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Abstract 

 

Combinatorial fusion analysis (CFA) is an approach for combining multiple scoring systems 

using the rank-score characteristic function and cognitive diversity measures to combine 

different machine learning models to achieve better prediction quality.  In this work, we apply 

CFA to the synthesis of metal halide perovskites containing organic ammonium cations via 

inverse temperature crystallization. Using a dataset generated by high-throughput 

experimentation, four individual models (support vector machines, random forests, weighted 

logistic classifier, and gradient boosted trees) were developed. We characterize each of these 

scoring systems and explore 66 possible combinations of the models. When measured by the 

precision on predicting crystal formation, the majority of the combination models improves the 

individual model results. The best combination models outperform the best individual models by 

3.9 percentage points in precision. In addition to improving prediction quality, we demonstrate 

how the fusion models can be used to identify mislabeled input data and address issues of data 

quality. In particular, we identify example cases where all single models and all fusion models 

do not give the correct prediction. Experimental replication of these syntheses reveals that these 

compositions are sensitive to modest temperature variations across the different locations of the 

heating element that can hinder or enhance the crystallization process. In summary, we 

demonstrate that model fusion using CFA can not only identify a previous unconsidered 

influence on reaction outcome but also be used as a form of quality control for high-throughput 

experimentation.   
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Introduction 

High-throughput experimentation (HTE) has been used to accelerate synthesis and 

characterization1 for many areas of chemistry2 and materials science.3 In addition to merely 

increasing the rate at which experiments are performed, HTE provides an opportunity to 

generate larger datasets for use with machine learning and artificial intelligence (ML/AI) 

methods and to take actions to test model predictions in the laboratory.4 Furthermore, laboratory 

automation facilitates the capture of a complete record of experimental successes and failures,5 

and enables more systematic sampling of experimental variables that avoids human biases,6 

both of which improve the quality of ML models for chemical reaction prediction. 

 

As one specific example, we consider metal halide perovskites,7 an emerging class of 

materials for photovoltaics 8 and optoelectronics.9 High-throughput approaches have been used 

to explore perovskite thin-films,10,11 polycrystalline samples,12,13 nanocrystals,14,15 and single 

crystals (by vapor-diffusion16 and inverse temperature crystallization17). Our work has focused 

on developing high-throughput systems for perovskite single crystal growth (RAPID),17 utilizing 

inverse-temperature crystallization (ITC).18 The ESCALATE19 software used by our system 

enables comprehensive data capture and reporting of these experiments.  The ESCALATion 

web dashboard (http://escalation.sd2e.org) automatically trains and evaluates a suite of ML 

models based on new experimental data, displaying the experimental results and model 

interpretability insights, as well as tracking and versioning of the datasets and models over time. 

This provides us with a unique experimental dataset that has allowed us to uncover 

physicochemical features responsible for crystal formation for a diverse set of molecular building 

units.20 

 

http://escalation.sd2e.org/
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An open challenge for scientific HTE applications is the need for quality control. Unlike 

the traditional quality engineering goal of manufacturing products with known specifications,21 

most scientific experiments do not have a known “right answer”. Often the most interesting 

scientific results involve serendipity,22 and the most desirable materials are the “extraordinary” 

ones having extreme properties that exceed previously known examples or compositions that 

exist outside of the established search domains.23 The challenge is to distinguish scientifically 

interesting outliers from experimental anomalies, which can arise from many sources including:  

(i) uncontrolled (but measured) variations in experiment performance that affect entire batches 

of experiments (e.g., laboratory humidity and temperature variations); (ii) systematic variations 

that occur across experimental batches (e.g., temperature distribution on a heating element); 

(iii) uncontrolled and unmeasured variations in experiment performance (e.g., water contents in 

the reaction solutions, distribution of dispense volumes); (iv) operator errors and variations (e.g., 

experimental outcome assignments); (v) the inherently stochastic nature of the process being 

studied (e.g., crystal growth). The scale of data generation that HTE enables precludes direct 

human oversight of every individual experiment, so an alternative approach is to use statistical 

approaches or machine-learning models to identify outlier points for re-examination and 

verification. This presents the classic “chicken and the egg” problem.24 The model depends 

upon the training it is trying to audit, and its ability to detect anomalies may be hindered by the 

anomalies themselves. Errors that influence large groups of experiments, such as types (i) and 

(ii) described above can fool the classifier. Furthermore, legitimate fluctuations like type (v) 

should be included but might be mistaken for types (iii) and (iv).    

