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Abstract

We report on the largest dataset of optimized molecular geometries and electronic

properties calculated by the PM6 method for 92.9% of the 91.2 million molecules cat-

aloged in PubChem Compounds retrieved on Aug. 29, 2016. In addition to neutral

states, we also calculated those for cationic, anionic, and spin flipped electronic states of

56.2%, 49.7%, and 41.3% of the molecules, respectively. Thus, the grand total calculated

is 221 million molecules. The dataset is available at http://pubchemqc.riken.jp/pm6_dataset.html

under the Creative Commons Attribution 4.0 International license.
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1. Introduction

The importance of exploring new organic molecules is increasing for the development and de-

sign of organic thin film solar cells,1 electroluminescent materials,2 organic nonlinear optical

materials,3 molecular sensors,4 and new drugs.5 Ab initio quantum chemical calculations are

useful for exploring such organic molecules as they give accurate predictions for the chemi-

cal properties without time-consuming physical/chemical experiments.6 However, there are

also problems. Even though the computational cost of the quantum chemical calculations

has been reduced considerably, they are still too slow to explore the chemical space of the

molecular compounds. For example, the number of drug candidates is estimated to be 1060,

assuming the Lipinski rule.7,8 Consequently, we must depend on empirical methods.

Machine learning is a promising empirical method for chemistry, and it is frequently

applied to molecules and solids.9–20 To apply a machine learning technique, we require a lot

of high-quality training data. Unfortunately, not so many datasets for virtual screening are

readily available on the Internet.21–29 As such, there is a need to perform quantum chemical

calculations to provide training data on molecular geometries, electronic structures, and

other properties.

To provide this training data, we have to consider two major issues: the first is a criterion

for choosing molecules; the second is a representation of molecules.

Regarding the criterion for choosing molecules, there are an astronomical number of

molecules, even if we restrict the atomic species and number of atoms. For example, Rud-

digkeit et al. created a dataset called GDB-17,22 which enumerates 166 billion organic small

molecules consisting of up to 17 atoms of C, N, O, S, and halogens.

The problem is that it is not straightforward to judge which molecules are essential. For

example, Ramakrishnan et al. provide the QM7, QM7b, QM8, and QM922,23 datasets, which

are subsets of GDB-17 wherein the geometries and electronic structures are calculated using

quantum chemical methods. The QM9 dataset is the largest among them with 134 thousand

molecules (these datasets are included in the Moleculenet24 as well). Unfortunately, such
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an enumeration algorithm may not work even when the sizes of the molecules become only

slightly more abundant ; there are 27,711,253,769 isomers for C32,30 and almost all of them

might be insignificant. Another example would be cis-trans isomerism. There are 2N isomers

for N cis-trans double bonds. Choosing all the isomers is unnecessary; only representable

isomers should be selected. Moreover, sometimes these isomers function very differently,

while other times they work very similarly. For instance, cis-unsaturated fatty acids can

promote good cholesterol, whereas trans fatty acids are considered harmful.31 On the other

hand, 1,3-dichloropropene is used as an agricultural chemical, and there is no significant

difference in cis- and trans-1,3-dichloropropene. Usually, a mixture is used.32 Thus, it is not

straightforward to decide which isomers to choose or whether to choose both.

Therefore, instead of choosing molecules by ourselves, we decided to develop a chemical

database that is believed to have essential molecules and perform quantum chemical cal-

culations on the molecules in the database as much as possible. There are many chemical

databases on the Internet, including CAS,33 ChEMBL,34 ChemSpider,35 Zinc,36 and Pub-

Chem.37 Here, we chose PubChem Compounds37 as the reference set of compounds as it

is one of the most extensive and comprehensive chemical compound databases, containing

approximately 97 million molecules. Its records are from hundreds of large data sources

including those of universities, pharmaceutical companies, government agencies, chemical

vendors, scientific papers, and other curation efforts. We believe PubChem Compounds

includes most of the essential molecules as well as a sufficient variety of them.

As for the second issue of a representation of molecules, it is worth noting that, interest-

ingly, there is no rigorous definition of a molecule. Nevertheless, we can define a molecule

under certain assumptions. In the gas phase under Born-Oppenheimer approximation, non-

relativistic limit, and point charge nucleus model, we can determine the Hamiltonian of a

molecule by a set of atoms with Cartesian coordinates, and the number of electrons in the

system. Then, we can solve the Schrödinger equation to obtain the wavefunctions and the

quantum numbers. In this way, a molecule is defined by the Hamiltonian, the wavefunc-
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tion, and the quantum numbers. A problem with this definition is that we cannot easily

distinguish two different molecules. On the other hand, although the most convenient rep-

resentation would seem to be a common name, someone would have to name each new

compound. Here, we can employ IUPAC nomenclature38 as a systematic nomenclature of

molecules, since atoms, connectivity of atoms, bond orders, and other stereo information are

enough to specify a molecule in most cases. Nevertheless, we cannot easily process IUPAC

names on computers.

