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ABSTRACT  

The days when medicinal chemistry was limited to a few series of compounds of therapeutic 

interest are long gone. Nowadays, no human may succeed to acquire a complete overview of 

more than a billion existing or feasible compounds within which the potential “blockbuster 

drugs” are well hidden, and yet only a few mouse clicks away. To reach these «hidden 

treasures», we adapted Generative Topographic Mapping to enable efficient navigation through 

the chemical space, from a global overview to structural pattern detection, covering, for the first 

time, the complete ZINC library of purchasable compounds, relative to 1.6 million biologically 
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relevant ChEMBL molecules. About 40 000 hierarchical maps of the chemical space were 

constructed. Structural motifs inherent to only one library were identified. Roughly 20 000 off-

market ChEMBL compound families represent incentives to enrich commercial catalogs. 

Alternatively, 125 000 ZINC-specific compound classes, absent in structure-activity bases are 

novel paths to explore in medicinal chemistry. The complete list of these chemotypes can be 

downloaded using the link https://forms.gle/B6bUJj82t9EfmttV6. 

INTRODUCTION 

Nowadays, the number of molecules available to medicinal chemists is huge. The ZINC 

database merges commercial catalogs proposed by numerous chemical suppliers and contains 

more than 1.4 billion compounds
1
. It includes both already synthesized or in-stock compounds, 

and tangible molecules. Despite being just a tiny fraction of the estimated number of possible 

drug-like molecules (around 10
33

 structures)
2
, the currently known chemical space is far from 

being fully studied and apprehended by medicinal chemists. For example, ChEMBL
3
, containing 

biologically studied compounds extracted from the scientific literature is a thousand times 

smaller than ZINC. Thus, while chemical suppliers compete to enumerate the higher number of 

new virtual molecules
4
, already existing compounds are largely unexplored from a drug 

discovery perspective.  

Within the two last decades, the usefulness of purchasable screening libraries playing the role 

of a source of potential drugs has been evaluated in numerous reports
5-12

. These studies typically 

rely on a statistical analysis of chemical collections in terms of four groups of characteristics: 

physicochemical properties (e.g. molecular weight, logP, polar surface area, etc.), molecular 

complexity, diversity and novelty (usually based on a simple scaffold analysis
13

). All these 

reports provide an important insight into the evolution of medicinal chemistry relevant properties 
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of commercially available compounds and their distribution across screening libraries of 

different chemical suppliers. Yet, the scope of the mentioned works does not cover the entire 

chemical market, but only up to 2% of the purchasable compounds (16M out of 800M unique 

ZINC molecules). Moreover, there is a lack of chemical analysis of commercially available 

libraries. Indeed, the direct references to molecular structures were limited to the typical scaffold 

population analysis - a convenient and yet biased way to comprehend structural diversity
14

. The 

same scaffold may be adorned with radically different pharmacophore patterns and, hence, have 

completely different biological effects. On the other hand, the same pharmacophore may be 

“incarnated” by radically different scaffolds and yet exhibit similar activity
15

.  

In the meantime, all those works aim to analyze only the current state of the chemical market 

without trying to identify and, if possible, to fill the gaps in the purchasable chemical space. One 

way to evaluate such possible incompleteness is a comparison of commercial catalogs with a 

reference subset of molecules possessing desired properties. Such an approach was previously 

adopted by Shelat and Guy in their study of the biological relevance of screening libraries
16

. 

They compared some purchasable chemical collections (≈2M unique structures) with a set of 

known drugs (≈8K compounds). The results have shown that there is only a 14% scaffold 

overlap between analyzed subsets which brings us to the conclusion that commercial chemical 

space at that time was not sufficiently covering biologically relevant compounds. The 

challenging goal of increasing that coverage can hardly be achieved by unguided compounds 

enumeration. It requires a deep understanding of the main features of both purchasable and 

biologically relevant chemical space. 

In this context, our study focuses on two goals: (i) commercial chemical space enhancement 

and (ii) its exploration. The first one consists in the identification of biologically relevant 
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compounds that are absent from the current chemical market. Such molecules, being synthesized 

in academic laboratories, small start-ups, big pharmaceutical companies or coming from natural 

product-based programs
17

, are also entering biological assays and results of these tests eventually 

become publicly available. Those biologically relevant compounds and especially their untested 

analogs, if added to the commercial catalogs, could be highly useful in further screening 

campaigns and SAR studies, and, thus, become good starting points for the development of new 

«best-sellers» of the chemical market. At the same time, not all commercially available 

compounds have been tested before in biological studies. The compound classes that have been 

overlooked by medicinal chemists can be used for expanding the scope of the biological 

exploration of the commercially available chemical space. 