 

Ensemble methods and data fusion have been used in machine learning and AI (ML/AI) 

strategies and models.25–30 These include, bagging and boosting,27,29 random forests,31 

conditional mixture models,32 ensemble models,29 combining pattern classifiers,26,33 combining 

artificial neural nets,28 data fusion in information retrieval,34 causal inference and data fusion,35 
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combinatorial fusion analysis.36 Since each of the individual systems (or models) has strengths 

but that also have weaknesses across various domains, ensemble methods (or model fusion) 

have been demonstrated to be successful when individual systems are diverse. However, the 

notion of “diversity” varies when using various ensemble methods in different domains. These 

include correlation (or rank correlation) about data distribution in statistics and different diversity 

measurements in ML/AI. Most of these diversity measurements are related to data items in the 

dataset. Combinatorial fusion analysis (CFA) was proposed to combine multiple scoring 

systems using rank-score characteristic (RSC) function and cognitive diversity (CD).36–39 (RSC 

and CD are defined in the Methods section.) Instead of defining a performance criterion, the 

RSC function is used to characterize a scoring system. The CD between two scoring systems A 

and B is then defined using RSC functions of A and of B to measure the dissimilarity (or 

variations) between two systems.37–39 CFA also addresses the issue of rank versus score 

combination (vide infra).40 The CFA framework has been applied to a variety of  domains 

including target tracking and computer vision,41 ChIP-seq peak detection,42 information 

retrieval,40 brain science,43 wireless network communication,44 virtual screening,45 and 

reinforcement learning.46 

 

 Herein, we demonstrate the use of CFA to improve the data quality and prediction 

quality of HTE materials synthesis experiments. First, we quantify the cognitive diversity of 

different model types. We demonstrate that combination models constructed by model fusion 

improve prediction quality metrics. Using the more robust predictions from model fusion we 

identify questionable experimental results—focusing on those in which every single model and 

every fusion model fails to predict the outcome. Using our metal halide perovskite dataset, we 

analyze and identify possible factors associated with these failures. Then, we performed new 

laboratory experiments for these points that tested both the reproducibility of the original 

experiments as well as the proposed causative factors. Using these new experimental results, 
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we are able to distinguish the fundamental limits of the current models to predict reaction 

outcomes and the level of experimental variation to be expected.   

 

Methods 

Model fusion 

Combinatorial fusion analysis (CFA) provides methods and algorithms for data fusion, 

consensus scoring, preference ranking, ensemble machine learning.36–42,45,46 CFA combines 

multiple scoring systems either at the attribute level (e.g., features, variables, parameters, or 

cues) or at the system level (e.g., models, modalities, software, or experts). In this paper, we 

use model fusion, a special case of combinatorial fusion, at the system level where each model 

is considered as a scoring system. 

 

Let D = { d1, d2, ..., dn } be a set of n data items, with each data item, di , corresponding to 

an experiment. The scoring system A on the data set D consists of a score function, sA, and a 

rank function, rA. The score function sA: D →  ℝ assigns a score value (a real number in ℝ; for a 

binary classifier, this score is the probability of being in the “positive” class) to each data item d i 

in D, i.e. sA(di) in  ℝ for each di in D. The rank function rA : D → ℕ , where ℕ = {1,2, ... , n} and n 

is the cardinality of D, is derived from sA by sorting the score values into descending order and 

assigning the rank order of the score value to the data item which has that score value. For a 

scoring system A, its score function sA and derived rank function rA, the rank-score characteristic 

(RSC) function  fA : ℕ → ℝ is defined as:  

    𝑓𝐴(𝑖)  =  𝑠𝐴(𝑟𝐴
−1(𝑖)) ,   for i in ℕ                        (1)   
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The RSC function of the scoring system A, fA, was defined by Hsu, et al. in 200239 and 

subsequently used to define the notion of cognitive diversity in a variety of domain applications 

in ML/AL and data fusion.38,46 The RSC function characterizes the scoring (or ranking) behavior 

of the underlying scoring system A. Moreover, since fA is a function from ranks in ℕ to scores in 

ℝ, it does not rely on specific data set items from sampling or experiments, so long as they are 

sampled from the same pool of potential data items. The RSC function values are normalized to 

the interval [0, 1]; this allows us to compare different scoring systems, as otherwise they would 

have their own score interval. In this paper, cognitive diversity, CD(A, B), which provides the 

diversity measurement between two models A and B, is calculated from the difference between 

RSC functions fA and fB:38,40,45 

    𝐶𝐷(𝐴, 𝐵)  =  √∑ (𝑓𝐴(𝑖)  − 𝑓𝐵(𝑖))2
𝑛
𝑖 = 1 ,                                     (2) 

where n = cardinality of D, fA, fB :  ℕ → ℝ.45  CD differs from the traditional correlation or rank 

correlation in statistics (which measures association between two data distributions) or diversity 

measurement in machine learning and ensemble method.26,28,29,33 Correlation and rank 

correlation measures depend upon having a shared set of data set items. In contrast, CD can 

be applied even when the test datasets are different (such as different experiments or sampling 

strategies). The diversity strength, ds(A), of the scoring system A is defined as the arithmetic 

average of CD between A and other scoring systems. 

 

Methods of combination play an important role in the performance of the combined 

system. Traditional approaches use either score combination, such as in regression or Bayesian 

networks, or rank combination, such as in rank aggregation or consensus ranking.47–50 Hsu and 

Taksa40 compared rank and score combination methods for data fusion in information retrieval. 