Therefore, we decided to rely on human and machine-readable molecular encoding sys-

tems such as InChI (International Chemical Identifier)39–41 and SMILES (Simplified Molecular-

Input Line-Entry System).42,43 These are mostly compatible with IUPAC nomenclature, and

we can encode a molecule like a chemical formula in a systematic way. Both InChI and

SMILES encode the compounds in PubChem Compounds. We made extensive use of them

in the calculations; in particular, we used SMILES for generating the initial geometry guess

and InChI for validating the optimized results. Note that these encodings have some ambi-

guities; they only define a set of atoms with electronic charge and some information about

the three-dimensional configuration of the atoms.

According to the above considerations, we have been developing datasets by performing

quantum chemical calculations.28,29 In this paper, we report on our development of a dataset

by performing geometry optimization and calculating the electronic structure and other

properties by using the PM6 method44 on molecules listed in PubChem Compounds on the

basis of SMILES and InChI encodings. We call the dataset the PubChemQC PM6 dataset.

We used the PubChem Compounds dataset retrieved on Aug. 29, 2016. It consists of

91,679,247 molecules. First, we excluded molecules whose molecular weights are greater than

1000g/mol (0.66%) and charged (ionized) molecules (2.39%). Then, we performed geometry

optimization on each molecule. In addition to the neutral state, we considered cationic,

anionic, and spin flipped states for each compound as well. At the time of writing, we have

successfully calculated for 86,213,135 neutral states, 51,555,911 cationic states, 45,581,750
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anionic states, 37,839,619 spin flipped states. Thus, the grand total calculated is 221,190,415

molecules of optimized geometries and electronic structures.

The coverage of PubChemQC PM6 is over 94.0% for neutral molecules. To the best

of the authors’ knowledge, this is the largest dataset developed by semi-empirical quantum

chemical calculations. More specifically, the number of records in PubChemQC PM6 is

greater than that in any other dataset that employed any quantum chemical calculation, ig-

noring the differences in calculation methods and their calculation accuracy. Examples of the

datasets created using the density functional theory (DFT) method, which is more accurate

than the PM6 semi-empirical method, are the Harvard Clean Energy Project Database45,46

and the ANI-1 dataset.25 The former has 2.3 million candidate compounds for organic pho-

tovoltaics and the latter contains 20 million calculated off-equilibrium conformations for

organic molecules; that is, they are smaller than PubChemQC PM6.

The dataset is compressed and available at http://pubchemqc.riken.jp/pm6_dataset.html

under a Creative Commons Attribution 4.0 International License.

The rest of the paper is organized as follows. Section 2 briefly introduces the PubChem

project and two molecular encodings: InChI and SMILES. Section 3 discusses the validity of

the PM6 calculations. The workflow for developing our database, calculation results, avail-

ability, and explanation of the PubChemQC PM6 dataset are shown in Section 4. Section 5

discusses our results, and Section 6 describes future work.

2. PubChem Compound dataset and molecular encodings

PubChem is an open chemistry database maintained by the National Institutes of Health

(NIH). Since 2004, it has been continually updated with molecular information from all

over the world. It consists of three sub-databases: Compounds, Substances, and BioAssays.

While Substances just archives the submitted data, Compounds contains unique standard-

ized compound data extracted from Substances. PubChem Compounds contains 97,125,741

5

http://pubchemqc.riken.jp/pm6_dataset.html


compounds as of Feb. 14, 2019. Each compound record in Compounds has an InChI and

SMILES as well as a PubChem CID (unique compound ID assigned by PubChem), molec-

ular formula, and other information. In the rest of the paper, we will refer to the PubChem

CID as CID.

Both InChI and SMILES give a human and machine readable representation in the form

of an ASCII string for each molecule. They each have their pros and cons, so we decided to

take the best of both.

An InChI representation is a sequence of layers prefixed by its version number. The

layers are main, charge, stereochemical, isotopic, fixed-H, and reconnected. The main layer

consists of a chemical formula, atom connections, and hydrogen atoms. The charge layer

contains information about protons and charges. Since multiple representations are possible

for a molecule, InChI defines an injective standardization procedure so that two different

molecules will have different standardized InChIs. Such standardization is vital to verify the

calculation results. For example, the standard InChI representation of ethanol (CID 702),

is the following:

InChI=1S/C2H6O/c1-2-3/h3H,2H2,1H3

InChI=1S stands for standardized InChI. C2H6O is the chemical formula of ethanol. c1-2-3

shows how carbons are connected. How many hydrogens are connected to each of the

other atoms are represented by h3H,2H2,1H3. For another example, L-ascorbic acid (CID

54670067) is described as follows.

InChI=1S/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2,5,7-8,10-11H,1H2/t2-,5+/m0/s1

Full documents and InChI Software source codes can be found on the original website.39,41

SMILES notations have better human readability and are more popular than those of

InChI. Unfortunately, however, the original SMILES is a proprietary format, and its details

are closed. Moreover, there exist many dialects derived from the original SMILES, while

several standardization methods are available. Among those, we employ a canonicalization
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of SMILES based on InChI proposed by O’Boyle47 and implemented it in Open Babel.48 In

SMILES, ethanol is represented as follows.

