectory manager 

interface, we enabled simultaneous exploration of multiple pathways, and facilitated 

back-tracking of interactively biased simulations. The design of the VR GUI as a 

setup/submit/recover simulation protocol allows quick access to a range of simulation 

data, which can be obtained either through conventional simulation approaches, 

interactively biased MD, or steered MD. Steered MD in particular allows for the use of 

gentle biases to trigger conformational changes, which may enable the exploration of 
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pathways that remain close to minimum energy pathway. We have demonstrated that 

with this implementation, eMD-VR is a suitable alternative to aMD simulations to 

explore the loop dynamics of CypA, achieving comparable conformational changes 

with ca. one order of magnitude less sampling.  A powerful feature of the prototype is 

that it allows non-expert users to intuitively setup, execute and visualise a large number 

of MD simulations. We have received positive feedback about the potential of eMD-VR 

via running short research projects for visiting high school students, and via live demos 

at the 2019 Edinburgh Science Festival and Open Days at the University of Edinburgh.  

eMD-VR offers potential for exploring protein folding pathways and obtain 

insights into the nature of soft condensed matter at the nanoscale. However we stress 

that, given the subjective nature of the visual analyses, there may be variability in the 

results obtained with the prototype by different users. The hypotheses generated with 

the aid of the software should be assessed with complementary approaches (such as 

Markov state modeling or other energetic analyses). Further development could 

improve the efficiency of eMD-VR studies as a number of trial and error attempts were 

needed to fold the first hairpin of the GTT protein. In future versions of the prototype 

we aim to implement the setup of positional restraints from within the VR GUI, as it 

could ease the folding of more complex secondary structure elements, and reduce the 

number of interactions the user has to undertake to achieve a desired conformational 

change. We have also observed that the opening of the 70s loop happened more 

abruptly in the eMD-VR case than in the aMD case, suggesting that more gentle biasing 

potentials could improve further the agreement between the methodologies. We note 

that the current prototype could be also deployed in a non-VR environment, with 

interactive visualization and setup of biased MD simulations done via a touch-screen or 

monitor and keyboard interface. Previous studies have suggested that VR-based 
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environments accelerate substantially the execution of a variety of molecular modelling 

tasks,38 and in future work we plan to carry out an in-depth human-computer interaction 

study to quantify the effectiveness of eMD-VR over other interfaces for ensemble MD 

studies. It would also be beneficial to implement a MD-package agnostic back-end via a 

framework such as BioSimSpace to facilitate deployment of the prototype on a range of 

diverse compute resources.89 Potential scientific developments of interest for the 

prototype include the implementation of distance measurement and energetic estimation 

that could help improve the reliability of the results obtained. Further, integration of 

eMD-VR with druggability predictors such as JEDI,90 or Fpocket,91,92 to allow the 

interactive evaluation of protein druggability, which could facilitate the sampling of 

cryptic pockets for drug discovery purposes.93 Overall the present results indicate the 

potential of eMD-VR to broaden access to simulations of complex conformational 

changes in proteins. 

Software availability 

Input structures employed for the GTT and CypA test cases are available for download 

at https://github.com/michellab/eMD-VR-inputs. An evaluation version of the software 

is available upon request.  

Acknowledgements 

The research leading to these results has received funding from EPSRC (grant no. 

EP/P011330/1) and Horizon 2020 (ERC Proof of Concept 754654). MOC was 

supported through the Royal Society (RGF\EA\181075) and BBSRC (BB/R00661X/1). 

DRG acknowledges funding from the Royal Society (URF\R\180033), EPSRC 

(EP/P021123/1), and Leverhulme Trust (Philip Leverhulme Prize). This project made 

use of time on the Archer National Supercomputing Service and the Cirrus tier-2 

national HPC granted via the UK High-End Computing Consortium for Biomolecular 

https://github.com/michellab/eMD-VR-inputs


 25 

Simulation, HECBioSim (http://hecbiosim.ac.uk), supported by EPSRC (grant no. 

EP/L000253/1) and by the Edinburgh Parallel Computing Centre.  

 

Conflict of Interest 

PT and RS are employees of the company Interactive Scientific that commercializes 

virtual-reality visualization software. JM is a current member of the Scientific Advisory 

Board of Cresset. These materials are not sponsored by or affiliated with Unity 

Technologies or its affiliates. “Unity” is a trademark or registered trademark of Unity 

Technologies or its affiliates in the U.S. and elsewhere.  