They showed that under certain conditions, which include a relatively large cognitive diversity, 

rank combination can achieve better results than score combination. The CFA framework, which 
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combines multiple scoring systems, allows researchers to take advantage of both worlds either 

by combining the score functions in the parametric Euclidean score space (ℝn) or the rank 

functions in the permutation rank space (ℕn), where D = the set of all data items, cardinality of D 

= n, with score function sA : D → ℝ and rank function: rA : D →  ℕ. Let A1, A2, ..., At be a set of t 

scoring systems and w1, w2, ..., wt be the weights assigned to each of the scoring systems. 

Each scoring system Aj , has score and rank functions, sAj and rAj respectively. The weighted 

score combination, SC(Aj, j = 1 to t),  and weighted rank combination , RC(Aj , j = 1 to t), of the t 

scoring systems are defined as, 

𝑠𝑆𝐶(𝑑𝑖)  =  (∑ 𝑤𝑗
𝑡
𝑗=1 ∗ 𝑠𝐴𝑗(𝑑𝑖))/∑ 𝑤𝑗

𝑡
𝑗=1                                         (3) 

and 

𝑠𝑅𝐶(𝑑𝑖)  =  (∑ 𝑤𝑗
𝑡
𝑗=1 ∗ 𝑟𝐴𝑗(𝑑𝑖))/∑ 𝑤𝑗

𝑡
𝑗=1  ,         (4) 

where di in D. The rank functions of the combined scoring systems SC(Aj) and RC(Aj), rSC(di) 

and rRC(di), can be obtained from sSC(di) and sRC(di) respectively. Although formula (3) and (4) 

look explicitly as linear combinations, they are implicitly in two different combinatorial solution 

spaces. When evaluating the performance difference between the combined system and each 

of its individual systems, eqn (3) operates on the parametric Euclidean score space. However, 

eqn (4) operates on the set of all permutations, Sn, the symmetric group of order n, with a metric 

properly defined.40,46,47 We further note that other methods of combinations are possible. For 

example, non-linear combination using majority voting and convex combination using the mixed 

group rank are used in combining multiple classifier systems.51,52 

Performance metrics 

 In the binary classification, each data item is classified as either positive or negative; in 

our experiments this corresponds to the formation of, or failure to form, a high-quality single 



9 

crystal. Accuracy, precision and recall are used to evaluate the binary classifiers that comprise 

each single machine learning model.  

 

To generalize these measures to rank-based systems, it is helpful to recall that each 

scoring system assigns a score, and a numerical threshold is applied to distinguish positive and 

negative predictions.  If t is the rank of the data item which has this threshold as its score value, 

then data items ranked from 1 to t are predicted positive and data items with rank greater than t 

are predicted negative. Accuracy, recall, and precision measures can be generalized to 

evaluate rank-based systems in the following way: If there are k actual positives in the test set, 

a perfect model should predict all true positives at the top k of the single rank-score 

characteristic function, and predict all true negatives for every data item after these first k items. 

Therefore, one way to calculate the precision for a ranking system is to take the first k items as 

predicted positives, and then determine the number of true positives contained in that set.  As 

an abbreviation we use “Pre@k” to denote the precision of the first k number of data items, 

where k is the number of actual positives in the test set.38 Pre@k is commonly used to 

characterize the retrieval quality of rank models for information retrieval tasks, such as search 

engines.40 For both score combination and rank combination models, the model predicts the top 

k data items as predicted positives and then calculate the Pre@k to evaluate performance.  

Computational implementation 

The work described here used a dataset of 9387 inverse temperature crystallization 

perovskite synthesis experiments divided amongst 45 organoammonium cation species, 

reflecting the state of the project on November 27, 2019, assigned the internal label “dataset#44 

(DS#44)”.  A complete transcript of these data is available via the Materials Data Facility53 and 

via an interactive browser.54 This dataset includes a set of 75 physicochemical features (e.g., 
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concentrations, temperature, stir rate) and organic property descriptors (e.g., molecular weight, 

atoms number, functional groups), described in Table S1 and S2 in the Supporting Information.  

 

These data were used to train four binary classifier models, where 1 (“positive”) is the 

production of a large, high-quality single crystalline product, and 0 (“negative”) is any other 

outcome (e.g., polycrystalline sample, precipitation of starting materials, no reaction) and a 

prediction probability in the range of [0,1].  A 80/20% random train-test split was performed, and 

used for all models to facilitate comparison.  Files containing the exact training and test data, as 

well as the  model predictions are found at https://github.com/tyq0330/Model_Fusiong. 

 

 Using these data, four classifier models were constructed using an automated model 

Test Harness ( https://github.com/SD2E/test-harness ) system implemented in Python 3.6.8 using 

the scikit-learn 0.22.155 implementation of each classifier. 

The specific models are: (A) Support vector radial basis classifier (SVM) (hyperparameters: 

regularization parameter C = 100000, rbf kernel, gamma = 0.1) ; (B) Random forest 

classification (RF), (hyperparameters: 361 trees in forest , criterion='entropy' for the information 

gain, min_samples_leaf=13, balanced class weight);(C) Weighted logistic classifier (WLC) (cost 

function:  balanced class weight)  ; and (D) Gradient boosted tree (GBT) (hyperparameters: 

learning rate = 1.  max_depth= 10, max_features='auto',  n_estimators=100) .  The thresholds 

for RF, WLC and GBT are set to 0.5 and the threshold for SVM is a variable; in DS#44, it is 

0.413. 