CCO

Note that C(O)C also represents ethanol, but it is not canonical as the description of the

atomic connectivity is not unique. L-ascorbic acid has a SMILES representation:

C(C(C1C(=C(C(=O)O1)O)O)O)O

It has an isomeric description used in PubChem Compounds:

C([C@@H]([C@@H]1C(=C(C(=O)O1)O)O)O)O

By canonicalizing with Open Babel, we have the following:

OC[C@@H]([C@H]1OC(=O)C(=C1O)O)O

PubChem Compounds provides canonical SMILES and isomeric SMILES. Canonical

SMILES does not include information about stereoisomerism, while isomeric SMILES pro-

vides relevant geometric details. Open Babel can handle canonical SMILES and OpenS-

MILES. The former canonicalizes the SMILES representation via InChI standardization.

The pros and cons of the InChI format (thus, the cons and pros of the SMILES format)

are summarized as follows.

Pros

• It is standardized by IUPAC. No variants are allowed, unlike SMILES.

• The standardization algorithm is unique and publically available.

• The treatment of hydrogens, charges, and isotopes is much more systematic than in

SMILES.

Cons
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• It is less human readable than SMILES.

Every molecular encoding has its limitations. The above encodings each have ambi-

guities. We define a molecule in the gas phase under Born-Oppenheimer approximation,

non-relativistic limit, and point charge nucleus model as follows. The total Hamiltonian of

the system is determined by the Cartesian coordinates of atoms and the number of electrons.

Then, a molecule is defined as the wavefunction and its quantum numbers in the solution

of the Schrödinger equation. Clearly, InChI and SMILES have ambiguities; they do not

explicitly include Cartesian coordinates, and instead have only a three-dimensional configu-

ration of molecules. The bond order and formal charge in SMILES are empirical parameters

that do not appear in the Hamiltonian. Moreover, no rigorous conversion between them is

available; those of SMILES are proprietary, and there are many dialects. This has led many

different SMILES for a compound,49 and bond order is not supported in InChI.

On the other hand, converting common names to a SMILES or InChI representation

requires a large table. There is a trade-off between specificity and generality, and we believe

that InChI and SMILES are the best choices for the present.

3. Validity of PM6 calculation for molecular geometry

optimization

PM6 is a semi-empirical method that neglects the diatomic differential overlap approxi-

mation developed by Stewart.44 PM6 is a promising semi-empirical method for geometry

optimization. It supports broad types of 83 elements including H-Ba and Lu-Bi, except for

lanthanoids and actinoids. In addition, it is capable of reproducing proper bond lengths and

angles. Suppose that we use H, C, N, O, F, P, S, Cl, Br, and I. Then, the average unsigned

errors in bond length is 0.031 angstroms, and the average unsigned errors of bond angles is

3.2 degrees. Although PM6 has a younger sibling, PM7,50 PM6 is known to give slightly bet-

ter results51,52 in terms of heat of formation, bond lengths, dipole moments, and ionization
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potential. For a set of approximately 5000 molecules, Stewart showed the average unsigned

error of bond length calculations made by PM6 was 0.087 angstrom, while that of PM7 was

0.098. Moreover, for another set of similar size, he showed that the average unsigned errors

of dipole moments by PM6 was 0.82 debye, and that by PM7 was 1.08 debye.

Stewart further showed that the average unsigned error of bond length and bond angle

calculations for 70 elements by PM6 were 0.091 angstroms and 7.9 degrees for 70 elements. He

concluded that the overall accuracy of PM6 in predicting heats of formation for compounds

of interest in biochemistry is somewhat better than B3LYP/6-31G*. Note that B3LYP

geometry optimization processes usually provide quite good geometries; typical errors of

bond angles and bond length are known to be within a few degrees and 0.02 angstrom .53–56

Since B3LYP is more faithful to the law of physics, the quality of the results of the

B3LYP method is better than those of PM6, and thus it might be preferable for our purpose.

However, we observed that it took a year for B3LYP to perform geometry optimizations

of only one million molecules, while it took almost the same amount of time for PM6 to

accomplish that for 100 times more molecules. In terms of processing speed of geometry

optimization, we prefer PM6 as it achieves a better trade-off between speed and quality than

B3LYP. Nonetheless, we can perform B3LYP calculations by making use of the geometry

optimization results of PM6. Since PM6 optimized geometries are fairly good, the B3LYP

one point calculation would also give good electronic structures.