References 

 (1) Karplus, M. Molecular Dynamics Simulations of Biomolecules. Accounts 
of Chemical Research 2002, 35, 321-323. 
 (2) Pérez, A.; Luque, F. J.; Orozco, M. Frontiers in Molecular Dynamics 
Simulations of DNA. Accounts of Chemical Research 2012, 45, 196-205. 
 (3) Dror, R. O.; Dirks, R. M.; Grossman, J. P.; Xu, H.; Shaw, D. E. 
Biomolecular Simulation: A Computational Microscope for Molecular Biology. Annual 
Review of Biophysics 2012, 41, 429-452. 
 (4) Cheatham III, T. E.; Case, D. A. Twenty-five years of nucleic acid 
simulations. Biopolymers 2013, 99, 969-977. 
 (5) Maximova, T.; Moffatt, R.; Ma, B.; Nussinov, R.; Shehu, A. Principles 
and Overview of Sampling Methods for Modeling Macromolecular Structure and 
Dynamics. PLoS Computational Biology 2016, 12, e1004619. 
 (6) De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular 
Dynamics and Related Methods in Drug Discovery. Journal of medicinal chemistry 
2016, 59, 4035-4061. 
 (7) Šponer, J.; Krepl, M.; Banáš, P.; Kührová, P.; Zgarbová, M.; Jurečka, P.; 
Havrila, M.; Otyepka, M. How to understand atomistic molecular dynamics simulations 
of RNA and protein–RNA complexes? WIREs RNA 2017, 8, e1405. 
 (8) Bottaro, S.; Lindorff-Larsen, K. Biophysical experiments and 
biomolecular simulations: A perfect match? Science 2018, 361, 355-360. 
 (9) Gundogdu, M.; Llabrés, S.; Gorelik, A.; Ferenbach, A. T.; Zachariae, U.; 
van Aalten, D. M. F. The O-GlcNAc Transferase Intellectual Disability Mutation L254F 
Distorts the TPR Helix. Cell Chemical Biology 2018, 25, 513-518.e514. 
 (10) Huggins, D. J.; Biggin, P. C.; Dämgen, M. A.; Essex, J. W.; Harris, S. 
A.; Henchman, R. H.; Khalid, S.; Kuzmanic, A.; Laughton, C. A.; Michel, J.; 
Mulholland, A. J.; Rosta, E.; Sansom, M. S. P.; van der Kamp, M. W. Biomolecular 



 26 

simulations: From dynamics and mechanisms to computational assays of biological 
activity. WIREs Computational Molecular Science 2019, 9, e1393. 
 (11) Palermo, G.; Casalino, L.; Magistrato, A.; Andrew McCammon, J. 
Understanding the mechanistic basis of non-coding RNA through molecular dynamics 
simulations. Journal of Structural Biology 2019, 206, 267-279. 
 (12) Mereghetti, P.; Kokh, D.; McCammon, J. A.; Wade, R. C. Diffusion and 
association processes in biological systems: theory, computation and experiment. BMC 
Biophys 2011, 4, 2. 
 (13) Meng, Y.; Gao, C.; Clawson, D. K.; Atwell, S.; Russell, M.; Vieth, M.; 
Roux, B. Predicting the Conformational Variability of Abl Tyrosine Kinase using 
Molecular Dynamics Simulations and Markov State Models. Journal of Chemical 
Theory and Computation 2018, 14, 2721-2732. 
 (14) Henzler-Wildman, K.; Kern, D. Dynamic personalities of proteins. 
Nature 2007, 450, 964-972. 
 (15) Wang, Y.; Papaleo, E.; Lindorff-Larsen, K. Mapping transiently formed 
and sparsely populated conformations on a complex energy landscape. eLife 2016, 5, 
e17505. 
 (16) Lee, C. T.; Amaro, R. E. Exascale Computing: A New Dawn for 
Computational Biology. Computing in Science & Engineering 2018, 20, 18-25. 
 (17) Shaw, D. E.; Grossman, J. P.; Bank, J. A.; Batson, B.; Butts, J. A.; Chao, 
J. C.; Deneroff, M. M.; Dror, R. O.; Even, A.; Fenton, C. H.; Forte, A.; Gagliardo, J.; 
Gill, G.; Greskamp, B.; Ho, C. R.; Ierardi, D. J.; Iserovich, L.; Kuskin, J. S.; Larson, R. 
H.; Layman, T.; Lee, L.-S.; Lerer, A. K.; Li, C.; Killebrew, D.; Mackenzie, K. M.; Mok, 
S. Y.-H.; Moraes, M. A.; Mueller, R.; Nociolo, L. J.; Peticolas, J. L.; Quan, T.; Ramot, 
D.; Salmon, J. K.; Scarpazza, D. P.; Schafer, U. B.; Siddique, N.; Snyder, C. W.; 
Spengler, J.; Tang, P. T. P.; Theobald, M.; Toma, H.; Towles, B.; Vitale, B.; Wang, S. 
C.; Young, C.: Anton 2: raising the bar for performance and programmability in a 
special-purpose molecular dynamics supercomputer. In Proceedings of the International 
Conference for High Performance Computing, Networking, Storage and Analysis; IEEE 
Press: New Orleans, Louisana, 2014; pp 41-53. 
 (18) Kästner, J. Umbrella sampling. WIREs Computational Molecular Science 
2011, 1, 932-942. 
 (19) Laio, A.; Parrinello, M. Escaping free-energy minima. Proc Natl Acad 
Sci U S A 2002, 99, 12562-12566. 
 (20) St-Pierre, J.-F.; Karttunen, M.; Mousseau, N.; Róg, T.; Bunker, A. Use of 
Umbrella Sampling to Calculate the Entrance/Exit Pathway for Z-Pro-Prolinal Inhibitor 
in Prolyl Oligopeptidase. Journal of Chemical Theory and Computation 2011, 7, 1583-
1594. 
 (21) Kokubo, H.; Tanaka, T.; Okamoto, Y. Ab Initio prediction of protein–
ligand binding structures by replica-exchange umbrella sampling simulations. Journal 
of Computational Chemistry 2011, 32, 2810-2821. 
 (22) Zhang, Y.; Voth, G. A. Combined Metadynamics and Umbrella 
Sampling Method for the Calculation of Ion Permeation Free Energy Profiles. Journal 
of Chemical Theory and Computation 2011, 7, 2277-2283. 