 

In this paper, our model fusion combines four single models in pairs (6), triples (4), and 

quadruple (1). Each of these 11 combined models is then considered using both score and rank 

combinations. The score combination (SC) combines score values of the score functions from 

each of the underlying single models (eqn (3)). Likewise, the rank combination (RC) combines 

https://github.com/tyq0330/Model_Fusiong
https://github.com/SD2E/test-harness
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the rank numbers of rank function from each of the underlying single models (eqn (4)). This 

results in a total of 22 possible combined models. Finally, the scores and ranks of the different 

models can be weighted according to three different weighting schemes: average combination 

(AC), weighted combination by performance (WCP), and weighted combination by diversity 

strength (WCDS), where  

𝑤 = 
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑗

𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠
=

{
  
 

  
 

1

𝑛
, 𝐴𝐶

𝑃𝑗
∑ 𝑃𝑗
𝑛
1

, 𝑊𝐶𝑃

𝑑𝑠𝑗
∑ 𝑑𝑠𝑗
𝑛
1

, 𝑊𝐶𝐷𝑆

 

 

for AC, WCP, and WCDS, respectively. We note that in the average combination, every model j 

of the n models is given the same weight 1/n. In the weighted combination by performance and 

by diversity strength, we use the performance criterion precision at k, Pre@k, and diversity 

strength ds(A) as weight of each individual model A respectively. Since there are 11 different 

models in each of score and rank combinations of three different weight combinations, we have 

a total of 66 different combined models using the CFA framework.  Predictions of the four 

classifier systems for each of the test set items are provided as input to the CFA analysis which 

were performed using Python 3.6.8. This code is available at 

https://github.com/tyq0330/Model_Fusiong 

Experimental method 

The experimental procedures, material characterizations, and chemical discoveries for 

the high-throughput inverse temperature crystallization (ITC) synthesis of metal halide 

perovskite single crystals are described in our previous work.17  In brief, an automated liquid 

handling robot pipettes four different types of stock solutions into glass vials on a 96-well 

microplate (see Figure S1).17 These stock solutions consist of (a) lead (II) iodide and the 

https://github.com/tyq0330/Model_Fusiong
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selected organoammonium iodide in solvent, (b) just the selected organoammonium iodide in 

solvent, (c) the neat solvent (most commonly gamma-butyrolactone, GBL), and (d) neat formic 

acid. The liquid handling robot dispenses the reagent stock solutions, and then vortexes and 

heats the microplates to mix the reagent solutions. After vortexing is complete, the resulting 

perovskite solutions are heated without vortexing for 2.5 hours to allow for crystal growth. For 

the reactions performed in this study, the heating temperature was typically set to a nominal 105 

°C setting, which corresponds to an actual average temperature of 95 °C as measured by IR 

thermometry. The historical dataset, DS#44, was mostly performed at this setting, but also 

contains reactions performed at other temperatures (e.g., 80 °C, 67 °C).  After reaction 

completion, the resultant crystals are scored by visual inspection into four outcome classes: (1) 

clear solution without any solid; (2) fine powder; (3) small crystallites (average crystal dimension 

< 0.1 mm); and (4) large (> 0.1 mm) crystals suitable for structure determination by single 

crystal X-ray diffraction. Of these, outcome class “4” corresponds to “positive” in our binary 

classification machine learning task. In addition to visual inspection at the time of experiment, 

we also capture photographs of the reaction outcomes that are stored with the data. Our past 

work has indicated that visual inspection with this rubric was more accurate and reproducible 

across operators than computer vision approaches for this system. To validate model fusion 

predictions, we performed 92 additional reactions with specific microplate locations across 7 

chemical systems (ethylammonium iodide/PbI2, n-butylammoniuon iodide/PbI2, 

dimethylammonium iodide/PbI2, and iso-butylammonium iodide/PbI2 ,imidazolium iodide/PbI2 

acetamidinium iodide/PbI2 and guanidinium iodide/PbI2) for this paper.  

Results and Discussion 

1. Binary classification performance of individual models 

Table 1 shows the mean and standard deviation of prediction metrics for each single 



13 

model from dataset #30 (DS#30) to dataset #43 (DS#43). The variations reflect the evolving 

performance of the models as more training items are added. These variations include the 

performance as different random test sets are used for evaluation and the changing chemical 

species being studied over the course of 13 weeks of experimentation. To focus on a single set 

of these models, Table 2 shows prediction metrics for each individual model for DS#44 where 

the threshold and its rank t for the four models SVM(A), RF(B), WLC(C), and GBT(D) are 0.413 

at t = 380, 0.5 at t = 527, 0.5 at t = 747, and 0.5 at t = 327, respectively.   All models, with the 

exception of GBT, predict more positive outcomes than contained in the test set, and have 

varying capabilities at identifying the true positives present. Although the WLC (C) classifier has 

the lowest accuracy and precision, its true positive and recall rates are comparable to some of 

the better models, and thus can be useful in an exploratory project, where the cost of low 

specificity is small (a few extra experiments) but the cost of low sensitivity is high (a missed 

discovery).    
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Table 1. Prediction quality metrics (mean and standard deviation) of individual models for data 

sets  DS#30 to DS#43. 

