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Abstract

Atomic charges are critical quantities in molecular mechanics and molecular dynam-

ics, but obtaining these quantities requires heuristic choices based on atom-typing or

relatively expensive quantum mechanical methods to generate a density to be parti-

tioned. Most machine learning efforts in this domain ignore total molecular charges,

relying on overfitting and arbitrary rescaling in order to match the total system charge.

Here we introduce the electron-passing neural network (EPNN), a fast, accurate neu-

ral network atomic charge partitioning model that conserves total molecular charge by

construction. EPNNs predict atomic charges very similar to those obtained by parti-

tioning quantum mechanical densities, but at such a small fraction of the cost that they

1



can be easily computed for large biomolecules. Charges from this method may be used

directly for molecular mechanics, as features for cheminformatics, or as input to any

neural network potential.

Introduction

Atomic charge partitioning is the process by which portions of the electron density are as-

signed to atomic nuclei. This procedure is critical for evaluating electrostatic interactions be-

tween atoms and molecules with molecular mechanics (MM) and molecular dynamics (MD).

A number of approaches exist to partition an electron density computed from a quantum

mechanical (QM) method.1–3 However, the QM computation is much more time-consuming

than the MM computation, and hence obtaining the charges from QM is not practical in

normal MM/MD applications, except for those involving replicas of only a few distinct small

molecules whose charges can be determined once prior to the MM/MD procedure. Similarly,

QM is generally unsuitable for determining charges that might be needed in high-throughput

computational screening applications. Atomic charges can instead be assigned heuristically,

such as with formal charges, but a more sophisticated approach is to tabulate atom-types

and choose charges for each atom-type to best reproduce an experimental or high accuracy

computable quantity. However, these approaches typically suffer from the inability to en-

code geometric dependence such as how a system varies during an MD simulation.4 Recent

machine learning approaches provide fast atomic charge estimates and a means to encode

the geometric dependence of charges without relying on a costly QM-based procedure.5–7

At present, however, these methods have no way of encoding total system charges, so are

relegated to predictions on systems of the same charge as the training examples or require ad

hoc scaling of atomic charges. This requirement forces the user to construct individual mod-

els for each charge state, which is inefficient and intractable when considering systems with

large total charges. Simply scaling charges ad hoc has no physical basis and relies entirely

on overfitting to geometries from the training set, which may be practical for some applica-
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tions but is not generally practical. One recent work describes AIMNet-ME, an architecture

that encodes total system charge during iterative message-passing updates by allocating in-

dividual atomic feature vectors for each possible total charge state.8 In this way, the model

can predict properties while being aware of total system charges, unlike previous methods.

While this showed good performance for the small systems studied, it remains unclear if this

approach is transferable to large systems or to systems with charges besides -1, 0, or 1.

Here, we introduce an alternative message-passing neural network model for determining

atomic charges of neutral or charged molecules with arbitrary charges, that is applicable

to large molecular systems. In this initial study, we target the modeling of protein-ligand

systems relevant for drug design efforts. Our model is trained on a collection of 3503 neutral

and charged molecular fragments relevant for proteins or drug-like molecules, and we demon-

strate high accuracy when predicting charges on different neutral and charged systems. We

demonstrate the computational efficiency of the approach by applying it to the Galectin-3C

protein with 2220 atoms.

Methods

Message-Passing Neural Networks (MPNNs)

The MPNN is a variety of graph neural network described by Gilmer et al. as a general

framework, unifying many existing schemes to learn from graph structured data.9 The MPNN

has found success in application to chemical problems, where a graph is defined by the tuple

G = (H,Ω), with nodes H ∈ RN×dh as the set of N atom centers with dh corresponding

features per atom. Edges Ω ∈ RN×N×de+1 contain de features per atom pair in addition to

a binary adjacency variable, which is often chosen according to some distance cutoff or by

covalent bonding, but generally can be generated by any process.