In order to find such "hidden treasures", we performed thorough chemical analysis of the drug 

discovery-oriented commercial chemical space, featuring (after standardization and duplicate 

removal) 800M ZINC compounds, versus 1.6M molecules that have already attracted the 

attention of medicinal chemists and were therefore captured in the ChEMBL database together 

with their observed biological activities. Both ZINC and ChEMBL compounds were split into 

four groups depending on the type of biological tests and selected drug design strategy, resulting 

in fragment-like
18

, lead-like
19

, drug-like
20

 and PPI-like
21

 subfamilies. The purchasability of 

ZINC molecules was also assessed: they were further split into ZINC-Real - in-stock compounds 

directly available for purchase, and ZINC-Tangible - compounds that can be synthesized upon 

request .  

Thousands of chemotypes, specific only to ChEMBL or ZINC libraries, were detected for each 

of the mentioned subspaces. It was done using one of the most efficient chemography methods of 

dimensionality reduction - Generative Topographic Mapping (GTM)
22

, that has already proven 
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to be a successful approach for visualization and versatile analysis of large chemical libraries.
23

 

It produces easily readable 2D maps of chemical space - a very convenient way for navigating 

through billions of compounds.  

It was found that commercially available libraries are missing numerous compound families 

known to include biologically active members - highly potent inhibitors of important biological 

targets. Some examples of ChEMBL and ZINC specific chemotypes will be discussed in the text, 

while the full list of these structures – a potential source of inspiration for synthetic and 

medicinal chemists - can be downloaded using the link https://forms.gle/B6bUJj82t9EfmttV6. 

Notice that the identified in this work ZINC-specific MCSs that were absent in both ChEMBL 

and PubChem
24

 (revealed by secondary substructure check), were then in Silico profiled against 

749 ChEMBL targets. It was done with the help of  GTM Profiler tool
25

 used to evaluate their 

potential usefulness in drug design (http://infochim.u-strasbg.fr/webserv/VSEngine.html).  

Chemography as a versatile tool for chemical space analysis 

Both chemography, as an “art of navigating in chemical space
26

, and activity/property 

prediction should be used for chemical space analysis. The first is needed to navigate through the 

complex structure of the chemical data, and the second might serve to set the landmarks (identify 

compounds potentially possessing desired properties, by predicting those properties, in absence 

of experimental data). Also, the chosen approach must be “Big Data”-compatible. Generative 

Topographic Mapping method, or GTM, conveniently fulfills all these requirements. Briefly 

speaking, it translates compounds from the initial multidimensional descriptor space to a 2D 

latent space, called a 2D map. In contrast to Self-Organizing Maps
27

, GTM distributes molecule 

projection over the map with node-specific probabilities (responsibilities) instead of 
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unambiguously assigning each compound to only one point on the map. This smoothness enables 

creation of GTM landscapes – cumulated compound responsibility patterns, colored by average 

values of different properties, e. g. density, biological activity, assigned class, etc. (see examples 

in Figure 1 a). The details of the method are provided in Supporting Infomation. 

 

Figure 1. Generic scheme of library analysis and comparison with GTM: a) left - density     

landscape used to analyze the distribution of different compound classes across the chemical 

space (color spectrum matches the cumulated responsibility, corresponding to the number of 

resident compounds) versus right - a categorical landscape rendering chemical space regions 

occupied by two libraries (the color code matching the proportion of residents from each library); 

b) a schematic overview of the HGTM navigation through the highly populated areas of the 
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chemical space – compounds, extracted from the zone of interest, are used for constructing a new 

map, now focused only on this region of chemical space. 

Walking over this map and performing an in-depth chemotype analysis of the residents of the 

local map zones is a rational and intuitive way to systematically “browse” the chemical space 

and get acquainted with the structural patterns it hosts. In this work those patterns  were 

characterized by maximum common substructures (MCSs) – the largest structural fragments that 

aim to generalize common features of the group of molecules they represent
28

. These MCSs were 

defined as substructural fragments, that contain at least 30% of each molecule they represent. 