Model Accuracy Precision Recall 

SVM (A) 0.887 ± 0.006 0.736 ± 0.028 0.753 ± 0.020 

RF (B) 0.844 ± 0.008 0.598 ± 0.024 0.877 ± 0.015 

WLC (C) 0.689 ± 0.010 0.388 ± 0.033 0.715 ± 0.023 

GBT (D) 0.885 ± 0.006 0.745 ± 0.029 0.716 ± 0.025 

 

 

Table 2. Prediction quality metrics of individual models for data set DS#44, where t is the rank 

number of the threshold for each model. 

Model (Threshold) Rank t True Positive Accuracy Precision Recall 

SVM (A) (0.413) 380 253 0.877 0.666 0.709 

RF (B) (0.5) 527 312 0.862 0.592 0.874 

WLC (C) (0.5) 747 271 0.701 0.363 0.759 

GBT  (D) (0.5) 321 234 0.888 0.729 0.655 
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2. Model fusion performance  

To assess the quality of ranking-based fusion models, we first establish a shared 

baseline with the individual models.  An appropriate measurement suitable for characterizing 

rank-based models is precision at k (Pre@k).40 As there are 357 actual positives amongst the 

1878 experiments in the test set, the precision at 357 (Pre@357) quantifies the extent to which 

the highest ranked items correspond to the “best” (i.e., positive outcome) reaction selection. 

Table 3 shows the number of true positives (#TP) and the precision at rank 357 (Pre @ 357) for 

each of the individual models trained and tested on DS#44.  The best performance is achieved 

by the GBT model, followed closely by RF and SVM. The WLC model performs much lower 

than the other three models, consistent with the lowest performance with respect to accuracy 

and precision in the score-based metrics observed in both Tables 1 and 2. The Rank-Score 

Characteristic (RSC) function, eq. (1), is plotted for each of the individual models in Figure 1. 

The shape of each RSC function characterizes the scoring (or ranking) behavior of that model. 

A model whose RSC function graph is a hypothetical diagonal line from point (0, 1.0) to point 

(1878, 0), corresponds to a simple linear relationship between score and rank.  In Figure 1, the 

RSC function graph of the model WLC (C) model, which is closest to the diagonal line DL, 

assigns a score in [0, 1.0] to a rank in [1,1878] in proportionally decreasing order. An RSC 

function above this hypothetical diagonal line, such as the first 300 data items predicted by the 

GBT model (red), corresponds to assigning higher scores than to the corresponding ranks. 

Steep changes in the RSC function indicate abrupt score assignment changes to subsequently 

ranked items. A model with RSC function graph below the hypothetical diagonal lines, such as 

the SVM model, gives relatively lower scores. The cognitive diversity (CD) between two models 

(eq. (2)) describing the area between their RSC functions are shown in Figure 2a. The diversity 

strength of a model, defined as the average of the cognitive diversities to the other three 

models, is shown in Figure 2b. The model WLC (C) has the largest diversity strength among 
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these four models, followed by GBT (D). The model RF (B) and model SVM (A) have very 

similar values on diversity strength. 

 

Table 3. Number of true positive, #TP, found and precision at rank 357, Pre@357, calculated 

for each of the four individual models  

Model #TP @ 357 Pre @ 357 

SVM (A) 243 0.681 

RF (B) 249 0.697 

WLC (C) 157 0.440 

GBT (D) 251 0.703 

 

 

 

Figure 1. The Rank-Score Characteristic (RSC) function graph (eq. 1) for each of the four 
models: SVM (A), RF (B), WLC (C), and GBT(D) for 1878 test items in DS#44. 
 



17 

    
Figure 2.  (a) Cognitive diversity (eq. 2) between SVM, RF, WLC and GBT models; and (b) 

diversity strength of each of these individual models. 

 

As noted in the methods section, model fusion considers the 11 combinations of four 

single models, two methods of combinations (i.e., score combination (SC) and rank combination 

(RC)), and three weighting schemes (average combination (AC), weighted combination by 

performance (WCP) using Pre @ 357, and weighted combination using diversity strength 

(WCDS)). In general, a good practice when selecting single models to include in a CFA analysis 

is to include scoring systems that are relatively “good” (make predictions that are better than 

chance) and “different” (have a large diversity strength relative to the other models);45 the four 

models described in the previous section satisfy these properties.  In general, previous virtual 

screening studies applying CFA45 and idealized numerical studies59  have found that 

combinations of 3 or 4 different individual models (with sufficiently large diversity strength) 

suffice for most of the performance gains, after which there are only diminishing improvements. 