 27 

 (23) Granata, D.; Camilloni, C.; Vendruscolo, M.; Laio, A. Characterization 
of the free-energy landscapes of proteins by NMR-guided metadynamics. Proceedings 
of the National Academy of Sciences 2013, 110, 6817-6822. 
 (24) Deighan, M.; Pfaendtner, J. Exhaustively Sampling Peptide Adsorption 
with Metadynamics. Langmuir 2013, 29, 7999-8009. 
 (25) Kokubo, H.; Tanaka, T.; Okamoto, Y. Prediction of Protein–Ligand 
Binding Structures by Replica-Exchange Umbrella Sampling Simulations: Application 
to Kinase Systems. Journal of Chemical Theory and Computation 2013, 9, 4660-4671. 
 (26) Wang, J.; Shao, Q.; Xu, Z.; Liu, Y.; Yang, Z.; Cossins, B. P.; Jiang, H.; 
Chen, K.; Shi, J.; Zhu, W. Exploring Transition Pathway and Free-Energy Profile of 
Large-Scale Protein Conformational Change by Combining Normal Mode Analysis and 
Umbrella Sampling Molecular Dynamics. The Journal of Physical Chemistry B 2014, 
118, 134-143. 
 (27) Bochicchio, D.; Panizon, E.; Ferrando, R.; Monticelli, L.; Rossi, G. 
Calculating the free energy of transfer of small solutes into a model lipid membrane: 
Comparison between metadynamics and umbrella sampling. The Journal of Chemical 
Physics 2015, 143, 144108. 
 (28) Bueren-Calabuig, J. A.; Michel, J. Elucidation of ligand-dependent 
modulation of disorder-order transitions in the oncoprotein MDM2. PLoS 
Computational Biology 2015, 11, e1004282. 
 (29) Cavalli, A.; Spitaleri, A.; Saladino, G.; Gervasio, F. L. Investigating 
Drug–Target Association and Dissociation Mechanisms Using Metadynamics-Based 
Algorithms. Accounts of Chemical Research 2015, 48, 277-285. 
 (30) Bueren-Calabuig, J. A.; Michel, J. Impact of Ser17 Phosphorylation on 
the Conformational Dynamics of the Oncoprotein MDM2. Biochemistry 2016, 55, 
2500-2509. 
 (31) Llabrés, S.; Juárez-Jiménez, J.; Masetti, M.; Leiva, R.; Vázquez, S.; 
Gazzarrini, S.; Moroni, A.; Cavalli, A.; Luque, F. J. Mechanism of the 
Pseudoirreversible Binding of Amantadine to the M2 Proton Channel. Journal of the 
American Chemical Society 2016, 138, 15345-15358. 
 (32) Casasnovas, R.; Limongelli, V.; Tiwary, P.; Carloni, P.; Parrinello, M. 
Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics 
Simulations. Journal of the American Chemical Society 2017, 139, 4780-4788. 
 (33) Saleh, N.; Ibrahim, P.; Saladino, G.; Gervasio, F. L.; Clark, T. An 
Efficient Metadynamics-Based Protocol To Model the Binding Affinity and the 
Transition State Ensemble of G-Protein-Coupled Receptor Ligands. Journal of 
Chemical Information and Modeling 2017, 57, 1210-1217. 
 (34) Kuzmanic, A.; Sutto, L.; Saladino, G.; Nebreda, A. R.; Gervasio, F. L.; 
Orozco, M. Changes in the free-energy landscape of p38α MAP kinase through its 
canonical activation and binding events as studied by enhanced molecular dynamics 
simulations. eLife 2017, 6, e22175. 
 (35) Domański, J.; Hedger, G.; Best, R. B.; Stansfeld, P. J.; Sansom, M. S. P. 
Convergence and Sampling in Determining Free Energy Landscapes for Membrane 
Protein Association. The Journal of Physical Chemistry B 2017, 121, 3364-3375. 