4. PubChemQC PM6 dataset

We downloaded all of the molecular SDF (structure-data file) from the PubChem ftp site

on Aug. 29, 2016. Then, we parsed them and extracted molecular record containing CID

(Compound ID), molecular weight, InChI representation, isomeric SMILES, molecular com-

position formula, electronic charge, and spin number for each molecule. We calculated the

electronic charge from the isomeric SMILES representation of the molecule. We set the spin
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number to 0 or 1 according to the parity of the number of electrons in the system. Then,

we sorted the records by molecular weight in ascending order and excluded molecules with

molecular weights larger than 1000g/mol. This molecular weight limit is larger than the

Lipinski rule 500g/mol,7 and there were only 604,330 such molecules (0.66%) in PubChem

Compound. We also excluded charged 2,188,881 (2.39%) molecules. The input files were

generated by Open Babel48 using the isomeric SMILES representation of the molecule with

the –addh and –gen3d options. In our experience, Open Babel generates somewhat more

reasonable initial geometry guesses for SMILES than for InChI. One reason might be that

the bond angle estimation is easier for SMILES as it records the bond order, while InChI does

not record it. Next, we calculated the PM6 optimized geometry of the molecules by using

Gaussian09.57 If it succeeded, we also performed the geometry optimization for the cationic

state, anionic state, and spin flipped state using the PM6 optimized geometry as the initial

geometry guess. Finally, we checked that the calculated InChI coincided with the original

InChI at the optimized geometry by using Open Babel of the neutral state. We verified the

identity of the chemical formula and atom connection of the main layer. In particular, we

used the following sed script for the two InChI representations:

sed -i -e ’s|/[abd-z].*$||g’

and verified the identity of the outputs. We ignored the other layers that include floating

hydrogens, formal charge on atoms, and total charge. Because we cannot calculate or find

meanings of them from the outputs of quantum chemical calculations. We also ignored

stereoisomers, geometric isomers, and conformers.

The resultant data for each CID are as follows: input file, atom coordinates in xyz format,

and a JSON file. We parsed the output files from Gaussian0957 with cclib58 to generate the

JSON files. We trimmed “displace” sections from the JSON files. We summarized the

calculation status (successful or not) in a MySQL database. See the following section for

the success rate. We heavily used the GNU parallel utility59 to perform almost all of the

calculations.
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All of the calculations were performed on The RIKEN HOKUSAI BigWave supercom-

puter (Intel Xeon Gold 6148 2.4GHz, 1,680 CPUs, 33,600 cores), QUEST cluster (Intel Core2

L7400 1.50 GHz, 700 nodes, 1400 cores), and RIKEN RICC supercomputer (Intel Xeon 5570

2.93 GHz, 1024 nodes, 8192 cores). The overall calculation time was 95 days on HOKUSAI

BigWave, 346 days on QUEST, and 126 days on RICC. The calculation started on Dec. 30,

2016 and finished on July 9, 2018. The summarization process ended on Oct. 12, 2018.

The whole dataset is available at http://pubchemqc.riken.jp/pm6_dataset.html. The

total size of all files is approximately 800GB. The compressed Compounds_sorted_20160829.xz

file contains a record for each molecule. Each record is composed of the following fields: CID,

molecular weight, InChI representation, isomeric SMILES, molecular compositional formula,

electronic charge, and spin number. Another compressed file, Compounds_opt_failed_ver1.0.xz,

contains the same information as the above, but for failed compounds. The main data are di-

vided into 4856 files, each of which has a name like Compound_XXXXXXXXX_XXXXXXXXX.tar.xz,

where XXXXXXXXX_XXXXXXXXX denotes the range of CIDs. Each o file contains at most 25,000

compounds. Thus, the first file is Compound_000000001_000025000.tar.xz, the second file

is Compound_000025001_000050000.tar.xz, and so forth.

Each of the main data files contains directories prefixed with CIDs. For example, direc-

tory 000000001 has the following content:

000000001.20160829.info 000000001.PM6.InChIsame 000000001.PM6.S0.inp

000000001.PM6.S0.json 000000001.PM6.S0.mulliken 000000001.PM6.anion.inp

000000001.PM6.anion.json 000000001.PM6.anion.mulliken 000000001.initial.xyz

The .info file contains CID, molecular weight, InChI, isomeric SMILES, charge, and spin

number. The .initial.xyz file contains Cartesian coordinates of the atoms of the molecule.

The .inp files contain input files, where S0 means the ground state of the singlet state. The

other symbols, D0, T0, and Q0, denote the ground state of the doublet, triplet, and quartet,

respectively. The D0 and Q0 states for CID 6840 are as follows.

000006840.20160829.info 000006840.PM6.D0.inp 000006840.PM6.D0.json
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000006840.PM6.D0.mulliken 000006840.PM6.InChIsame 000006840.PM6.Q0.inp

000006840.PM6.Q0.json 000006840.PM6.Q0.mulliken 000006840.PM6.cation.inp

000006840.PM6.cation.json 000006840.PM6.cation.mulliken 000006840.initial.xyz

The T0 and Q0 states are spin flipped states of S0 and D0, respectively.

When the original InChI and the calculated InChI at the optimized geometry of the

ground state coincided, we added .InChIsame file. The *.cation.* and *.anion.* files

contain the PM6 optimized geometry of cationic and anionic states starting from the S0

state or D0 state. The JSON files were generated passing the output files of Gaussian09

through cclib.

The .mulliken files contain the Mulliken population of each T0, Q0, S0 and D0 state.