MCS was preferred over the widely used scaffold concept because it is open-ended and adaptive: 

it may coincide with the scaffold or be more specific by including key substituents (side-chains) 

if appropriate. The algorithm that combines both GTM and MCS detection was presented by Lin 

et al.
29

 and is briefly discussed in Supporting Information. 

Yet, 2D maps cannot accommodate a huge number of compounds all while capturing fine 

differences between close neighbors: a hierarchical zooming approach will be required to let the 

user capture details of the chemical population at any point of the global map, and reach down to 

“hidden treasures” buried beneath millions of compounds. Hierarchical GTM (HGTM)
29, 30

, a.k.a 

“Zooming” is a technique that trains a new map on a set of compounds extracted from a given 

zone on the parent map, in order to ensure a locally optimal mapping (Figure 1b). The zoomed 

map is free to fit the local compound distribution, with no constraints to simultaneously match all 

the other compounds – which is the key benefit, beyond the obvious gain in resolution (the latter 

could have been easier achieved by imposing a finer grid mesh on the global map). 

Last but not least, with a robust structure-activity set used to create an activity landscape (a 

landscape colored by activity values), the map can be turned into a potent QSAR/QSPR model
25, 
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31-33
. Predictivity of those models can be quantitatively determined and serve as a guide in the 

search for “the best map” parameters configuration. In this way, our group built seven optimized 

“Universal” maps of the drug design-relevant chemical space, selected for their ability to host as 

many predictive activity landscapes, for different drug targets with enough structure-activity data 

reported in ChEMBL
25

. Those maps are the basis of the GTM Profiler - a virtual screening tool, 

that allows to predict compound activity against 749 biological targets. It is extremely time-

effective for already mapped molecules. The previously reported “top” Universal map serves 

here as the principal tool for the biologically-biased analysis of the commercial compound space.  

RESULTS AND DISCUSSION 

Chemical analysis of the commercially available chemical space 

Initially, 1.3 billion (out of total 1.5 billion) compounds from ZINC15, passing built-in 

“standard reactivity” filter and 1.8 million molecules from ChEMBL (version 25) were collected 

for this project. After structure standardization and stereoisomer “fusion” into a common, 

stereochemistry-depleted representation, 800 million ZINC and 1.6 million ChEMBL unique 

structures remained. Compounds with unwanted functionalities were filtered out (Table S1) and 

four subsets associated with different stages and strategies of drug discovery were defined 

(Table 1). Commercially available compounds were split according to their purchasability into 

ZINC-Real and ZINC-Tangible. The first group contains all compounds that have been already 

synthesized in a sufficient quantity and thus can be delivered in under 2 weeks to the buyer with 

a 95% acquisition success rate. The second one, in contrast, contains compounds that were 

designed by suppliers as a result of the stock enhancement programs and have not been 

synthesized yet. Thus 8-10 weeks are needed for their delivery and acquisition success rate is 

about 70%. 
1
 Tangible libraries are considered as the source for the chemical enhancement of the 
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Real ones. They can be readily made from existing building blocks according to the well-defined 

procedures
34

, approved by the synthetic chemists. Therefore ZINC-Tangible compounds were 

used in this study rather than de-novo generated molecules
35, 36

 of uncertain chemical feasibility. 

Further details about data preparation and filtering rules can be found in Supporting Information. 

The present analysis employs Universal map #1 as the best one out of the previously built 

general-purpose chemical space maps
25

. It was constructed in a way to be able to predict 618 

biological activities present in ChEMBL database. Being multitarget-oriented, this map can be 

considered as a generalized framework for biologiacally-biased chemical space visualization. It 

is based on one of the ISIDA fragment descriptors – atom sequences with a length from 2 to 3 

atoms labeled by CVFF Force Field types and Formal Charges labels
37

. See more details about 

the construction of the Universal map #1 in Supporting Information. 

 Table 1. Size of the medicinal chemistry-relevant subsets after standardization & 

appropriate filtration. 

 ChEMBL ZINC-Real ZINC-Tangible 

Fragment-Like 15 398 103 530 2 772 851 

Lead-Like 361 051 3 253 343 329 893 210 

Drug-Like 668 222 5 158 676 516 492 788 

PPI-Like 229 570 1 248 875 63 632 835 

 

First, each of the abovementioned ZINC subsets were projected onto the universal map. 