 28 

 (36) Meral, D.; Provasi, D.; Filizola, M. An efficient strategy to estimate 
thermodynamics and kinetics of G protein-coupled receptor activation using 
metadynamics and maximum caliber. The Journal of chemical physics 2018, 149, 
224101-224101. 
 (37) Wapeesittipan, P.; Mey, A. S. J. S.; Walkinshaw, M. D.; Michel, J. 
Allosteric effects in cyclophilin mutants may be explained by changes in nano-
microsecond time scale motions. Communications Chemistry 2019, 2, 41. 
 (38) O’Connor, M.; Deeks, H. M.; Dawn, E.; Metatla, O.; Roudaut, A.; 
Sutton, M.; Thomas, L. M.; Glowacki, B. R.; Sage, R.; Tew, P.; Wonnacott, M.; Bates, 
P.; Mulholland, A. J.; Glowacki, D. R. Sampling molecular conformations and 
dynamics in a multiuser virtual reality framework. Science Advances 2018, 4, eaat2731. 
 (39) Dreher, M.; Piuzzi, M.; Turki, A.; Chavent, M.; Baaden, M.; Férey, N.; 
Limet, S.; Raffin, B.; Robert, S. Interactive Molecular Dynamics: Scaling up to Large 
Systems. Procedia Computer Science 2013, 18, 20-29. 
 (40) Haag, M. P.; Vaucher, A. C.; Bosson, M.; Redon, S.; Reiher, M. 
Interactive Chemical Reactivity Exploration. ChemPhysChem 2014, 15, 3301-3319. 
 (41) Luehr, N.; Jin, A. G. B.; Martínez, T. J. Ab Initio Interactive Molecular 
Dynamics on Graphical Processing Units (GPUs). Journal of Chemical Theory and 
Computation 2015, 11, 4536-4544. 
 (42) Limniou, M.; Roberts, D.; Papadopoulos, N. Full immersive virtual 
environment CAVETM in chemistry education. Computers & Education 2008, 51, 584-
593. 
 (43) Cai, S.; Wang, X.; Chiang, F.-K. A case study of Augmented Reality 
simulation system application in a chemistry course. Computers in Human Behavior 
2014, 37, 31-40. 
 (44) Norrby, M.; Grebner, C.; Eriksson, J.; Boström, J. Molecular Rift: 
Virtual Reality for Drug Designers. Journal of Chemical Information and Modeling 
2015, 55, 2475-2484. 
 (45) Salvadori, A.; Del Frate, G.; Pagliai, M.; Mancini, G.; Barone, V. 
Immersive virtual reality in computational chemistry: Applications to the analysis of 
QM and MM data. International Journal of Quantum Chemistry 2016, 116, 1731-1746. 
 (46) Zheng, M.; Waller, M. P. ChemPreview: an augmented reality-based 
molecular interface. Journal of Molecular Graphics and Modelling 2017, 73, 18-23. 
 (47) Salvadori, A.; Fusè, M.; Mancini, G.; Rampino, S.; Barone, V. Diving 
into chemical bonding: An immersive analysis of the electron charge rearrangement 
through virtual reality. Journal of Computational Chemistry 2018, 39, 2607-2617. 
 (48) Bennie, S. J.; Ranaghan, K. E.; Deeks, H.; Goldsmith, H. E.; O’Connor, 
M. B.; Mulholland, A. J.; Glowacki, D. R. Teaching Enzyme Catalysis Using 
Interactive Molecular Dynamics in Virtual Reality. Journal of Chemical Education 
2019, 96, 2488-2496. 
 (49) Amabilino, S.; Bratholm, L. A.; Bennie, S. J.; Vaucher, A. C.; Reiher, 
M.; Glowacki, D. R. Training Neural Nets To Learn Reactive Potential Energy Surfaces 
Using Interactive Quantum Chemistry in Virtual Reality. The Journal of Physical 
Chemistry A 2019, 123, 4486-4499. 