 

Complete results for these combination schemes AC, WCP and WCDS are included in 

Table S3 in the Supporting Information. Overall, the majority (39/66) of these new models 
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(13,15, and 11 cases for these combination methods AC, WCP, and WCDS respectively) using 

DS#44 have Pre@357 better than or equal to the best of individual models. Among the 66 

combination models, the best one is RC(ABCD) under the WCP with Pre@357 = 0.742 which is 

3.9%-points higher than the best individual model GBT(D) with Pre@357 = 0.703 (Table 3 in 

section 2 and Table S3 in supporting section). This is followed by RC(ABD) under AC with 

Pre@357 = 0.734, RC(ABD) under WCP with Pre@357 = 0.731, and RC(ABD) under WCDS 

with Pre@357 = 0.728. Performance of the 22 model fusion results using WCP are depicted in 

Figure 3. (Figures S2 and S3 show corresponding versions of this plot for the AC and WCDS 

weighting schemes.) In addition to showing the precision of each of the 22 combined models, 

the single model results are denoted by three horizontal lines at y = Pre@357 = 0.703(GBT(D)), 

0.697(RF(B)), and 0.681(SVM(A)). Not shown is 0.440 (WLC(C)). Most of the high-performing 

rank combinations are better than the comparable score combination. Despite the greater 

diversity strength of model C compared to the other models, combinations involving model C 

tend to have lower prediction performance than other combined models. This is not surprising 

as model C has much lower performance compared to the other three models.  In contrast, 

combinations involving B but not C perform better in most combined models’ cases, as it has a 

relatively high performance and diversity strength. This explains why the best results under both 

AC and WCDS are achieved by rank combination of models A, B and D, specifically RC(ABD). 

However, the performance of these models is lower than RC(ABCD) under WCP discussed 

above.   AC and WCDS are degraded by including the (relatively poor performing) model C, 

because they either equally weight its predictions or overweight its predictions (because C has 

higher diversity strength), respectively.  In contrast, WCP takes into account C’s lower 

performance, while still allowing it to contribute diversity strength to the final prediction. 

 

 



19 

 

Figure 3. Precision (Pre @ 357) of each of the 22 combined models using weighted 
combination by performance (WCP) (points with “O” for rank combination and “▲” for score 
combination) compared with the single model (horizontal line) precisions (Pre@357) for the 
models SVM(A), RF(B), and GBT(D), are 0.681, 0.697, and 0.703 respectively. The line for 
WLC(C)'s Pre@357=0.44 is not shown. 

 

3. Extracting insight from model fusion results 

In binary classification, each individual model has its own score as a threshold to classify 

positive or negatives: 0.413, 0.5, 0.5, and 0.5 for model A, B, C, and D respectively. In model 

fusion using combinatorial fusion analysis (CFA), we define precision of an individual model to 

be Pre@k, where k is the number of positives in the dataset. For example, model WLC(C) has 

threshold rank t = 747 with 271 true positives found (shown in Table 2) but has 157 true 

positives discovered with respect to Pre@357 (shown in Table 3). The large discrepancies 

between predicted 271 and 157 TPs is caused by the smaller threshold with higher rank t used 

by model WLC which produces not only higher true positives but also much higher false 

positives. 
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3.1 Model fusion finds positives that are missed by individual models 

Results by model fusion using CFA in Section 2 have correctly found 9 true positives 

(TP) data items which would not have been found by any of the individual models. Table S8 and 

Table S9 show the rank of these data items in various WCDS fusion models for DS#39 and 

DS#44, respectively. Tables S4-S5 with 9TPs, and Tables S6-S7 with 5 TPs show 

corresponding versions for model fusion for AC and WCP combinations, respectively.) For 

example, data item "j" in Table S9 was found to be true positive at rank 335 using Pre@357 by 

RC(CD), but was predicted (incorrectly) to be negative or to be positive but ranked low by each 

of the single models and ranked at 667, 476, 387, and 456 by each of the four individual models 

A  (t = 380),  B (t = 527), C ( t = 747), and D (t = 321), respectively. In total, there are nine such 

TP data items, four in DS#39 {a,b,c,d} (Table S8), and five in DS#44 {e,f,g,h,j} (Table S9). In 

contrast, all the TP data items found by individual models A, B, C, and D, were also correctly 

predicted by some model fusions in the CFA framework. This demonstrates that model fusion 

using CFA provides more predictive power than each of the four individual models. In addition to 

these WCDS results, similar analyses using AC and WCP are included in Table S4-S5 and S6-

S7, respectively. We also examined agreements between single models and each of the 

combination models AC, WCP, and WCDS. These include 26 false positives (Table S10) and 

17 false negatives (Table S11). These false positive and false negative results are predicted 

incorrectly by the individual models and by the fusion models.  This is a surprising anomaly 

which may suggest a possible problem with these individual experiments. We propose using 

this type of discrepancy as a criterion for prioritizing experiments for replication.   

3.2 Experimental replication by reproduction and relocation  

 

In the original experimental dataset, each individual experiment was randomly assigned 

a location on the 96-well plate to avoid any correlations between the vial location and its 
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composition. As shown in the infrared thermal image of the heating block in Figure 4 below, 

there are temperature variations between location in the center areas labelled as Type I (with 

rows labelled with C,D,E, and F and columns labelled with 5,6,7, and 8), in the middle areas 

labelled with Type II (32 totals), and those in the edge areas on the left/right side and top/bottom 

labelled with Type III (48 locations total with 24 locations labelled with rows A and H and 

columns numbered 1-12 and 24 locations with rows from B to G and columns 1, 2, 11 and 12). 