Since cclib canot be used to extract the Mulliken population for an odd number of electronic

systems, we used the Mulliken population part from the Gaussian09 log files instead.

When you extract Compound_000000001_000025000.tar.xz file, you will find the same

CIDs, 2, 103, and 112 for instance, are missing in the data files. For instance, CIDs 2 and

112 were omitted since the molecules are charged, while calculations were not performed for

CID 103 because the molecular weight, 1156.081 g/mol, exceeds the size limit of 1000g/mol.

Table 1 lists the statistics of the PM6 geometry optimization on the molecules in Pub-

Chem Compound obtained on Aug 29, 2016. The rows list the corresponding number of

compounds and file names containing the detailed data, i.e., the set of PubChem CID,

molecular weight, InChI, isomeric SMILES, and molecular formula. For instance, the “MW

less than 1000” row contains the number of molecules in PubChem Compound whose molec-

ular weight is less than 1000, while the “Charged molecules” row lists the number and the file

name containing the corresponding detailed data on the charged molecules. The “No results”

row lists the number of molecules whose PM6 geometry optimization failed for some reason

and theCompounds_no_result_ver1.0.xz file contains the detailed data on these instances.

The “InChI (in)valid” row shows the number of molecules for which the original InChI and

calculated InChI (did not) coincide up to the chemical formula and the atom connection of
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the main layer in the PM6 optimized geometry. The “Cations”, “Anions”, and “Spin flipped”

rows refer to molecules for which we successfully calculated cationic, anionic, spin flipped

states starting from the PM6 optimized geometry neutral state. These states are more un-

stable than neutral molecules and thus are more difficult to calculate. The grand total is the

sum of neutral states, cationic states, anionic states, and spin flipped states.

Table 1: Statistics of PubChemQC PM6. We calculated 86,213,135 neutral molecules in
total. Among them are 85,197,307 molecules whose original InChI and calculated InChI in
PM6 optimized geometry coincided up to the chemical formula and the atom connection
of the main layer. The list of molecules with CID, molecular weight, InChI, SMILES are
available at http://pubchemqc.riken.jp/pm6_dataset.html

Results Molecule count Filename
PubChem Compound 91,679,247 Compounds_all_sortedbymw_ver1.0.xz

MW less than 1000 91,074,917 -
Charged molecules 2,188,881 Compounds_charged_ver1.0.xz

No results 2,672,901 Compounds_no_result_ver1.0.xz

Calculated 86,213,135 -
InChI valid 85,197,307 Compounds_inchi_valid_ver1.0.xz

InChI invalid 1,015,828 Compounds_inchi_invalid_ver1.0.xz

Cations 51,555,911 Compounds_cation_ver1.0.xz

Anions 45,581,750 Compounds_anion_ver1.0.xz

Spin flipped 37,839,619 Compounds_spinflip_ver1.0.xz

Grand total 221,190,415 -

Table 2 lists the elements appearing in the compounds. For C6H2, we count C as one

and H as one. An entry in the “Success” column means the geometry optimization in the

neutral state was successful. “InChI valid” means the original InChI and the calculated

InChI coincide up to the chemical formula and the atom connection of the main layer in the

PM6 optimized geometry. “Failed” means the PM6 geometry optimization failed. “Total”

means the number of molecules in the PM6 calculation. The calculations for many non-

metal elements were successful. In contrast, the calculations failed for all of the lanthanoids,

except La, Gd, and Lu. Moreover, the calculations failed for many metals. For example,

while 12,691 molecules in PubChem Compounds contain Fe, the calculation succeeded for

only 1,363 of those molecules. Determining why the calculations failed for metals will be a
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future task.

Table 2: Statistics of PubChemQC PM6 calculation by element. Note that CH4O2 is counted
as one carbon, one hydrogen, and one oxygen. An entry in the âĂĲSuccessâĂİ column means
the geometry optimization of PM6 in the neutral state was successful, “InChI valid” means
the original InChI and the calculated InChI coincide up to the chemical formula and the
atom connection of the main layer in the PM6 optimized geometry. “Failed” means the PM6
geometry optimization failed. “Total” means the number of molecules in the PM6 calculation.