 29 

 (50) Doak, D. G.; Denyer, G. S.; Gerrard, J. A.; Mackay, J. P.; Allison, J. R. 
Peppy: A virtual reality environment for exploring the principles of polypeptide 
structure. Protein Science 2020, 29, 157-168. 
 (51) Probst, D.; Reymond, J. L. Exploring DrugBank in Virtual Reality 
Chemical Space. J Chem Inf Model 2018, 58, 1731-1735. 
 (52) Laureanti, J.; Brandi, J.; Offor, E.; Engel, D.; Rallo, R.; Ginovska, B.; 
Martinez, X.; Baaden, M.; Baker, N. A. Visualizing biomolecular electrostatics in 
virtual reality with UnityMol-APBS. Protein Sci 2020, 29, 237-246. 
 (53) Cassidy, K. C.; Šefčík, J.; Raghav, Y.; Chang, A.; Durrant, J. D. 
ProteinVR: Web-based molecular visualization in virtual reality. PLoS Computational 
Biology 2020, 16, e1007747. 
 (54) Martinez, X.; Chavent, M.; Baaden, M. Visualizing protein structures - 
tools and trends. Biochem Soc Trans 2020. 
 (55) Ratamero, E. M.; Bellini, D.; Dowson, C. G.; Romer, R. A. Touching 
proteins with virtual bare hands : Visualizing protein-drug complexes and their 
dynamics in self-made virtual reality using gaming hardware. J Comput Aided Mol Des 
2018, 32, 703-709. 
 (56) O'Connor, M. B.; Bennie, S. J.; Deeks, H. M.; Jamieson-Binnie, A.; 
Jones, A. J.; Shannon, R. J.; Walters, R.; Mitchell, T. J.; Mulholland, A. J.; Glowacki, 
D. R. Interactive molecular dynamics in virtual reality from quantum chemistry to drug 
binding: An open-source multi-person framework. J Chem Phys 2019, 150, 220901. 
 (57) Ferina, J.; Daggett, V. Visualizing Protein Folding and Unfolding. J Mol 
Biol 2019, 431, 1540-1564. 
 (58) Ventola, C. L. Virtual Reality in Pharmacy: Opportunities for Clinical, 
Research, and Educational Applications. P T 2019, 44, 267-276. 
 (59) O’Connor, M. B.; Bennie, S. J.; Deeks, H. M.; Jamieson-Binnie, A.; 
Jones, A. J.; Shannon, R. J.; Walters, R.; Mitchell, T. J.; Mulholland, A. J.; Glowacki, 
D. R. Interactive molecular dynamics in virtual reality from quantum chemistry to drug 
binding: An open-source multi-person framework. The Journal of Chemical Physics 
2019, 150, 220901. 
 (60) Deeks, H. M.; Walters, R. K.; Hare, S. R.; O’Connor, M. B.; Mulholland, 
A. J.; Glowacki, D. R. Interactive molecular dynamics in virtual reality for accurate 
flexible protein-ligand docking. PloS One 2020, 15, e0228461. 
 (61) Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.; 
Beauchamp, K. A.; Wang, L.-P.; Simmonett, A. C.; Harrigan, M. P.; Stern, C. D.; 
Wiewiora, R. P.; Brooks, B. R.; Pande, V. S. OpenMM 7: Rapid development of high 
performance algorithms for molecular dynamics. PLoS Computational Biology 2017, 
13, e1005659. 
 (62) Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. An overview of the 
Amber biomolecular simulation package. WIREs Computational Molecular Science 
2013, 3, 198-210. 
 (63) Xiong, H.; Crespo, A.; Marti, M.; Estrin, D.; Roitberg, A. E. Free Energy 
Calculations with Non-Equilibrium Methods: Applications of the Jarzynski 
Relationship. Theoretical Chemistry Accounts 2006, 116, 338-346. 