These variations may alter the equilibrium and/or kinetics of the inverse temperature 

crystallization process. Although edge-effects are well known in HTE literature,56,57 they are 

predominantly treated as a binary distinction between “edge” or “interior.” As we will show 

below, dividing the surface into three regions provides a better explanation.  

 

 

Figure 4. Infrared camera image of the 96-well microplate at a nominal 105°C setting. The 

number in each square indicates the types assigned in our analysis; these proceed 

concentrically from the center. The close-distance infrared images captured at individual vials 
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provide mean temperatures for Type I, II, and III locations of 97.3, 96.7, and 95.9°C, 

respectively.   

 

 

We considered two different types of replication experiments: Reproduction experiments 

are performed at the exact same location as the original experiment.  Relocation experiments 

are moved to a different location.  In both cases, the composition and the nominal (plate-level) 

temperature remain fixed.  Because a complete electronic record of each experiment is 

maintained,17,19 we were able to examine not only expected influences (e.g., composition, 

temperature, time, etc.) but also unexpected influences (e.g., location of the reaction vials on 

the heating block). For each of the 9 TPs in Table S8 and S9, we performed reproduction 

experiments (results in Table S15) and relocation experiments (Table S19). These TP results 

were correctly predicted by the CFA models, despite being missed by the individual models. 

From the 26 FP’s and 17 FN’s in Table S10 and S11, we selected 10 and 10 from each of FP 

and FN groups, respectively and identified possible commonalities among these anomalous 

experiments. The goal of selecting a subset of these misclassified experiments was to facilitate 

reproduction at the same location and experimental replication at different locations, discussed 

below. In total, there are 29 reproduction results comprising 9 TP’s, 10 FP’s, and 10 FN’s 

experiments. (See Table S15, S16 and S17.) There are 63 relocation results, consisting of 18 

TP’s, 22 FP’s, and 23 FN’s experiments. (See Table S19, S20 and S21.) The 29 reproduction 

and 63 relocation experiments are summarized in Table 4 and Table 5, respectively.  These 

results are tabulated based on whether the outcome of the reproduced/relocated experiment 

was the same as or different from the original experiment. 
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Table 4. Status of different/Identical for 29 reproduction experiments (conducted at the same 

location as the original experiment) 

Outcome 9 TP’s 10 FP’s 10 FN’s Total 

Different 4 5 4 13 

Identical 5 5 6 16 

Total 9 10 10 29 

 

 

Table 5.  Status of different/Identical for 63 relocation experiments (experiments moved to a 

different location) 

Outcome 9 TP’s 10 FP’s 10 FN’s Total 

Different 15 13 13 41 

Identical 3 9 10 22 

Total 18 22 23 63 

 

Following the schematic in Figure 4, the 96-well microplate is classified into three types 

of locations: Type I (16 center locations), Type II (32 middle locations), and Type III (48 edge 

locations) respectively. Table 6 depicts the number of same and different outcomes; and the 

type sensitivity ratio (TSR) is defined as the ratio of the number of different to same results 

(13/16 = 0.81) for the 29 reproduction experiments distributed over the three types of locations 

Type I (2/4 = 0.5), Type II (2/5 = 0.4), and Type III (9/7 = 1.29). Table S18 contains a breakdown 

of experiment outcomes for the 9 TP’s, 10 FP’s, and 10FN’s for these different locations (Type I, 

II and III).  All three types (TP, FP, FN) have fewer identical outcomes in Type III locations than 

in Type I or Type II.  All TP reproduction experiments yielded identical results in Type I 

locations, and reproducibility was higher in Type II locations than in Type III locations.  For FP, 

only identical outcomes were observed in Type I or Type II locations, but there were many 

different results in Type II locations. This is consistent with increased temperature sensitivity.  

For FN, there was no clear trend across the different types of locations, suggesting that FN  

model failures arise from other contributions. 
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Further insight can be gained by deliberately relocating experiments between different 

types of locations. Table 7 summarizes the number of different-result, same-result, and type 

sensitivity ratio (TSR) as the triple (a, b; c) for the, 63 relocation experiments, tabulated based 

on the original position (Type X location) and new position (Type Y location) where {X, Y} = { I, 

II, III}.  The results in Table 6 indicate that type III locations on the 96-well microplate are more 

likely to have different results when reproduced; the TSR is greater than the average over all 

experiments.  This is expected, as the edge locations can be as much as 5°C colder (and on 

average are 1.4°C colder) than the interior, which could hinder the inverse-temperature 

crystallization process.  More surprisingly, considering the relocation experiments in Table 7, the 

TSR for relocations between middle and edge locations (Type II → Type III or Type III → Type 