Element Success InChI valid Failed Total

H 86,190,789 85,177,145 2,659,904 88,850,693

He 38 38 17 55

Li 25,535 20,935 5,080 30,615

Be 241 115 287 528

B 233,224 214,868 36,902 270,126

C 86,203,117 85,189,423 2,653,459 88,856,576

N 79,618,703 78,739,413 1,993,733 81,612,436

O 77,016,235 76,134,745 2,388,262 79,404,497

F 16,150,043 15,997,142 394,265 16,544,308

Ne 15 15 7 22

Na 121,065 57,346 23,232 144,297

Mg 11,553 8,287 3,732 15,285

Al 8,275 6,561 8,405 16,680

Si 603,361 580,547 197,755 801,116

P 715,639 607,563 71,616 787,255

S 27,182,250 26,644,802 621,710 27,803,960

Cl 15,983,905 15,775,154 493,800 16,477,705

Ar 154 150 120 274

K 36,393 29,666 8,633 45,026

Ca 7,063 4,859 5,045 12,108

Continue
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Continued

Element Success InChI valid Failed Total

Sc 47 36 485 532

Ti 2,310 1,275 17,308 19,618

V 92 66 4,054 4,146

Cr 691 399 5,337 6,028

Mn 125 104 4,679 4,804

Fe 2,746 1,363 9,945 12,691

Co 772 583 7,302 8,074

Ni 2,092 1,123 9,965 12,057

Cu 5,777 3,731 9,562 15,339

Zn 12,335 7,996 6,581 18,916

Ga 1,150 1,006 1,896 3,046

Ge 8,093 7,230 2,666 10,759

As 10,667 6,753 6,329 16,996

Se 46,401 39,790 3,682 50,083

Br 6,424,739 6,339,585 156,506 6,581,245

Kr 30 30 18 48

Rb 2,353 1,957 1,066 3,419

Sr 659 498 695 1,354

Y 428 232 3,715 4,143

Zr 3,533 983 15,957 19,490

Nb 82 70 710 792

Mo 372 263 2,425 2,797

Tc 109 43 1,107 1,216

Ru 1,386 829 6,098 7,484

Continue
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Continued

Element Success InChI valid Failed Total

Rh 325 215 1,930 2,255

Pd 3,413 1,975 4,288 7,701

Ag 3,169 2,609 1,371 4,540

Cd 928 683 965 1,893

In 939 829 1,381 2,320

Sn 31,405 29,174 18,900 50,305

Sb 2,673 1,155 2,472 5,145

Te 6,076 4,417 875 6,951

I 1,561,730 1,475,887 201,664 1,763,394

Xe 53 45 104 157

Cs 972 500 346 1,318

Ba 1,727 664 1,941 3,668

La 99 63 774 873

Ce 0 0 959 959

Ba 1,727 664 1,941 3,668

La 99 63 774 873

Ce 0 0 959 959

Pr 0 0 569 569

Nd 0 0 797 797

Pm 0 0 38 38

Sm 0 0 566 566

Eu 0 0 845 845

Gd 82 57 937 1,019

Tb 0 0 410 410

Continue
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Continued

Element Success InChI valid Failed Total

Dy 0 0 309 309

Ho 0 0 255 255

Er 0 0 389 389

Tm 0 0 234 234

Yb 0 0 503 503

Lu 37 29 238 275

Hf 538 144 2,242 2,780

Ta 89 80 626 715

W 545 347 5,308 5,853

Re 69 58 961 1,030

Os 83 72 938 1,021

Ir 572 313 3,219 3,791

Pt 3,836 1,610 10,870 14,706

Au 1,322 883 1,569 2,891

Hg 3,110 1,946 4,717 7,827

Tl 701 478 565 1,266

Pb 2,602 2,235 1,888 4,490

Bi 1,364 1,104 1,965 3,329

5. Discussion

We successfully calculated 86,213,135 compounds, covering 94.0% of those in the PubChem

Compound dataset. Moreover, the original and calculated InChIs coincided up to the chem-

ical formula and the atom connection of the main layer for 92.9% of compounds in the

PubChem Compound dataset. Note that when the calculations failed, we recalculated sev-
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eral times, since Open Babel generates a slightly different initial geometry guess for each

execution. We also calculated cationic, anionic, and spin flipped states starting from the

PM6 optimized geometry. These states are unstable, and hence, coverage is low.

We can learn a lot from the remaining 7.1% of compounds for which the original and

calculated InChIs did not coincide or calculations failed. The following examples illustrate

problems in the original data, calculation methods, and molecular encoding methods that

led to failures.

We found duplicates in the original PubChem Compound database. For example, CID

5362549 and CID 5460654 are the same hydrogen atom, and CID 5487799 and CID 139073

are the same beryllium hydride. We did not look for duplicates thoroughly, but we believe

that there are more exact duplicates. A more problematic example is the boron hydrate

anion (CID 15398067 and CID 54713148). The difference between the canonical SMILESs

of these two molecules is in the assignment of the formal charge: [H-].[B] and [BH-].

Consequently, the InChIs are also different. However, this does not mean they should be

distinguishable; chemically, they are the same species. A similar problem exists for CID

18186120 and CID 961: their SMILES are [H+].[O-2] and [OH-], respectively.

Another problem is when the InChIs are the same, but the SMILESs are different. For

example, CID 14917 and CID 16211014 both have the same InChI InChI=1S/FH/h1H, while

the SMILESs are F and [H+].[F-], respectively. These examples clearly show that InChI

and SMILES are not compatible in principle. Moreover, there is no rigorous correspondence

between the atomic coordinates and SMILES or InChI. We allow duplicates and ambiguity

to some extent.

We performed the same calculation procedure for salts and mixtures. These systems

contain “.” in the SMILES representation (for example, CID 16741201). Many of the

mixtures are not suitable for calculations. However, it is a not trivial problem to distinguish

them from molecules. For example, CID 88524581 is a metal complex, not a mixture, while

CID 24670 is a mixture of two compounds. A more complicated case is CID 5351148, which
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is a hydrochloride salt that looks to be stable as a hydrochloride solution.