Density landscapes of the subsets were built in order to obtain a general overview of the 

structural features of the purchasable chemical space (Figure 2). Interestingly, the commercial 

compounds are distributed in a highly imbalanced manner: the major part of the map area is 
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rather sparsely populated (gray zones), by contrast to a few outstanding density peaks 

(multicolored regions). In Figure 3, the structural analysis of the densest regions of the lead-like 

ZINC-Real part of the chemical space is provided: characteristic MCS of some zones are shown. 

The density imbalance goes in correspondence with the previously reported unequal compound 

distribution across different compound classes
11, 12

. An overrepresentation of synthetically 

accessible benzensulfonamides, anilids and other amides is noticed (Figure 3: regions R3, R4, 

and R5). These chemical subfamilies echo, firstly, the extreme popularity of combinatorial 

chemistry methods in the 20th century. Based on limited sets of building blocks and simple 

reactions, they allowed to synthesize large numbers of compounds at the cost of limited chemical 

diversity. At the same time, the complexity of the synthetic path for some compounds prevented 

the mass production of their analogs.  
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Figure 2. Density landscapes of commercially available (ZINC) and biologically relevant 

(ChEMBL) subsets. The color scale renders the corresponding number of compounds residing 

in each colored node of the map. 
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Figure 3. Examples of the most frequent structural motifs from the densest regions of the 

Lead-Like ZINC-Real map. 

The second reason is medicinal chemistry demand, which has also reshaped purchasable 

libraries significantly. For example, sulfonamides -  the main inhabitants of the R4 region, are 

known for their anti-bacterial properties for almost 100 years. Back in time, together with 

antibiotics, they revolutionized the medicinal approach for various infections treatment, moving 

it from immuno- to chemotherapy
38

. Another examples are thiophene-containing compounds 

(region R1), that possess diverse therapeutic properties - antimicrobial, anticancer, anti-

inflammatory activity etc.
39

 In addition, the thiophene cycle is highly popular in medicinal 

chemistry due to its bioisosteric correspondence with phenyl.  

The previous century’s synthetic methods and medicinal chemistry demands are still 

influencing the current chemical market
40

. This historical bias can be a dangerous limitation for 

discovering new valuable patterns in medicinal chemistry - novel chemotypes with a specific 

activity. Since tangible ZINC libraries have been designed rather recently, in theory, their 

compound distribution should be more balanced than those of in-stock collections. In practice, 
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all the analyzed subsets of ZINC-Real and ZINC-Tangible are very similar. The same shape of 

the occupied areas on the map as well as the position of the high-density regions can be observed 

(Figure 2). Although tangible libraries increase the total number of compounds on the market, 

they still tend to sample the same areas of the chemical space that are already overpopulated by 

in-stock libraries. That means that current strategies of the commercial library enhancement do 

not provide a uniform chemical space sampling and thus there is an urgent need for their 

improvement.  

In search of the «hidden treasures» 

Commercial chemical space is huge and thus expected to include novel chemotypes that were 

never subjected to biological testing so far. Moving them from the chemical store onto a shelve 

of the medicinal chemistry lab might open new opportunities in drug discovery. At the same 

time, suppliers might miss some important types of compounds - highly potent drug-design 

candidates, that were developed and tested in small companies or academic laboratories. These 

compounds are of high interest for medicinal chemists, and their presence in the commercial 

catalogs will certainly enrich the latter.  

In search of these “hidden treasures”, a detailed comparison of ZINC and ChEMBL libraries 

was performed. From “bird’s-eye” perspective, the ChEMBL and ZINC chemical spaces 

coincide fairly well: in Figure 4, for each of the landscapes, there are only a few small zones in 

which the extremes of the color spectrum (local population exclusively stemming from one of 

the libraries) can be observed. However, this resolution level is certainly not sufficient, as one 

single node of the map may contain up to several millions of compounds (Figure 2), forcing 

dissimilar compounds to share common zones. The HGTM approach has been used to further 

navigate through highly populated areas. Up to five zooming levels were used to build about 
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40 000 “child” maps (Figure 4). All zones, containing in total more than 1 000 compounds were 

zoomed, others – subjected directly to the MCS detection protocol
29

. For example, in the 

landscape hosting 3.6M lead-like [ChEMBL+ZINC-Real] compounds (Figure 5), Zone1 is 

equally frequented by both libraries and contains more than 82 000 compounds. Two zooming 

iterations of this zone reveals a detailed landscape where areas with unique substructures (and, 

hence, chemotypes) can be found for each library (Zone3 and Zone4).  