The primary goal of the MPNN is to propagate information about neighboring atoms via

a message-passing step and accumulate that information with an update, which can modify
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the node features and/or edge features. After several such message-passes and updates,

a readout step is performed to evaluate the graph for some property. In chemistry, the

molecular energy is a key quantity, so the readout typically consists of a node-wise evaluation

function to acquire “atomic energies,” which are then summed to recover an estimate of the

molecular energy. In principle, this general approach can be used to regress toward any

system-wide, atomic, or atomic-pairwise property, provided appropriate labels. Below are

details of a typical MPNN implementation; for connections to other works the authors refer

the reader to Reference 9.

Initial states of the graph G0 can be chosen intuitively and are problem-dependent. For

molecular graphs, atomic initial states are often chosen as h0
v = (OHE(Zv), [0, ..., 0]), where

OHE(Zv) is a one-hot encoding of the element of atom v, and (., .) denotes concatenation.

The additional zeroes pad the initial state to length dh and are updated during message-

passing. Initial edge states are often defined as the interatomic distance projected on a set

of radial basis functions, such as a set of Gaussian functions e0
vw = {e−ηj(rvw−µj)2)}j, j ∈

{1, ..., de} for atom pair v, w. η and µ are parameters of the Gaussian distribution which

may differ for each j, and rvw is the Euclidian distance between atoms v and w.

Message passes and updates are performed T times, as defined by the user. A message

from atom w to v at step t is generated by Mt(h
t
v,h

t
w, e

t
vw) = NNt(h

t
v,h

t
w, e

t
vw) with step-

specific dense feed-forward neural network NNt. All messages to atom v are accumulated

by a symmetric function, in this case a sum:

mt+1
v =

∑
w 6=v

Mt(h
t
v,h

t
w, e

t
vw) . (1)

Node feature vectors htv update according to

ht+1
v = Ut(h

t
v,m

t+1
v ) = NNU(htv,m

t+1
v ) , (2)
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for example, where NNU is typically a small, dense feed forward neural network. Edges may

update analogously but typically do not. Finally, the dimension of the readout function at

final step T depends on the target property. In the case of molecular energy, atomic energies

are usually from neural network evaluations of the final node features and accumulated with

a sum:

R =
N∑
v

NNR(hTv ) , R ∈ R. (3)

Here, NNR is another small dense feed-forward neural network.

Electron-Passing Neural Networks (EPNNs)

The EPNN introduced here is a modified MPNN able to predict atomic charges (node-level

property) while conserving the total charge (graph-level property) of a molecule or system.

This is accomplished by initializing the system with a set of atomic charges {q0v} ∀ v ∈ G

such that the total charge QG is correct, then only updating charges with operations that

conserve the total charge.

Specifically, the EPNN employs an initial message-passing phase followed by an electron-

passing phase. This general recipe is detailed in Figure 1, with precise function definitions

below. The message-passing phase, just as in the original MPNN formulation, serves to confer

and aggregate geometric information about neighboring atoms into the atomic hidden states.

Message passes are performed according to equations 1 and 2, where there is a different neural

network for each message-passing iteration:

Mt(h
t
v,h

t
w, e

t
vw) = NNt(h

t
v,h

t
w, e

t
vw). (4)

In our implementation, edge features are not updated and instead remain radial basis func-

tions independent of message passing step.
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Figure 1: A schematic for electron-passing neural networks.

In lieu of a simple readout function to recover a graph-level property, an electron-passing

phase is initiated to recover node-level properties subject to the constant charge constraint.