We did not consider isotopes; we used the most stable substitute instead. We treated D

as H (e.g., CID 5460634), 13C as 12C (e.g., CID 101192347), and 15N as N. Moreover, we did

not calculate charged ions. For example, CID 1038 is a hydrogen ion (H+), and CID 166653

is a hydride (H−). We regarded such systems as ionized species of CID 5362549 (hydrogen).

On the other hand, we took isomers into account when different CIDs had been assigned to

two different isomers. We were not interested in isomers or conformers of stearic acid (CID

5281). Open Babel chooses an isomer as an initial guess.

There are some molecules whose original InChI and calculated InChI are different. The

following two examples illustrate why we only checked the identity of the chemical formula

and atom connection of the main layer.

• Difference between strictnesses of stereochemical layers.

For CID 179, the original InChI in PubChem Compound is

InChI=1S/C4H8O2/c1-3(5)4(2)6/h3,5H,1-2H3

whereas the calculated InChI is

InChI=1S/C4H8O2/c1-3(5)4(2)6/h3,5H,1-2H3/t3-/m0/s1

The calculated InChI treats the stereochemical layer more strictly. Figure 1 shows

there is no significant difference between the ball-and-stick models.

• Difference between strictnesses of assignment of implicit hydrogen or treat-

ment of tautomers.

For CID 5987, the original InChI is

InChI=1S/H3NO3S/c1-5(2,3)4/h(H3,1,2,3,4)

and the calculated InChI is

19



Figure 1: Ball-and-stick models for CID 179. Left: initially generated by Open Ba-
bel. Right: PM6 calculated molecules. These molecules are almost the same,
but the original InChI (InChI=1S/C4H8O2/c1-3(5)4(2)6/h3,5H,1-2H3 and calculated
InChI (InChI=1S/C4H8O2/c1-3(5)4(2)6/h3,5H,1-2H3/t3-/m0/s1) are different because
the stereo chemistry is more strictly treated in the calculated InChI .

InChI=1S/H3NO3S/c1-5(2,3)4/h2H,1H2

Figure 2 shows the ball-and-stick models. The apparent discrepancy arises because

quantum chemical calculations make floating hydrogen explicit. The above examples

Figure 2: Ball-and-stick models for CID 5987. Left: initially generated by Open Babel
(InChI=1S/H3NO3S/c1-5(2,3)4/h(H3,1,2,3,4)). Right: molecules calculated by PM6
(InChI=1S/H3NO3S/c1-5(2,3)4/h2H,1H2). The hydrogens are originally floating, but are
explicit in the calculated InChI. There is no general solution to this problem.

are cases in which Open Babel always specifies the hydrogens or stereochemistry in the

calculation of InChI when the original InChI contains some ambiguity. Consequently,

the two InChIs contradict each other. Unfortunately, there is no general solution to

this problem.

The next example shows a case where our approach does not work for solids or solutions

in principle.
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• Different interpretations of the hydrogen atom.

Tetramethylammonium hydroxide, CID 60966, has the chemical formula [(CH3)4N]
+][OH]−.

Tetramethylammonium hydroxide pentahydrate is in a stable solid state or dissolved

in water or methanol solution. The InChI given by the initial geometry guess and the

InChI given by PM6 optimized geometry are as follows:

InChI=1S/C4H12N.H2O/c1-5(2,3)4;/h1-4H3;1H2/q+1;/p-1

InChI=1S/C4H12N.HO/c1-5(2,3)4;/h1-4H3;1H

InChI=1S/C4H11N.H2O/c1-5(2,3)4;/h1H2,2-4H3;1H2

The three InChI representations are different. The second InChI keeps the original

intention. (See Figure 3.) The PM6 geometry optimization was performed in the gas

state, so the hydrate ion took the hydrogen and was stabilized as water. Therefore,

we obtained a different representation from the original InChI. Fortunately, both the

original and the PM6 optimized InChIs are the same. Hence, the calculation was

successful in this case.

Figure 3: Ball-and-stick models for CID 60966. Left: initially generated by Open Babel.
Right: molecules calculated by PM6 geometry optimization. In the PM6 optimization,
a hydrogen moved to an oxygen. We performed the whole calculation in the gas phase.
Therefore, the InChI of the PM6 calculation is different from the original one.

• Difference between the original geometry and the PM6 optimized geome-

try.