 

Figure 4. Categorical landscapes of the medicinal chemistry relevant subsets of 

commercially available chemical space. Each map visualizes compounds both from ChEMBL 

(zones colored in black) and ZINC (colored in red). White regions correspond to the empty 

areas. All colors in between correspond to the various normalized proportion of compounds from 

different subsets, projected into a particular node of the map (see Supporting Information). 

Numbers of parenthesis shows how many subsidiaries or «zoomed» GTMs were built. 
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Figure 5. HGTM navigation of the highly populated areas of the chemical space: Lead-Like 

ChEMBL vs ZINC-Real example. The Table provides the composition of each highlighted zone. 

Starting from the dense mixed Zone1, through the two levels of zoom, small purely ChEMBL 

(Zone3) and ZINC(Zone4) subareas are detected. Corresponding MCS and their popularity 

(number of compounds that contain each structural fragment) are also reported. 

 

Figure 6. Schematic workflow: searching for ChEMBL-specific MCS with no commercial 

coverage. 

First, we focused on MCSs present in ChEMBL but not in ZINC. The workflow of their search 

is depicted in Figure 6. ChEMBL subsets (fragment-like, lead-like, drug-like and PPI-like) were 
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compared pairwise to ZINC-Real and ZINC-Tangible. The ChEMBL-specific MCSs, locally 

discovered as a result of such comparison, were used as queries in a substructure search against 

the corresponding ZINC-Real and ZINC-Tangible subsets. The absence of substructure hits 

means that these MCSs are not only zone-specific but unique to the respective subspace of 

biologically tested compounds, and absent from the supplier libraries. Several examples of the 

potent nanomolar inhibitors containing some of the specific substructures for each of the 

analyzed subsets are shown in Figure 7. For more examples of ChEMBL-specific MCSs, see 

Table S2.  

Most of the new ChEMBL substructures are much more complex than simple Bemis-Murcko 

scaffolds. For some substructures, it is the side chains that make them unique - the corresponding 

scaffolds with different decorations can be present on the market. This is the key advantage of 

our MCS-based search for characteristic substructures over a rigid scaffold-based approach.  

Figure 7 includes compounds active against therapeutically important targets. Those compounds 

and especially their analogues can be useful not only in the context of their known activities, but 

also (and more so) in other drug design campaigns featuring other biological targets. 
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Figure 7. Examples of the highly potent inhibitors, incarnating one of the reported unique 

ChEMBL substructures, recommended for the chemical space enhancement. Numbers in 



 

 

18 

parenthesis under each MCS identify the number of corresponding compounds containing this 

MCS in ChEMBL, ZINC-Real, and ZINC-Tangible libraries respectively. All reported targets 

are Homo Sapiens proteins with high therapeutic importance. 

The absence from the commercially available chemical space of so many potentially very 

important compound families, known to include biologically (very) active members, is somehow 

intriguing – after all, those molecules were produced and tested, but somehow left no trace of 

precursors or analogs in commercial space. Several plausible explanations may exist - the 

“unique” MCS may emerge during the reaction, thus not be present in commercial building 

blocks, the compound was produced from proprietary building blocks, etc. Some of the 

ChEMBL-specific chemotypes can be missing from the vendors’ libraries because they are part 

of the intellectual property space, which covers compounds protected by the patents. 

Unfortunately, the analysis of the intellectual property chemical space is not straightforward. A 

majority of patented structures are represented in a form of Markush structures, making these 

libraries impossible to cartograph (as prerequisite individual enumeration and molecular 

descriptor calculation for the combinatorically enumerated structures covered by a Markush 

formula may be too costly, or outright unfeasible). Furthermore, not all of mechanically 

enumerable Markush substituent combinations stand for chemically stable compounds – and 

even less represent confirmed actives. Specific tools for Markush-targeted substructure querying 

and even (connectivity-driven) similarity search tools exist, but more sophisticated approaches 

involving information-rich descriptors, such as topological pharmacophore patterns, cannot be 

applied. Users will be free to submit any species of interest highlighted by our tool to a state-of-

the-art check against patent libraries, but in our opinion no closer integration can be envisaged – 
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the rigorist, connectivity-centric legal status of a compound is not easy to reconcile with its 

fuzzy-logics-based responsibility patterns. 