The electron-passing functions σ are also different per electron passing step s as

σs(q
s
v, q

s
w,h

T
v ,h

T
w, evw) = NNs(q

s
v, q

s
w,h

T
v ,h

T
w, evw)−NNs(q

s
w, q

s
v,h

T
w,h

T
v , ewv), (5)

describing an electron pass from atom w to atom v. Electron passes from all atoms are

accumulated and atomic charges are updated with

qs+1
v =

N∑
w 6=v

σs(q
s
v, q

s
w,h

T
v ,h

T
w, evw). (6)

To ensure conservation of electrons, the passing function must be antisymmetric with respect
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to permuting the two atoms

σs(q
s
v, q

s
w,h

T
v ,h

T
w, evw) = −σs(qsw, qsv,hTw,hTv , ewv), (7)

a condition enforced by the functional form of equation 5. After S electron-passing steps

have elapsed, the predicted atomic charges are read directly from qSv . Unlike during message-

passing, where node features hv are updated, electron-passing only updates node charges

qv. During training, these charges can be compared with any target charge partitioning

such as MBIS, or used in a composite way to reproduce a computed quantity, such as

electrostatic interaction energies. Discrepancies from target quantities can be used as an

error and backpropagated to optimize the collection of neural networks that define the EPNN.

Total message-passing steps T and electron-passing steps S are treated as hyperparameters

and are optimized for validation set accuracy. We found T, S = 3 were optimal in our studies.

Importantly, the electron-passing phase is functionally independent from the message-

passing phase. This means any atomic featurization can be used before electron-passing,

not just traditional message-passing as shown in this study. Simpler descriptors such as

symmetry functions could act equivalently as inputs, and the iterative nature of the electron-

passing phase partially overcomes the locality of the symmetry functions.10

Data Collection

For our model, we choose to infer charges from the popular minimal-basis iterative stock-

holder (MBIS) method3 in a supervised manner. Our training and validation data come from

three sources: a subset of 1338 small neutral molecules from the QM9 dataset,11 a set of 62

hand-curated anionic and cationic molecules relevant to drug discovery shown in Figures 2

and 3, respectively, and a 2979 sidechain molecular dimer subset from the sidechain-sidechain

interaction (SSI) dataset.12 SSI contains paired neutral and charged sidechain monomers, in-

cluding cationic arginine and lysine and anionic aspartate and glutamate. The variety in

7



training and validation data attempts to ensure sound predictions on pharmacologically rel-

evant small molecules and proteins without sacrificing accuracy on neutral systems. The

MBIS atomic charges were computed for each system using the HORTON software pack-

age13 to partition densities from density functional theory (DFT) computations with the

PBE0 functional14 and aug-cc-pVDZ basis15 performed in the Psi4 electronic structure pack-

age.16,17 Additional computational details and all structures and charges are included in the

supporting information.

To capture transferability to large systems, we constructed two test cases from the

Galectin 3C protein.18 First, the entire protein was extracted from the PDB entry 6QLP.

This geometry was used for model evaluation but we did not compute its charges with the

MBIS procedure. Next a three-residue, 80-atom fragment was extracted from the protein,

its cleaved bonds capped with hydrogens, and its charges computed with MBIS as above.

This particular fragment was chosen for illustrative purposes since it has a negative charge,

unlike the positively charged protein.

Results and Discussion

Small Molecule Performance

Of the 4379 structures in the combined QM9 subset, SSI dataset, and the manually curated

set representing pharmaceutically relevant molecules, a random 80% were used for training

and the remainder for validation. Validation performance relative to the target MBIS values

is shown in Figure 4, where each each dataset is shown separately and charge states are in-

dicated by color. Performance on this validation set is competitive with other charge models

while utilizing relatively little data.4,6–8 Noteworthy is the relative challenge in localizing

ions, especially anions. The larger errors in these systems are likely a result of larger charge

magnitudes (since the atomic charges in molecular ions can more easily have magnitudes

near 1), but also suffer from data sparsity. As larger datasets for charged systems become
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Figure 2: Small anionic molecules relevant to drug discovery. Data preparation and valida-
tion information and molecular geometries are included in the supporting information.
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Figure 3: Small cationic molecules relevant to drug discovery. Data preparation and valida-
tion information and molecular geometries are included in the supporting information.
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available, we believe predictions on anions will approach those of cations and neutral sys-

tems. Predictions on the SSI dataset are especially accurate, much of which has to do with

shared monomers between the training and validation sets. Nonetheless, prediction errors are

smaller than the variance due to charge transfer in a typical charge-neutral or charge-charge

interaction in the SSI dataset, so the models present good transferability.