II) are higher than the background of the other experiments.  It is known that the onset 

temperature for inverse temperature crystallization processes is highly dependent upon the 

composition of the solution.  Our results suggest that these specific experiments have 

compositions where the small temperature variations between the different locations are 

sufficient to cause or prevent crystal formation.  Experiments in Type III locations which were 

initially incorrectly predicted as FP or FN would have been correct predictions if they had been 

moved to a different location. However, merely augmenting the DS#44 training and testing sets 

with the location information (provided as a one-hot-encoded vector) did not improve any of the 

prediction quality of the single models by more than 0.005.  This provides additional evidence 

that these chemical compositions are poorly described by the training data. In this way, we can 

use the fusion models to provide additional credibility to the predictions, and use the 

discrepancy between predicted and actual outcomes to identify these scientifically interesting 

anomalies, as distinct from other types of prediction errors. 
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Table 6. Different, Identical and TSR of the 29 reproduction experiments over locations Type I, 

Type II, Type III 

 Location 

Outcome Type I Type II Type III Total 

Different 2 2 9 13 

Identical 4 5 7 16 

Total 6 7 16 29 

TSR 0.5 0.4 1.29 0.81 

 

 

 

Table 7. Number of (a) different, (b) Identical observed outcomes and (c) TSR, written as triples 

(a, b; c) of the 63 relocation experiments from Type X to Type Y location. 

Type Y 
Type X 

I II III Total 

I (0, 1; 0) (0, 2; 0) (6, 4; 1.5) (6, 7; 0.86) 

II (1, 1; 1) (3, 0; *) (6, 1; 6) (10, 2; 5) 

III (3, 3; 1) (11, 3; 3.66) (11, 7; 1.57) (25, 13; 1.92) 

Total (4, 5; 0.8) (14, 5; 2.8) (23, 12; 1.92) (41, 22; 1.86) 
Note: “*” indicates the number is not applicable. 
 
 
 

Conclusion 
Model fusion using combinatorial fusion analysis (CFA), which combines multiple scoring 

systems (MSS) using rank-score characteristic (RSC) function and cognitive diversity (CD), was 

used to improve the prediction quality of four individual models and enhance the data-quality of 

the HTE’s. By combining the four individual models A (SVM), B (random forest), C (weighted 

logic classifier), and D (gradient boosted tree) in all combinatorial ways (pairs, triples, 

quadruples) using both score and rank combinations, we have generated 22 fusion models for 

each of the three combination methods: average combination (AC), weighted combination using 

performance (WCP) and weighted combination using diversity strength (WCDS). The majority of 

these 66 fusion models (summarized in Table S3) improve the prediction-quality of individual 
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models. Among the 39 fusion models, which improve all single models A, B, C and D, rank 

combination of all four models, RC(ABCD), achieves the highest accuracy Pre@357 of 0.742, a 

3.9%-points increase over the best single model GBT(D). 

 

An examination of shared attributes of the 26 reactions that are incorrectly predicted as 

positives (Table S10) or 17 reactions incorrectly predicted as negatives (Table S11) indicated 

that these reactions are predicted by all of the individual models and the fusion models. 

Incorrect predictions are more likely to occur on edge sites (Type III in Figure 4) of the reaction 

plate. Outcomes of 29 reproductions and 63 relocation experiments (comprised of 9 TP’s, 10 

FP’s, and 10 FN’s) are shown in Tables 4-5. Experiments at the edge locations (Type III) 

showed much more changes in both reproduction and relocation (Table 6-7). Using a 

combination of infrared thermometry and experimental replication of 63 experiments to control 

for location changes, we identified temperature changes of the order of 7°C at the plate edge as 

sufficient to change some of the reaction outcomes. The datasets originally used for machine 

learning model training did not contain this location information, and hence could not account for 

this difference. Merely dividing the locations into “interior” and “edge” is insufficient to describe 

this trend; rather division into an interior, middle, and edge region (Types I, II, III) better explains 

the results of relocating experiments.   

 

In addition to demonstrating that model fusion can inform and improve data and 

prediction-quality of HTE perovskite synthesis, our work also confirms previous results using 

CFA framework.40,45 In agreement with previous theoretical work by Hsu and Taksa,40 under 

certain conditions involving cognitive diversity, rank combination can perform better than score 

combination. In agreement with our numerical findings, when the combination is better than the 

individual model, the rank combination fusion models (bottom half of Table S3) do perform 

better than score combination fusion models (top half of Table S3). Results in Yang et al.45 
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demonstrate that combination of scoring systems is better than individual systems only if they 

are relatively good and they are different. Three fusion models AB, BD and ABD confirmed this 

assertion (Table S3). Our work not only builds upon previous success of this approach to 

cheminformatics problems on virtual screening and consensus scoring 45,58 but also highlights 

the ability of the CFA model fusion approach to help improve quality control on high-throughput 

experimental studies.  Based on these results, we plan to incorporate model fusion-based 

quality control into future versions of the ESCALATE19 program. 

 

Associated Information 

Supporting Information  

Additional details on model input features, fusion model results, and experimental replication 

results, as well as a discussion of the shuffling significance tests and alternate analysis of center 

and edge division can be found at [ACS Information]. Code used to generate the single model 

results can be found at https://github.com/SD2E/test-harness. Code used for the model fusion 

study, and generation of the figures can be found at https://github.com/tyq0330/Model_Fusiong .  

• Figures S1-S4 and Tables S1-S21 mentioned in the text (PDF) 
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