It should also be noted that the presence of the particular chemotype in the patents libraries, yet 

does not mean that respective compounds cannot be synthesized or used in drug design 

campaigns. The point is that some patents protect only compound usage against a specific 

biological target or family of targets, leaving the freedom to operate outside of the specified 

research area. Such compounds can still be used in primary screening campaigns against novel 

biological targets.  

The entire list of concerned MCS is freely available and, in our opinion, is an interesting 

source of enrichment of the purchasable in-stock libraries enhancement. 

Biological exploration of the currently available chemical space 

The complementary application of this work is the detection of biologically unexplored regions 

of chemical space, e.g. ZINC-specific MCS. The same approach highlighted two sets of ZINC-

Real and ZINC-Tangible-specific substructures derived from compounds not found in ChEMBL. 

Table S3 shows a diverse set of examples.  

One might argue that some of those compounds could have been not “overlooked” by 

medicinal chemists, but rather intentionally discarded from the screening campaigns. However, 

the herein employed standardization and filtering procedure should have eliminated most of the 

obviously reactive compounds or potential PAINS from the 800M filtered pool of ZINC 

compounds (albeit there is no absolute consensus of what precisely “unwanted” structures are). 

Thus, in order to dispel remaining doubts, additional analysis of the key substructures as a 

potential source of the highly potent hits was performed. 
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The ultimate pertinence of herein highlighted ZINC-specific MCSs for biological exploration 

of the chemical space will only be completely validated by actual experimental screening of 

those compounds, by MedChem groups pursuing specific drug discovery projects. This path is 

beyond the present work, which limits itself to present some indirect hints of the usefulness of 

these compounds, notably by (i) investigating whether those types of compounds have been 

tested already, without being reported yet in ChEMBL database or (ii) predicting biological 

properties of the compounds of interest using the same universal map-based property landscapes 

– a fast, robust and intuitive approach directly emerging from the chemographic concept. 

Not being present in ChEMBL is not yet synonymous with being “off the beaten path”. 

ChEMBL focuses mostly on the higher-level (dose-response) biological data, but some of the 

ZINC-specific MCS might have served in HTS campaigns reported elsewhere. PubChem, the 

largest collection of structure-activity data including high-throughput screening (HTS) reports, 

has been chosen in this study as an alternative external subset. 101M compounds, 80M of which 

are unique structures (stereoisomers were considered duplicates) were collected after analysis of 

ChEMBL- and ZINC-specific maximum common substructures was finished (December 2019). 

3.1M of those compounds have been tested in at least one biological assay, while only 1.1M 

compounds were labeled as “active” by PubChem. 

In a search for the potential drug candidates out of ZINC-specific subspace, around 24K of 

lead-like ZINC-Real unique MCS (absent not only in lead-like subset but also in the unfiltered 

version of ChEMBL) were used as queries against 3.1M biologically tested PubChem 

compounds, but only molecules marked as «active» were reported as hits. The lead-like real 

subset was selected as the most relevant with respect to the HTS demands and instant 

purchasability of corresponding compounds. 
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As a result, 9 575 ZINC MCSs were found in PubChem. For 1 628 of those MCSs, there were 

4 520 PubChem compounds labeled as actives in 1 772 different biological assays. Among them 

one of the recent studies of natriuretic polypeptide receptor (hNpr1) antagonism
41

. It was 

published in July 2019 and therefore could have not been included in used here ChEMBL 

version 25, that was released in March 2019. Using HTS, the authors identified potent hNPR1 

inhibitors. One of these compounds (JS-11) was further tested in vivo in mouse, causing decrease 

of the behavioral response. Interestingly, this molecule contains one of the ZINC-specific 

substructures identified earlier - MCS12. Figure 8 shows examples of MCSs, that were found in 

the «active» PubChem subset, including MCS12 and corresponding compound JS-11. These 

examples prove that previously unexplored regions of chemical space may contain “hidden 

treasures” – potential drug candidates or at least starting points for their design. 

 

Figure 8. Examples of the ZINC-specific MCS, generalizing compound classes, tested in 

hNpr1 antagonism studies. Compound on the right (JS-11) has been ranked as the best inhibitor 

and was tested in vivo model, showing a decline in the behavioral response for itch-challenged 

mice. 