Figure 4: Summary errors from the validation set, differentiated by source data set (QM9,
SSI, Curated) and by the charge state of the molecular system.
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Charge Transfer and Polarization

Understanding the change in atomic charges in response to nearby molecules is critical to

explain many condensed phase phenomena. The SSI dataset, which enumerates interactions

between protein sidechains, constitutes a significant fraction of the training and validation

data for this charge model. By examining interactions between charged and uncharged

sidechains, we can immediately quantify the combined charge transfer and polarization ef-

fects. An example of glutamic acid and glutamine from the validation set is illustrated in

Figure 5, where the model is able to replicate the charge distribution of each monomer in

vacuum, as well as in the presence of another side chain, with reasonable accuracy. The

difference in a monomer’s charges as one moves from the gas phase to the dimer complex,

which we may denote as ∆qi for each atom i, is due to charge transfer to/from the other

monomer and polarization of the monomer’s electrons, induced by the presence of the op-

posing monomer. Most of the error in the ML prediction of ∆qi is due to inaccuracy when

predicting gas-phase monomeric charges, resulting in a slightly exaggerated view of polar-

ization and charge transfer. Nonetheless, the accuracy of the model is able to qualitatively

capture even very subtle effects, like in this charge-neutral interaction.

Protein Validation

To show application to large systems and the extensivity of our charge model with respect

to total system charge, we conducted an illustrative study using the Galectin 3C protein.18

To reduce the protein to a manageable size in order to perform the reference MBIS charge

partitioning, we isolated three connected residues and capped the ends to retain sensible

bonding. This subsystem has net charge -1, which is fed directly as input along with the

Cartesian coordinates of the system. The subsystem is comprised of 80 atoms, larger than

any molecule in the training set. Just as with the smaller molecules, the charge is able to self-

organize and accurately match the target MBIS partitioning. This comparison is illustrated

in Figure 6A. Next, the rest of the protein was added, increasing the net charge to +2, a
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Figure 5: An example polarization and charge transfer interaction between glutamine (left)
and glutamic acid (right) sidechains from the SSI dataset.

3-electron change. Of note is the fact 32 atoms in this structure are formally charged, and

just tend to cancel, but the net charge is the only input required. The system was again

evaluated with the EPNN. The model produces very similar predictions for the subsystem,

highlighting its extensivity in system size and total charge magnitude. Indeed, the only

large variations in charge from the subsystem computation are in atoms whose bonding was

compromised by the capping procedure. A visual comparison is shown in Figure 6B, where

charges for the entire protein are approximated but the subset from the fragment study are

highlighted.

On a single 8-core Intel Core i7-9800X CPU, the 80-atom subsystem DFT computation

took 19 minutes. By comparison, the EPNN evaluation of this system on the same hardware

took 0.16 seconds. The 2220-atom supersystem EPNN evaluation took just 62 seconds.
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Figure 6: A. A comparison between reference MBIS charges and predicted EPNN charges
on an anionic fragment of Galectin 3C. Blue indicates negatively charged atoms and red
indicates positively charged. B. EPNN charge predictions on the entire 2220-atom Galectin
3C protein, net charge +2. The fragment from A is backlit to show similarity in charge
prediction despite system size and charge changes.

Conclusions

A neural network scheme is introduced which maps directly from Cartesian coordinates and

total system charge to an atomic charge partitioning. Unlike other works, this architecture

conserves total charge by construction, requiring a single model and no arbitrary scaling.

Additionally, the model does not grow or need additional encoding or training data in each

specific charge state to express arbitrary total charges. This architecture, dubbed an electron-

passing neural network (EPNN), attains high accuracy on charged and neutral drug- and

protein-like molecules with a small training set. Subtle charge transfer and polarization

effects due to intermolecular interactions are reproduced with good fidelity. The quality of

charges estimated with the EPNN is independent of system size – accurate charge predictions

on a protein fragment persist when the entire protein of over 2000 atoms and different charge

state is evaluated. With appropriate distance cutoff criteria, the computational complexity

of the EPNN is linear in number of atoms.