For CID 53628168, the original InChI and the InChI calculated from the initial geom-

etry guess are the same:
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InChI=1S/C4H7N/c1-4(2)3-5/h5H,1-3H2

However, InChI in the PM6 optimized geometry is:

InChI=1S/C4H7N/c1-4-2-5-3-4/h5H,1-3H2

In this case, PM6 geometry optimization has changed the molecule from the original

InChI representation of CID 53628168 (see Figure 4); a ring is formed. As the molecule

Figure 4: Ball-and-stick models for CID 53628168. Left: initially generated by Open Babel.
Middle: initial chemical formula. Right: molecules calculated by PM6 geometry optimiza-
tion. The original compound looks very unstable. The PM6 calculation stabilized the original
compound by forming a ring. This substantially changed the InChI.

was modified during the geometry optimization, it may be very unstable. Thus, it

would likely form a ring. A similar situation can be seen for CID 53629728 (Pyri-

dazinediyl), where the original and the InChI calculated from the initial geometry guess

were the same InChI=1S/C4N2/c1-2-4-6-5-3-1, having a hexagonal shape. However,

the InChI given by the PM6 optimized geometry is InChI=1S/C4N2/c5-3-1-2-4-6; it

has a linear form. For CID 59269024, the original InChI and the InChI calculated from

the initial geometry guess are different:

InChI=1S/C5H4N/c1-5-3-2-4-6-5/h1-4H/q-1/p+1

The initial geometry guess by Open Babel is as follows:
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Figure 5: Ball-and-stick models for CID 53629728. Left: initially generated by Open Babel.
Middle: initial chemical formula. Right: molecules calculated by PM6. The molecular shape
of the PM6 calculation is totally different from the shapes of the molecules initially generated
by Open Babel and the chemical formula.

InChI=1S/C5H5N/c1-5-3-2-4-6-5/h1-4,6H

From a quantum chemical point of view, the original InChI might not be an appropriate

representation; the formal charges and formal protons do not make sense. Additionally,

the molecular formulae are different: the original one is C5H4N, and the calculated one

is C5H5N. Depending on the situation, a discrepancy such as this one can be vanished

by forbidding the formal proton and electron layer to InChI.

Figure 6: Ball-and-stick models for CID 59269024. Left: initially generated by Open Babel.
Middle: initial chemical formula. Right: molecules calculated by PM6 geometry optimiza-
tion. These three molecules represent the same molecules, but their InChIs are different
because the formal charges are different.

Another complicated example is CID 20149525. Here, the initial InChI and the InChI
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calculated from the initial geometry guess are the same:

InChI=1S/C4H6.Si/c1-3-4-2;/h3-4H,1-2H2;

However, the InChI in the PM6 optimized geometry is represented as follows.

InChI=1S/C4H6Si/c1-2-4-3-5-4/h2,4H,1,3H2/t4-/m1/s1

It differs from the original InChI. In this case, Si is not bonded in the original structure,

but Open Babel considered that Si is bonded to C-C in the optimized structure. The

distances between Si and C are 0.191 nm and 0.194 nm, respectively. We are not sure

whether Si-C bonds formed or not; this is a matter open to interpretation.

Figure 7: Ball-and-stick models for CID 20149525. Left: initially generated by Open Babel.
Middle: initial chemical formula. Right: molecules calculated by PM6. The Si atom is
considered to be in a mixture in the original, but is bonded in the PM6 optimized structure.

• Difference between molecular shapes for the same molecular InChI encod-

ing.

There are also awkward cases where the initial geometry guess looks wrong but the

InChI is preserved (CID 53630746). Here, the initial InChI and InChI calculated from

the initial geometry guess by Open Babel are the same:

InChI=1S/C5H2O/c1-2-4-6-5-3-1/h4H2

24



However, from the original 2D picture, the initial geometry generated by Open Babel

looks wrong. Fortunately, the InChI calculated by the PM6 optimized geometry is

InChI=1S/C5H2O/c1-4-2-6-3-5(1)4/h2H2, which is different from the initial InChI.

Detection of such cases is difficult.

Figure 8: Ball-and-stick models for CID 53630746. Left: initially generated by Open Babel.
Middle: initial chemical formula. Right: molecules calculated by PM6. The initial guess of
Open Babel failed to interpret the original intention. Problematically, the PM6 calculation
did not fix this problem, or else the original molecule is unstable.

In our calculations, there were 1,816,733 molecules where the original and the PM6

optimized InChI were different in the connection layer. These issues are also related to the

detection or the generation of conformers of a molecule. The quantum chemical calculation

can be used for curation in some cases. Moreover, such an effort may improve molecular

encoding methods. For example, we may add more layers to represent that CID 5987 and

60966 are stable when dissolved in water or when they are in the solid state. For CID

53628168, we should add information indicating that this is an intermediate compound.

6. Future work

We are preparing to publish more detailed analyses, in particular, on the optimization of

the HOMO-LUMO gap, HOMO energy, LUMO energy, vibration intensity, modes, dipole

moments, and structure changes, which should be useful for materials design. We are also
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planning to provide a database dump containing these data so that other researchers can

easily make use of our results. Additionally, we have been running B3LYP calculations by

using PM6 optimized geometries. A comprehensive investigation into failed calculations and

curation of successfully calculated molecules will be necessary. Finally, we are also working

on machine learning methods for quantitative structureâĂŞproperty relationships (QSPR)

modelling based on the dataset. The authors hope our contribution will help invigorate

machine learning research on molecules.
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