 30 

 (64) Muller, M. P.; Jiang, T.; Sun, C.; Lihan, M.; Pant, S.; Mahinthichaichan, 
P.; Trifan, A.; Tajkhorshid, E. Characterization of Lipid–Protein Interactions and Lipid-
Mediated Modulation of Membrane Protein Function through Molecular Simulation. 
Chemical reviews 2019, 119, 6086-6161. 
 (65) Hadden, J. A.; Perilla, J. R.; Schlicksup, C. J.; Venkatakrishnan, B.; 
Zlotnick, A.; Schulten, K. All-atom molecular dynamics of the HBV capsid reveals 
insights into biological function and cryo-EM resolution limits. eLife 2018, 7, e32478. 
 (66) Amaro, R. E.; Mulholland, A. J. Multiscale methods in drug design 
bridge chemical and biological complexity in the search for cures. Nature Reviews 
Chemistry 2018, 2, 0148. 
 (67) Khalid, S.; Rouse, S. L. Simulation of subcellular structures. Current 
opinion in structural biology 2020, 61, 167-172. 
 (68) Reddy, T.; Shorthouse, D.; Parton, Daniel L.; Jefferys, E.; Fowler, 
Philip W.; Chavent, M.; Baaden, M.; Sansom, Mark S. P. Nothing to Sneeze At: A 
Dynamic and Integrative Computational Model of an Influenza A Virion. Structure 
2015, 23, 584-597. 
 (69) Durrant, J. D.; Kochanek, S. E.; Casalino, L.; Ieong, P. U.; Dommer, A. 
C.; Amaro, R. E. Mesoscale All-Atom Influenza Virus Simulations Suggest New 
Substrate Binding Mechanism. ACS Cent Sci 2020, 6, 189-196. 
 (70) Zimmerman, M. I.; Bowman, G. R. FAST Conformational Searches by 
Balancing Exploration/Exploitation Trade-Offs. Journal of Chemical Theory and 
Computation 2015, 11, 5747-5757. 
 (71) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; 
Lindahl, E. GROMACS: High performance molecular simulations through multi-level 
parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19-25. 
 (72) Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. 
PLUMED 2: New feathers for an old bird. Computer Physics Communications 2014, 
185, 604-613. 
 (73) Gebbie-Rayet, J.; Shannon, G.; Loeffler, H. H.; Laughton, C. A. 
Longbow: A Lightweight Remote Job Submission Tool. Journal of Open Research 
Software 2016, 4, p.e1. 
 (74) Merkel, D. Docker: lightweight linux containers for consistent 
development and deployment. Linux Journal 2014. 
 (75) Lu, H.; Schulten, K. Steered molecular dynamics simulations of force-
induced protein domain unfolding. Proteins: Structure, Function, and Bioinformatics 
1999, 35, 453-463. 
 (76) Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular 
Simulation. J Chem Theory Comput 2008, 4, 116-122. 
 (77) Juárez-Jiménez, J.; Gupta, A.; Karunanithy, G.; Mey, A.; Georgiou, C.; 
Ioannidis, H.; De Simone, A.; Barlow, P.; Hulme, A. N.; Walkinshaw, M. D.; Baldwin, 
A. J.; Michel, J. Dynamic design: manipulation of millisecond timescale motions on the 
energy landscape of Cyclophilin A. Chemical Science 2020. 
 (78) Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.; Walker, R. C. 
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. 