The electron-passing layer is a simple, modular unit that can be used with any atomic
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featurization as input, making it ideal to use in conjunction with existing machine learning

models for energy or other properties. The physically meaningful atomic charge output can

be used for molecular mechanics, machine-learned potentials, or as features for cheminfor-

matics. As large datasets including charged systems become publicly available, we hope

electron-passing layers can be trained for systems including different elements and a wider

range of chemical systems.

Acknowledgement

The authors gratefully acknowledge financial support from Bristol Myers Squibb, and from

the U.S. National Science Foundation through grants CHE-1955940 and DGE-1650044.

Supporting Information Available

All code and data used for this study are available at https://github.com/derekmetcalf/epnn

The SI includes computational details in data collection and architectural details of the

model.

15



References

(1) Hirshfeld, F. L. Theor. Chem. Acc. 1977, 44, 129–138.

(2) Maslen, E.; Spackman, M. Aust. J. of Phys. 1985, 38, 273–287.

(3) Verstraelen, T.; Vandenbrande, S.; Heidar-Zadeh, F.; Vanduyfhuys, L.; Spey-

broeck, V. V.; Waroquier, M.; Ayers, P. W. J. Chem. Theory Comput. 2016, 12,

3894–912.

(4) Bleiziffer, P.; Schaller, K.; Riniker, S. J. Chem. Inf. Model. 2018, 58, 579–590.

(5) Zubatyuk, R.; Smith, J. S.; Leszczynski, J.; Isayev, O. Sci. Adv. 2019, 5 .

(6) Bleiziffer, P.; Schaller, K.; Riniker, S. J. Chem. Inf. Model. 2018, 58, 579–590, PMID:

29461814.

(7) Sifain, A. E.; Lubbers, N.; Nebgen, B. T.; Smith, J. S.; Lokhov, A. Y.; Isayev, O.;

Roitberg, A. E.; Barros, K.; Tretiak, S. J. Phys. Chem. Lett. 2018, 9, 4495–4501.

(8) Zubatyuk, R.; Smith, J.; Nebgen, B. T.; Tretiak, S.; Isayev, O. ChemRxiv 2020,

(9) Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. ArXiv 2017,

abs/1704.01212 .

(10) Behler, J. J.Chem. Phys. 2011, 134, 074106.

(11) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Sci. Data 2014, 1 .

(12) Burns, L. A.; Faver, J. C.; Zheng, Z.; Marshall, M. S.; Smith, D. G. A.; Vanommes-

laeghe, K.; MacKerell, A. D.; Merz, K. M.; Sherrill, C. D. J. Chem. Phys. 2017, 147,

161727.

(13) T. Verstraelen, P. Tecmer, F. Heidar-Zadeh, K. Boguslawski, M. Chan, Y. Zhao, T.D.

Kim, S. Vandenbrande, D. Yang, C.E. González-Espinoza, S. Fias, P.A. Limacher, D.

16



Berrocal, A. Malek, P.W. Ayers HORTON 2.0.1, http://theochem.github.com/horton/,

2015.

(14) Perdew, J. P.; Ernzerhof, M.; Burke, K. J. Chem. Phys. 1996, 105, 9982–9985.

(15) Papajak, E.; Zheng, J.; Xu, X.; Leverentz, H. R.; Truhlar, D. G. J. Chem. Theory

Comput. 2011, 7, 3027–3034.

(16) Parrish, R. M. et al. J. Chem. Theory Comput. 2017, 13, 3185–3197.

(17) Smith, D. G. A. et al. J. Chem. Phys. 2020, 152, 184108.

(18) Berman, H.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.; Weissig, H.; Shindyalov, I.;

Bourne, P. Nucleic Acids Res. 2000, 28, 235–242.

17