Remaining 13 891 ZINC-specific MCSs absent from PubChem, were considered as 

“overlooked” by medicinal chemists and, thus, suggested as a guide for the more efficient 
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exploration of the purchasable chemical space. In order to assess their potential biological 

activity, 149K lead-like ZINC-Real compounds incarnating those MCSs were profiled against 

749 ChEMBL biological targets, using the in-house GTM-based Profiler
25

. These results not 

intended to represent any specific “virtual screening campaign” pending experimental validation, 

but are shown as an illustration of the power of this multifaceted tool – both a chemical space 

map and activity profile predictor, at the same time. Their accuracy is, of course, essential, but 

that issue was already addressed in many other publications – both benchmarking studies
33

 and 

prospective virtual screens
42, 43

. The conclusion is that they are slightly less accurate than 

machine-learned models, but acceptable because unlike the former “black box” models they are 

visual and intuitive. 

As a result, 41K compounds (around 30% of the virtually screened molecules) were marked as 

potentially active against 525 ChEMBL biological targets. Half of the hits (Table 2) were 

predicted to be active only against a single target, another 21% - against two targets, and 

remaining compounds are predicted to be highly promiscuous (cumulating up to 18 activities). 

The MCS with the highest number of compounds predicted as actives are shown in Figure 9.  

Table 2. Target specification of the profiled compounds. 

Type of target Number of targets Number of predicted actives 

Receptors 181 25 395 

Enzymes 148 30 300 

Kinases 108 5 860 

Other targets 88 14 453 

 



 

 

23 

 

Figure 9. ZINC-Specific PubChem absent MCS, that had the higher number of 

corresponding compounds, predicted as actives using GTM-based Profiler 

CONCLUSION 

This HGTM analysis of the chemical space has provided a better understanding of the 

structural features of the purchasable chemical space. For the first time, all commercially 

available compounds have been taken into consideration, focusing on the detection of specific 

“open-ended” chemotypes (by contrast to scaffolds, maximum common substructures can be 

more specific by containing side chain substituents). It was shown that the chemical market is 

highly unbalanced, with a bias towards sulfonamides, amides, etc. Comparison of the main 

features of the in-stock and tangible compounds distribution demonstrated that tangible libraries 

still sample the same areas of the chemical space that were already overrepresented by in-stock 

molecules. Thus, there is a need for novel strategies of commercial library enhancement, which 

can provide a uniform chemical space sampling, avoiding the synthesis of a large number of 

close analogs. It goes without doubt that chemoinformatics and machine learning methods will 

be of paramount importance for the development of such strategies in the future. 
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At the same time, the biological relevance of the purchasable chemical space was assessed in 

this work. On one hand, it was discovered that a lot of compound families, known to include 

biologically active members, are absent from the in-stock catalogs of chemical suppliers. Some 

of them can be conveniently found in the tangible libraries, the most straightforward source of 

compounds for the in-stock enhancement campaign, while others are completely unavailable. In 

both cases, those substructures represent a potential source of inspiration for synthetic chemistry 

in search of enriching the commercial compound portfolio. On the other hand, the high number 

of ZINC-specific substructures demonstrates the limited extent of the biological exploration of 

purchasable libraries. Tens of thousands of such chemotypes encountered in neither ChEMBL 

nor PubChem can be used as a “novelty” guide for the further screening campaigns.  More than 

40.000 HGTMs generated in this work can be used in the future investigations of chemical space 

of any other library.  

Finding library-specific substructures by comparing a 1.6M to an 800M-compound library is 

only rendered possible by means of the combination of the fast, zone-based clustering of 

compounds on GTMs and hierarchical zooming, allowing to focus on detailed chemical space 

zones within which the Maximum Common Substructure detection algorithm can be technically 

applied. A smooth and comprehensive link is herewith established between the universal map, 

providing bird’s-eye view of the “Big Data” library and the specific substructures found in the 

particular chemical space zones.  
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 Computational methods details 

 Examples of the unique biologically relevant MCS for the commercially available 

libraries enhancement  

 Examples of the unique ZINC MCS for the biological exploration of the commercially 

available chemical space 

 

Link to the complete list of unique MCS for Fragment-Like, Lead-Like, Drug-Like and PPI-Like 

subsets - https://forms.gle/B6bUJj82t9EfmttV6 
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