 31 

Explicit Solvent Particle Mesh Ewald. Journal of Chemical Theory and Computation 
2013, 9, 3878-3888. 
 (79) Miyamoto, S.; Kollman, P. A. Settle: An analytical version of the 
SHAKE and RATTLE algorithm for rigid water models. Journal of Computational 
Chemistry 1992, 13, 952-962. 
 (80) Hopkins, C. W.; Le Grand, S.; Walker, R. C.; Roitberg, A. E. Long-
Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. Journal of 
Chemical Theory and Computation 2015, 11, 1864-1874. 
 (81) Scherer, M. K.; Trendelkamp-Schroer, B.; Paul, F.; Pérez-Hernández, G.; 
Hoffmann, M.; Plattner, N.; Wehmeyer, C.; Prinz, J.-H.; Noé, F. PyEMMA 2: A 
Software Package for Estimation, Validation, and Analysis of Markov Models. Journal 
of Chemical Theory and Computation 2015, 11, 5525-5542. 
 (82) Gamble, T. R.; Vajdos, F. F.; Yoo, S.; Worthylake, D. K.; Houseweart, 
M.; Sundquist, W. I.; Hill, C. P. Crystal Structure of Human Cyclophilin A Bound to 
the Amino-Terminal Domain of HIV-1 Capsid. Cell 1996, 87, 1285-1294. 
 (83) Piana, S.; Sarkar, K.; Lindorff-Larsen, K.; Guo, M.; Gruebele, M.; Shaw, 
D. E. Computational Design and Experimental Testing of the Fastest-Folding β-Sheet 
Protein. Journal of Molecular Biology 2011, 405, 43-48. 
 (84) Jäger, M.; Nguyen, H.; Crane, J. C.; Kelly, J. W.; Gruebele, M. The 
folding mechanism of a b-sheet: the WW domain. Journal of Molecular Biology 2001, 
311, 373-393. 
 (85) Nguyen, H.; Maier, J.; Huang, H.; Perrone, V.; Simmerling, C. Folding 
Simulations for Proteins with Diverse Topologies Are Accessible in Days with a 
Physics-Based Force Field and Implicit Solvent. Journal of the American Chemical 
Society 2014, 136, 13959-13962. 
 (86) a Beccara, S.; Škrbić, T.; Covino, R.; Faccioli, P. Dominant folding 
pathways of a WW domain. Proceedings of the National Academy of Sciences 2012, 
109, 2330-2335. 
 (87) Jäger, M.; Zhang, Y.; Bieschke, J.; Nguyen, H.; Dendle, M.; Bowman, 
M. E.; Noel, J. P.; Gruebele, M.; Kelly, J. W. Structure–function–folding relationship in 
a WW domain. Proceedings of the National Academy of Sciences 2006, 103, 10648-
10653. 
 (88) Shao, Q.; Shi, J.; Zhu, W. Determining Protein Folding Pathway and 
Associated Energetics through Partitioned Integrated-Tempering-Sampling Simulation. 
Journal of Chemical Theory and Computation 2017, 13, 1229-1243. 
 (89) Hedges, L. O.; Mey, A. S. J. S.; Laughton, C. A.; Gervasio, F. L.; 
Mulholland, A. J.; Woods, C. J.; Michel, J. BioSimSpace: An interoperable Python 
framework for biomolecular simulation. Journal of Open Source Software 2019, 4, 
1831. 
 (90) Cuchillo, R.; Pinto-Gil, K.; Michel, J. A Collective Variable for the 
Rapid Exploration of Protein Druggability. Journal of Chemical Theory and 
Computation 2015, 11, 1292-1307. 
 (91) Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An open source 
platform for ligand pocket detection. Bmc Bioinformatics 2009, 10. 



 32 

 (92) Schmidtke, P.; Le Guilloux, V.; Maupetit, J.; Tuffery, P. fpocket: online 
tools for protein ensemble pocket detection and tracking. Nucleic Acids Research 2010, 
38, W582-W589. 
 (93) Kuzmanic, A.; Bowman, G. R.; Juarez-Jimenez, J.; Michel, J.; Gervasio, 
F. L. Investigating Cryptic Binding Sites by Molecular Dynamics Simulations. 
Accounts of Chemical Research 2020, in press. 
 
  



 33 

GRAPHICAL TOC 
 

 
 


	Abstract
	Molecular dynamics (MD) simulations are increasingly used to elucidate relationships between protein structure, dynamics and their biological function. Currently it is extremely challenging to perform MD simulations of large-scale structural rearrange...
	Introduction
	There is much interest in the use of molecular dynamics (MD) simulations to both guide the design and interpretation of experiments and elucidate relationships between the sequence, structure, dynamics and function of biological molecules.1-13 A curre...
	Interactive MD simulations (iMD) tackle the problem differently by allowing users to manipulate in real time an MD simulation to achieve the desired conformational change.38-41 A growing body of literature suggests that iMD simulations enable humans t...
	To maintain an effective user experience, current iMD-VR approaches tend to add biasing forces to the MD simulations which cause the system to respond in (near) real time. Current highly optimized MD engines such as OpenMM61 or AMBER62 achieve perfor...
	Here we address these issues with a framework that combines interactive manipulation of ensembles of MD simulations in virtual reality (eMD-VR) with iterative batch jobs processing. We show successful sampling of a key intermediate along the folding ...
	Implementation
	User interface design
	We aimed to implement a goal-oriented sampling method where series of short (minutes to hours) MD simulations are carried out from starting coordinates selected by a user. This is a similar philosophy to families of adaptive sampling algorithms such a...
	To this end we devised a user interface that would facilitate the management of a large number of MD simulations iteratively performed in an effort to discover a pathway for a desired conformational change. We also sought to exploit the power of VR vi...
	To address these requirements the eMD-VR prototype was designed with a dual interface solution (Figure 1 and SI movie 1). In the trajectory manager layout the user initiates a new project by importing a structure or a previously computed MD trajectory...
	Visualization of completed MD trajectories and spawning of new simulations is handled with a virtual reality graphical user interface (Figure 1b) that is accessed by clicking on one of the nodes in the trajectory manager interface. The current impleme...
	Figure 1: User interface for eMD-VR projects. a The web-browser trajectory manager interface is used to monitor, manage and process collections of MD simulations of a given system. Each simulation is depicted as a node in the tree and pictograms can b...
	Software architecture
	eMD-VR was devised as three connected layers, which combine to enable the management and setup of an ensemble of biased MD trajectories (Figure 2). The top layer consists of two user interfaces (the trajectory manager and the VRGUI) developed with Uni...
	Figure 2: Schematic representation of the three layers architecture of the iEBDD prototype. See the main text for a detailed description of each layer.
	Implementation of eMD-VR simulations
	In eMD-VR, the implementation of biasing potentials is accomplished using SMD.75  Specifically, the position of the center of mass (COM) of a set of atoms selected by the user is biased to adopt the position of a user-chosen virtual site whose coordin...
	𝐻,𝒙,𝑡.=𝐻,𝒙.+𝜅,(𝑠,𝒙,𝑡.−,𝑠-0.−𝑣𝑡)-2. (1)
	Where H is the Hamiltonian of the system, x the position vector, s(x,t) the center of mass of the selected atoms at time t, s0 the center of mass at time zero, v the pulling speed. In the eMD-VR prototype the value of κ can be easily adjusted from the...
	All eMD-VR biased simulations were run in the NPT ensemble with a 2 fs timestep, using the leap-frog integrator and LINCS76 algorithm  to constrain bonds involving hydrogen, truncating the constraint coupling matrix at the fourth order. The generation...
	General procedure for generating conformational changes using eMD-VR
	Simulations in eMD-VR are typically started during VR visualization of a protein structure or a MD trajectory loaded in the software. If a PDB structure was provided as input, the software will automatically set up a basic simulation protocol consist...
	Other Simulation Methodologies
	For the GTT protein we also carried out control non interactive equilibrium MD simulations using the same conditions as the default eMD-VR protocol, but with a sampling time of 1.5 s. For studies of cyclophilin A (CypA) we carried out extensive follo...
	The resulting pool of trajectories was used to construct a Markov State Model (MSM) using the pyEMMA 2.3.0 software package,81 following our previously described protocol to build MSMs for this system.77 In brief, the RMSD of the 70s loop with respect...
	Results and Discussion
	eMD-VR accelerates protein folding simulations
	The GTT protein is an engineered variant of the WW domain FiP35 (sequence: GSKLPPGWEKRMSRDGRVYYFNHITGTTQFERPSG). MD simulations have demonstrated folding times in good agreement with estimates of 4 s derived from T-jump experiments carried out at a t...
	To test the potential applicability of eMD-VR to quickly explore protein folding pathways, we aimed to explore the folding of GTT in explicit solvent at room temperature starting from a fully extended structure (Figure 3). With typical settings, each ...
	Figure 3: Folding pathway of the GTT protein with eMD-VR. a Schematic view of the different pathways explored with the eMD-VR interface. Numbers in bold represent the number of eMD-VR iterations. b Root Mean Squared Deviation with respect to the fully...
	eMD-VR generates realistic pathways for millisecond timescale loop motions
	Conclusion
	We have described a new VR-based method to conduct MD simulations, incorporating interactive biases to explore large amplitude conformational changes in protein structures. Recent results have shown the potential of iMD-VR simulations to study a range...
	eMD-VR offers potential for exploring protein folding pathways and obtain insights into the nature of soft condensed matter at the nanoscale. However we stress that, given the subjective nature of the visual analyses, there may be variability in the r...
	Software availability
	Input structures employed for the GTT and CypA test cases are available for download at https://github.com/michellab/eMD-VR-inputs. An evaluation version of the software is available upon request.
	Acknowledgements

